Delays in Initiating Anti-Cancer Therapy for Early-Stage Breast Cancer—How Slow Can We Go?
Abstract
:1. Introduction
2. Materials and Methods
3. Delays in Breast Cancer Treatment
4. Time to “Upfront” Surgery (TTS-u)
5. Time to Surgery following Neoadjuvant Therapy (TTS-n)
6. Time to Adjuvant Chemotherapy (TTC)
7. Time to Radiotherapy (TTR)
8. Looking Ahead and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021, 41, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Coronavirus Cases: Statistics and Charts Worldometer. Worldometer.info. 2022. Available online: https://www.worldometers.info/coronavirus/coronavirus-cases/ (accessed on 5 May 2023).
- DeSantis, C.E.; Fedewa, S.A.; Goding Sauer, A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA 2016, 66, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chlebowski, R.T.; Chen, Z.; Anderson, G.L.; Rohan, T.; Aragaki, A.; Lane, D.; Dolan, N.C.; Paskett, E.D.; McTiernan, A.; Hubbell, F.A.; et al. Ethnicity and Breast Cancer: Factors Influencing Differences in Incidence and Outcome. JNCI J. Natl. Cancer Inst. 2005, 97, 439–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Razeq, H.; Mansour, A.; Jaddan, D. Breast Cancer Care in Jordan. JCO Glob. Oncol. 2020, 6, 260–268. [Google Scholar] [CrossRef]
- Nyante, S.J.; Benefield, T.S.; Kuzmiak, C.M.; Earnhardt, K.; Pritchard, M.; Henderson, L.M. Population-level impact of coronavirus disease 2019 on breast cancer screening and diagnostic procedures. Cancer 2021, 127, 2111–2121. [Google Scholar] [CrossRef]
- Vanni, G.; Tazzioli, G.; Pellicciaro, M.; Materazzo, M.; Paolo, O.; Cattadori, F.; Combi, F.; Papi, S.; Pistolese, C.A.; Cotesta, M.; et al. Delay in Breast Cancer Treatments during the First COVID-19 Lockdown. A Multicentric Analysis of 432 Patients. Anticancer Res. 2020, 40, 7119–7125. [Google Scholar] [CrossRef]
- Richards, M.; Anderson, M.; Carter, P.; Ebert, B.L.; Mossialos, E. The impact of the COVID-19 pandemic on cancer care. Nat. Cancer 2020, 1, 565–567. [Google Scholar] [CrossRef]
- Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [Google Scholar] [CrossRef]
- Uimonen, M.; Kuitunen, I.; Paloneva, J.; Launonen, A.P.; Ponkilainen, V.; Mattila, V.M. The impact of the COVID-19 pandemic on waiting times for elective surgery patients: A multicenter study. PLoS ONE 2021, 16, e0253875. [Google Scholar] [CrossRef] [PubMed]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. BMJ 2020, 371, m4087. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, C.S.; Shockney, L.; Rabinowitz, B.; Coleman, C.; Beard, C.; Landercasper, J.; Askew, J.B.; Wiggins, D. National Quality Measures for Breast Centers (NQMBC): A Robust Quality Tool. Ann. Surg. Oncol. 2010, 17, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Bleicher, R.J.; Ruth, K.; Sigurdson, E.R.; Ross, E.; Wong, Y.-N.; Patel, S.A.; Boraas, M.; Topham, N.S.; Egleston, B.L. Preoperative Delays in the US Medicare Population With Breast Cancer. J. Clin. Oncol. 2012, 30, 4485–4492. [Google Scholar] [CrossRef] [Green Version]
- Dankwa-Mullan, I.; George, J.; Roebuck, M.C.; Tkacz, J.; Willis, V.C.; Reyes, F.; Arriaga, Y.E. Variations in breast cancer surgical treatment and timing: Determinants and disparities. Breast Cancer Res. Treat. 2021, 188, 259–272. [Google Scholar] [CrossRef]
