Effect of Balance Training in Sitting Position Using Visual Feedback on Balance and Gait Ability in Chronic Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Trunk Impairment Scale and Berg Balance Scale
2.2.2. Timed up and Go Test
2.2.3. Gait Analysis
2.3. Experimental Protocol
2.4. Statistical Analysis
3. Results
3.1. Before-and-After Analysis of Each Group on General Characteristics
3.2. Before-and-After Analysis of Each Group on Balance
3.3. Before-and-After Analysis of Each Group on Gait Parameters
3.4. Post-Hoc Analysis between Groups in Balance and Gait Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
BBS | Berg Balance Scale |
CG | conventional group |
IMU | Inertial measurement units |
MMSE | Mini-Mental state Examination |
TIS | Trunk Impairment Scale |
TUG | Timed Up and Go test |
VUSBG | visual feedback unstable surface balance training group |
USBG | unstable surface balance training group |
References
- Pandian, J.D.; Gall, S.L.; Kate, M.P.; Silva, G.S.; Akinyemi, R.O.; Ovbiagele, B.I.; Lavados, P.M.; Gandhi, D.B.; Thrift, A.G. Prevention of stroke: A global perspective. Lancet 2018, 392, 1269–1278. [Google Scholar] [CrossRef]
- Luft, A.; Katan, L. Global burden of stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar]
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Nelles, G.; Benson, R.R.; Kaplan, J.D.; Parker, R.A.; Kwong, K.K.; Kennedy, D.N.; Finklestein, S.P.; Rosen, B.R. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28, 2518–2527. [Google Scholar] [CrossRef]
- Mansfield, A.; Wong, J.S.; McIlroy, W.E.; Biasin, L.; Brunton, K.; Bayley, M.; Inness, E.L. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy 2015, 101, 373–380. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef]
- Karthikbabu, S.; Verheyden, G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. Top. Stroke Rehabil. 2021, 28, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeon, J.; Lee, D.; Hong, J.; Yu, J.; Kim, J. Effect of trunk stabilization exercise on abdominal muscle thickness, balance and gait abilities of patients with hemiplegic stroke: A randomized controlled trial. NeuroRehabilitation 2020, 47, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Truijen, S.; Schröder, J.; Maebe, Z.; Blanckaert, K.; van der Waal, C.; Vink, M.; Saeys, W. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: A systematic review and meta-analysis. Clin. Rehabil. 2019, 33, 992–1002. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, H.; Zhou, Q.; Pan, H. Effects of cognitive motor dual-task training on stroke patients: A RCT-based meta-analysis. J. Clin. Neurosci. 2021, 92, 175–182. [Google Scholar] [CrossRef]
- Cabrera-Martos, I.; Ortiz-Rubio, A.; Torres-Sánchez, I.; López-López, L.; Jarrar, M.; Valenza, M.C. The Effectiveness of Core Exercising for Postural Control in Patients with Stroke: A Systematic Review and Meta-Analysis. PM&R 2020, 12, 1157–1168. [Google Scholar]
- Lim, C. Multi-sensorimotor training improves proprioception and balance in subacute stroke patients: A randomized controlled pilot trial. Front. Neurol. 2019, 10, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.M.; Son, S.M. Effect of action observation training with auditory feedback for gait function of stroke patients with hemiparesis. J. Korean Phys. Ther. 2017, 29, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Moore, S. The use of biofeedback to improve postural stability. Phys. Ther. Pract. 1993, 2, 1. [Google Scholar]
- Ali, M.; Khan, S.U.; Asim, H.A.B. Effects of individual Task specific training verses group Circuit Training on Balance and Ambulation in Sub-acute Stroke. Rawal Med. J. 2020, 45, 233. [Google Scholar]
- Kang, T.-W.; Kim, B.-R. Comparison of task-oriented balance training on stable and unstable surfaces for fall risk, balance, and gait abilities of patients with stroke. Korean Soc. Phys. Med. 2019, 14, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.-Y.; Huang, J.-C.; Tseng, H.-Y.; Yang, Y.-C.; Lin, S.-I. Effects of trunk exercise on unstable surfaces in persons with stroke: A randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 9135. [Google Scholar] [CrossRef]
- Pellegrino, L.; Giannoni, P.; Marinelli, L.; Casadio, M. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors. J. NeuroEng. Rehabil. 2017, 14, 107. [Google Scholar] [CrossRef]
- Lakhani, B.; Mansfield, A.; Inness, E.L.; McIlroy, W.E. Compensatory stepping responses in individuals with stroke: A pilot study. Physiother. Theory Pract. 2011, 27, 299–309. [Google Scholar] [CrossRef]