- Tung, N.M.; Boughey, J.C.; Pierce, L.J.; Robson, M.E.; Bedrosian, I.; Dietz, J.R.; Dragun, A.; Gelpi, J.B.; Hofstatter, E.W.; Isaacs, C.J.; et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 2020, 38, 2080–2106. [Google Scholar] [CrossRef]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef]
- Pendola, G.L.; Elizalde, R.; Sitic Vargas, P.; Mallarino, J.C.; Gonzalez, E.; Parada, J.; Camus, M.; Schwartz, R.; Bargalló, E.; Freitas, R.; et al. Management of non-invasive tumours, benign tumours and breast cancer during the COVID-19 pandemic: Recommendations based on a Latin American survey. Ecancermedicalscience 2020, 14, 1115. [Google Scholar] [CrossRef]
- Halsted, W.S. The results of radical operations for the cure of carcinoma of the breast. Ann. Surg. 1907, 46, 1–19. [Google Scholar] [CrossRef]
- Bleicher, R.J.; Ruth, K.; Sigurdson, E.R.; Beck, J.R.; Ross, E.; Wong, Y.-N.; Patel, S.A.; Boraas, M.; Chang, E.I.; Topham, N.S.; et al. Time to Surgery and Breast Cancer Survival in the United States. JAMA Oncol. 2016, 2, 330. [Google Scholar] [CrossRef]
- Sanford, R.A.; Lei, X.; Barcenas, C.H.; Mittendorf, E.A.; Caudle, A.S.; Valero, V.; Tripathy, D.; Giordano, S.H.; Chavez-MacGregor, M. Impact of Time from Completion of Neoadjuvant Chemotherapy to Surgery on Survival Outcomes in Breast Cancer Patients. Ann. Surg. Oncol. 2016, 23, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Wiener, A.A.; Hanlon, B.M.; Schumacher, J.R.; Vande Walle, K.A.; Wilke, L.G.; Neuman, H.B. Reexamining Time From Breast Cancer Diagnosis to Primary Breast Surgery. JAMA Surg. 2023, 158, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Mauri, D.; Pavlidis, N.; Ioannidis, J.P.A. Neoadjuvant versus Adjuvant Systemic Treatment in Breast Cancer: A Meta-Analysis. JNCI J. Natl. Cancer Inst. 2005, 97, 188–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.I.; Lennard, T.W.J. Breast cancer: Role of neoadjuvant therapy. Int. J. Surg. 2009, 7, 416–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Masri, M.; Aljalabneh, B.; Al-Najjar, H.; Al-Shamaileh, T. Effect of time to breast cancer surgery after neoadjuvant chemotherapy on survival outcomes. Breast Cancer Res. Treat. 2021, 186, 7–13. [Google Scholar] [CrossRef]
- Sutton, T.L.; Schlitt, A.; Gardiner, S.K.; Johnson, N.; Garreau, J.R. Time to surgery following neoadjuvant chemotherapy for breast cancer impacts residual cancer burden, recurrence, and survival. J. Surg. Oncol. 2020, 122, 1761–1769. [Google Scholar] [CrossRef]
- Eaglehouse, Y.L.; Georg, M.W.; Shriver, C.D.; Zhu, K. Time-to-surgery and overall survival after breast cancer diagnosis in a universal health system. Breast Cancer Res. Treat. 2019, 178, 441–450. [Google Scholar] [CrossRef]
- Polverini, A.C.; Nelson, R.A.; Marcinkowski, E.; Jones, V.C.; Lai, L.; Mortimer, J.E.; Taylor, L.; Vito, C.; Yim, J.; Kruper, L. Time to Treatment: Measuring Quality Breast Cancer Care. Ann. Surg. Oncol. 2016, 23, 3392–3402. [Google Scholar] [CrossRef]
- Mateo, A.M.; Mazor, A.M.; Obeid, E.; Daly, J.M.; Sigurdson, E.R.; Handorf, E.A.; DeMora, L.; Aggon, A.A.; Bleicher, R.J. Time to Surgery and the Impact of Delay in the Non-Neoadjuvant Setting on Triple-Negative Breast Cancers and Other Phenotypes. Ann. Surg. Oncol. 2020, 27, 1679–1692. [Google Scholar] [CrossRef]
- Shin, D.W.; Cho, J.; Kim, S.Y.; Guallar, E.; Hwang, S.S.; Cho, B.; Oh, J.H.; Jung, K.W.; Seo, H.G.; Park, J.H. Delay to Curative Surgery Greater than 12 Weeks Is Associated with Increased Mortality in Patients with Colorectal and Breast Cancer but Not Lung or Thyroid Cancer. Ann. Surg. Oncol. 2013, 20, 2468–2476. [Google Scholar] [CrossRef]
- Cullinane, C.; Shrestha, A.; Al Maksoud, A.; Rothwell, J.; Evoy, D.; Geraghty, J.; McCartan, D.; McDermott, E.W.; Prichard, R.S. Optimal timing of surgery following breast cancer neoadjuvant chemotherapy: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2021, 47, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Gagliato, D.d.M.; Gonzalez-Angulo, A.M.; Lei, X.; Theriault, R.L.; Giordano, S.H.; Valero, V.; Hortobagyi, G.N.; Chavez-MacGregor, M. Clinical Impact of Delaying Initiation of Adjuvant Chemotherapy in Patients with Breast Cancer. J. Clin. Oncol. 2014, 32, 735–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupstas, A.R.; Hoskin, T.L.; Day, C.N.; Habermann, E.B.; Boughey, J.C. Effect of Surgery Type on Time to Adjuvant Chemotherapy and Impact of Delay on Breast Cancer Survival: A National Cancer Database Analysis. Ann. Surg. Oncol. 2019, 26, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Morante, Z.; Ruiz, R.; Araujo, J.M.; Pinto, J.A.; Cruz-Ku, G.d.l.; Urrunaga-Pastor, D.; Namuche, F.; Flores, C.; Mantilla, R.; Luján, M.G.; et al. Impact of the Delayed Initiation of Adjuvant Chemotherapy in the Outcome of Triple Negative Breast Cancer. Clin. Breast Cancer 2021, 21, 239–246. [Google Scholar] [CrossRef]
- Raphael, M.J.; Biagi, J.J.; Kong, W.; Mates, M.; Booth, C.M.; Mackillop, W.J. The relationship between time to initiation of adjuvant chemotherapy and survival in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2016, 160, 17–28. [Google Scholar] [CrossRef]
- Heeg, E.; Marang-van de Mheen, P.J.; Van Maaren, M.C.; Schreuder, K.; Tollenaar, R.A.E.M.; Siesling, S.; Bos, M.E.M.M.; Vrancken Peeters, M.T.F.D. Association between initiation of adjuvant chemotherapy beyond 30 days after surgery and overall survival among patients with triple-negative breast cancer. Int. J. Cancer 2020, 147, 152–159. [Google Scholar] [CrossRef]
- Pomponio, M.K.; Keele, L.J.; Fox, K.R.; Clark, A.S.; Matro, J.M.; Shulman, L.N.; Tchou, J.C. Does time to adjuvant chemotherapy (TTC) affect outcomes in patients with triple-negative breast cancer? Breast Cancer Res. Treat. 2019, 177, 137–143. [Google Scholar] [CrossRef]
- Hershman, D.L.; Wang, X.; McBride, R.; Jacobson, J.S.; Grann, V.R.; Neugut, A.I. Delay of adjuvant chemotherapy initiation following breast cancer surgery among elderly women. Breast Cancer Res. Treat. 2006, 99, 313–321. [Google Scholar] [CrossRef]
- Nixon, A.J.; Recht, A.; Neuberg, D.; Connolly, J.L.; Schnitt, S.; Abner, A.; Harris, J.R. The relation between the surgery-radiotherapy interval and treatment outcome in patients treated with breast-conserving surgery and radiation therapy without systemic therapy. Int. J. Radiat. Oncol. 1994, 30, 17–21. [Google Scholar] [CrossRef]
- Tsoutsou, P.G.; Koukourakis, M.I.; Azria, D.; Belkacémi, Y. Optimal timing for adjuvant radiation therapy in breast cancer. Crit. Rev. Oncol. 2009, 71, 102–116. [Google Scholar] [CrossRef]
- Karlsson, P.; Cole, B.F.; Price, K.N.; Gelber, R.D.; Coates, A.S.; Goldhirsch, A.; Castiglione, M.; Colleoni, M.; Gruber, G. Timing of Radiation Therapy and Chemotherapy After Breast-Conserving Surgery for Node-Positive Breast Cancer: Long-Term Results From International Breast Cancer Study Group Trials VI and VII. Int. J. Radiat. Oncol. 2016, 96, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphael, M.J.; Saskin, R.; Singh, S. Association between waiting time for radiotherapy after surgery for early-stage breast cancer and survival outcomes in Ontario: A population-based outcomes study. Curr. Oncol. 2020, 27, e216–e221. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Xu, C.; Cai, G.; Qi, W.-X.; Cai, R.; Wang, S.-B.; Ou, D.; Li, M.; Shen, K.-W.; Chen, J.-Y. How Does the Interval Between Completion of Adjuvant Chemotherapy and Initiation of Radiotherapy Impact Clinical Outcomes in Operable Breast Cancer Patients? Ann. Surg. Oncol. 2021. 28, 2155–2168. [CrossRef]
- Gupta, S.; King, W.D.; Korzeniowski, M.; Wallace, D.L.; Mackillop, W.J. The Effect of Waiting Times for Postoperative Radiotherapy on Outcomes for Women Receiving Partial Mastectomy for Breast Cancer: A Systematic Review and Meta-Analysis. Clin. Oncol. 2016, 28, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Croteau, N.; Freeman, C.R.; Latreille, J.; Rivard, M.; Brisson, J. A population-based study of the impact of delaying radiotherapy after conservative surgery for breast cancer. Breast Cancer Res. Treat. 2004, 88, 187–196. [Google Scholar] [CrossRef]
- Schutte, H.W.; Heutink, F.; Wellenstein, D.J.; van den Broek, G.B.; van den Hoogen, F.J.A.; Marres, H.A.M.; van Herpen, C.M.L.; Kaanders, J.H.A.M.; Merkx, T.M.A.W.; Takes, R.P. Impact of Time to Diagnosis and Treatment in Head and Neck Cancer: A Systematic Review. Otolaryngol. Neck Surg. 2020, 162, 446–457. [Google Scholar] [CrossRef] [PubMed]
Author/Year [References] | Country | Study Design | Study Period | No. of Patients | Median/ Mean Age | End Point(s) | Findings |
---|---|---|---|---|---|---|---|
Time to Upfront Surgery (TTS-u) | |||||||
Vanni G 2020 [9] | Italy | Retrospective, COVID cohort vs. historical pre-COVID cohort | 2019–2020 | 432 | 62 | Breast cancer presentation | Increase in lymph node involvement in the COVID cohort |
Bleicher RJ 2012 [15] | USA | Retrospective analysis of prospectively collected SEER data | 1992–2005 | 72,586 | 75 | Factors associated with delays between symptoms and surgery | Certain demographics and preoperative evaluation lead to greater TTS |
Bleicher RJ 2016 [21] | USA | Two independent population-based analysis of prospectively collected SEER and NCDB data | 1992–2009 (SEER) 2003–2005 (NCDB) | 94,544 (SEER) 115,790 (NCDB) | 75.2 (SEER) 60.3 (NCDB) | Effect of TTS on OS and DSS | Longer TTS is associated with lower OS and DSS |
Eaglehouse YL 2019 [28] | USA | Cross-sectional retrospective study using the U.S. Military Health System database | 1998–2010 | 9669 | 54.5 | All cause death | Longer TTS (≥36 days) associated with poorer OS |
Polverini AC 2016 [29] | USA | Retrospective analysis of prospectively collected NCDB data | 2004–2012 | 420,792 | 59.4 | Effect of TTS on OS | Longer TTS (≥8 weeks for stage I, >12 weeks for stage II) associated with decreased OS compared to TTS < 4 weeks |
Mateo AM 2020 [30] | USA | Retrospective analysis of prospectively collected NCDB data | 2010–2014 | 351,087 | NA | OS for triple negative and other phenotypes | OS decreased for each month of delay by HR 1.104 for all phenotypes |
Shin DW 2013 [31] | Republic of Korea | Analysis of prospectively collected data | 2006–2011 | 7529 | 49.3 (for breast patients) | Effect of TTS on OS | TTS >12 weeks is associated with Increased mortality |
Weiner AA 2023 [23] | USA | NCDB | 2010–2014 | 373,334 | 61 | Effect on OS | Compared to <4 weeks, surgery performed >8 weeks was associated with worse 5-year OS |
Surgery following neoadjuvant therapy (TTS-n) | |||||||
Sanford RA 2015 [22] | USA | Retrospective review of prospectively collected data | 1995–2007 | 1101 | NA | Effect of TTS (≤4, 4–6, >6 weeks) after NAC on OS | TTS after NAC up to 8 w has no effect on OS, RFS or LRFS. Worse OS if >8 weeks |
Al-Masri M 2021 [26] | Jordan | Retrospective review | 2006–2014 | 468 | NA (65.4% ≤50-Y) | Effect of TTS (<4, 4–8, >8 weeks) after NAC on OS and DFS | TTS after NAC up to 8 w has no effect on OS or DFS. Worse OS if >8 w |
Sutton TL 2020 [27] | USA | Retrospective review of prospectively collected data | 2011–2017 | 463 | NA | Impact of TTS (≤4, 4–6, >6 weeks) after NAC on RFS, OS, DSS and RCB scores | TTS > 6 w associated with worse RFS and DSS, and a higher RCB score |
Cullinane C 2021 [32] | Ireland | Systematic review and meta-analysis. Five studies met inclusion criteria | 8794 | 44–56 | Effect of TTS (<4, 4–8, >8 weeks) post-NAC on OS, DFS and pCR | TTS < 8 weeks associated with better OS and DFS compared to TTS > 8 weeks. Equivalent pCR between TTS < 4 w and 4–8 weeks |
Author/Year [References] | Country | Design | Study Period | No. of Patients | Age (Median/Mean) | End Point(s) | Findings |
---|---|---|---|---|---|---|---|
Gagliato Dde M, 2014 [33] | USA | Retrospective review | 1997–2011 | 6827 | 50 | Association between TTC (≤30, 31–60, and ≥61 d) after surgery and 5-year OS, RFS and DRFS | Stage I: no difference. Stage II: worse DRFS for ≥31 d. Stage III: worse OS, RFS and DRFS for TTC ≥ 61 d. TNBC and HER2 tumors had worse OS for TTC ≥ 61 d |
Kupstas AR, 2019 [34] | USA | Retrospective analysis of prospectively collected NCDP data | 2010–2014 | 172,043 | 55 | Impact of surgery type on TTC, and impact of TTC (< or > 120 d) from diagnosis on OS | Chemotherapy initiation >120 d after diagnosis was associated with poorer OS. Time from diagnosis to surgery had the greatest impact on time from diagnosis to chemotherapy. Reconstructive surgeries resulted in the greatest delays |
Morante Z 2021 [35] | Peru | Retrospective review | 2000–2014 | 687 | 48 | Impact of TTC (≤30, 31–60, 61–90 and ≥91 d) after surgery on OS and DRFS for TNBC | TTC ≥ 30 d was associated with poorer OS and DRFS |
Raphael MJ, 2016 [36] | Canada | Systematic review and meta-analysis. Fourteen studies met inclusion criteria | NA | NA | 47–51 | Relationship between TTC after surgery and OS | A 4-week increase in TTC was associated with significant increase in risk of death |
Heeg E, 2020 [37] | Netherlands | Retrospective analysis of prospectively collected NCR data | 2009–2014 | 3016 | Impact of TTC > 30 d after surgery on 10-year OS | TTC > 30 d associated with worse OS in BCS patients, but not in mastectomy | |
Pomponio MK, 2019 [38] | USA | Retrospective analysis of prospectively collected data | 2009–2018 | 724 | 55 | Impact of TTC (≤31, 32–42, 43–56 and >56 d) from surgery on DFS and OS in TNBC | Mastectomy with reconstruction associated with delayed TTC. No difference in DFS or OS for TTC > 56 d vs. ≤31 d |
Hershman DL, 2006 [39] | USA | Retrospective analysis of prospectively collected SEER data | 1992–1999 | 5003 | NA (all patient ≥ 65) | Factors associated with longer TTC, and impact of TTC (within 1 mo, 1–2 mo, 2–3 mo and >3 mo) on OS and CSS | Delays associated with advanced age, early stage, rural location, unmarried, mastectomy, HR-positive and no radiotherapy. Worse OS and CSS for TTC >3 mo, no difference for TTC < 1–3 mo |
Author/Year [References] | Country | Design | Study Period | No. of Patients | Age (Median/ Mean Age) | End Point(s) | Findings |
---|---|---|---|---|---|---|---|
Nixon AJ, 1994 [40] | USA | Retrospective review | 1968–1985 | 653 | 47/49 | Relationship between TTR (0–4 w, 5–8 w and 9–12 w) and recurrence risk in stage I-II, pN0, BCS patients with no intervening chemotherapy | No difference in 5-year failures up to TTR of 8 weeks |
Raphael MJ, 2020 [43] | Canada | Retrospective review | 2001–2002 | 1028 | 52.2/64.5 | Effect of TTR on EFS for stage I-II breast ca. post-BCS and RT | Worse EFS for TTR ≥ 12 w from surgery if no CT, and for TTR ≥ 6 w from last CT if there is intervening CT |
Cao L, 2021 [44] | China | Retrospective review | 2009–2015 | 989 | 52 | Effect of TTR (<4, 4–8, 8–12 and >12 w) after adjuvant CT on survival outcomes for stages I-III breast ca. | TTR > 12 w post-CT resulted in inferior OS and BCSS, especially in HR-positive tumors, positive LNs and those receiving mastectomy |
Gupta S, 2016 [45] | Canada | Systematic review and metanalysis | 1975–2015 | For LR: 13,291 from 10 publications. For OS: 2207 from 4 publications | NA | Effect of TTR on LR and OS post-BCS and RT | Increase risk of LR for each month of delay |
Hébert-Croteau N, 2004 [46] | Canada | Retrospective review | 1988–1994 | 1062 | NA (70.5% < 65 years) | Effect of TTR on OS, LRFS and DDFS for stage I-II node-negative breast ca. post-BCS and RT | TTR > 12 w after surgery compromised local control with no effect on survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Razeq, H.; Mansour, A.; Edaily, S.; Dayyat, A. Delays in Initiating Anti-Cancer Therapy for Early-Stage Breast Cancer—How Slow Can We Go? J. Clin. Med. 2023, 12, 4502. https://doi.org/10.3390/jcm12134502
Abdel-Razeq H, Mansour A, Edaily S, Dayyat A. Delays in Initiating Anti-Cancer Therapy for Early-Stage Breast Cancer—How Slow Can We Go? Journal of Clinical Medicine. 2023; 12(13):4502. https://doi.org/10.3390/jcm12134502
Chicago/Turabian StyleAbdel-Razeq, Hikmat, Asem Mansour, Sarah Edaily, and Abdulmajeed Dayyat. 2023. "Delays in Initiating Anti-Cancer Therapy for Early-Stage Breast Cancer—How Slow Can We Go?" Journal of Clinical Medicine 12, no. 13: 4502. https://doi.org/10.3390/jcm12134502
APA StyleAbdel-Razeq, H., Mansour, A., Edaily, S., & Dayyat, A. (2023). Delays in Initiating Anti-Cancer Therapy for Early-Stage Breast Cancer—How Slow Can We Go? Journal of Clinical Medicine, 12(13), 4502. https://doi.org/10.3390/jcm12134502