- Pignolo, L.; Basta, G.; Carozzo, S.; Bilotta, M.; Todaro, M.R.; Serra, S.; Ciancarelli, I.; Tonin, P.; Cerasa, A. A body-weight-supported visual feedback system for gait recovering in stroke patients: A randomized controlled study. Gait Posture 2020, 82, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Bello, U.M.; Winser, S.J.; Chan, C.C. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation. Rev. Neurosci. 2020, 31, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, P.; Hutzler, Y.; Ratmansky, M.; Treger, I.; Dunsky, A. A preliminary study of dual-task training using virtual reality: Influence on walking and balance in chronic poststroke survivors. J. Stroke Cerebrovasc. Dis. 2019, 28, 104343. [Google Scholar] [CrossRef]
- Waller, S.M.; Yang, C.-L.; Magder, L.; Yungher, D.; Gray, V.; Rogers, M.W. Impaired motor preparation and execution during standing reach in people with chronic stroke. Neurosci. Lett. 2016, 630, 38–44. [Google Scholar] [CrossRef]
- Shin, D.C.; Song, C.H. Smartphone-based visual feedback trunk control training using a gyroscope and mirroring technology for stroke patients: Single-blinded, randomized clinical trial of efficacy and feasibility. Am. J. Phys. Med. Rehabil. 2016, 95, 319–329. [Google Scholar] [CrossRef]
- Elshinnawy, A.M.; Fathy, K.A.; Wadee, A.N.; Fayed, I.H. Effect of Visual Biofeedback Training on Postural Instability in Chronic Stroke Patients: A Controlled Randomized Trial. Int. J. Pharm. Res. 2021, 13, 2052–2061. [Google Scholar]
- Verheyden, G.; Nieuwboer, A.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The Trunk Impairment Scale: A new tool to measure motor impairment of the trunk after stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.; Marquez, J.; Chiarelli, P. The Berg Balance Scale has high intra-and inter-rater reliability but absolute reliability varies across the scale: A systematic review. J. Physiother. 2013, 59, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcari, J.P.; Hendrickson, T.L.; Walter, P.R.; Terry, L.; Walsko, G. The physiological responses to walking with and without Power Poles™ on treadmill exercise. Res. Q. Exerc. Sport 1997, 68, 161–166. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Ng, S.S.; Hui-Chan, C.W. The timed up & go test: Its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1641–1647. [Google Scholar]
- Lanovaz, J.L.; Oates, A.R.; Treen, T.T.; Unger, J.; Musselman, K.E. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children. Gait Posture 2017, 51, 14–19. [Google Scholar] [CrossRef]
- Yeo, S.S.; Park, G.Y. Accuracy verification of spatio-temporal and kinematic parameters for gait using inertial measurement unit system. Sensors 2020, 20, 1343. [Google Scholar] [CrossRef] [Green Version]
- Piche, E.; Gerus, P.; Chorin, F.; Jaafar, A.; Guerin, O.; Zory, R. The effect of different dual tasks conditions on gait kinematics and spatio-temporal walking parameters in older adults. Gait Posture 2022, 95, 63–69. [Google Scholar] [CrossRef]
- Rana, M.; Mittal, V. Wearable sensors for real-time kinematics analysis in sports: A review. IEEE Sens. J. 2020, 21, 1187–1207. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Kesar, T.M.; Reisman, D.S.; Perumal, R.; Jancosko, A.M.; Higginson, J.S.; Rudolph, K.S.; Binder-Macleod, S.A. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 2011, 33, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, G.; Ruesen, C.; Gorissen, M.; Brumby, V.; Moran, R.; Burnett, M.; Ashburn, A. Postural alignment is altered in people with chronic stroke and related to motor and functional performance. J. Neurol. Phys. Ther. 2014, 38, 239–245. [Google Scholar] [CrossRef]
- Cabanas-Valdés, R.; Bagur-Calafat, C.; Girabent-Farrés, M.; Caballero-Gómez, F.M.; Hernández-Valiño, M.; Urrutia Cuchi, G. The effect of additional core stability exercises on improving dynamic sitting balance and trunk control for subacute stroke patients: A randomized controlled trial. Clin. Rehabil. 2016, 30, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Harris-Love, M.L.; Macko, R.F.; Whitall, J.; Forrester, L.W. Improved hemiparetic muscle activation in treadmill versus overground walking. Neurorehabilit. Neural Repair 2004, 18, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Bang, D.-H.; Shin, W.-S.; Noh, H.-J.; Song, M.-S. Effect of unstable surface training on walking ability in stroke patients. J. Phys. Ther. Sci. 2014, 26, 1689–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.; Kim, Y.; Chung, Y.; Hwang, S. Weight-shift training improves trunk control, proprioception, and balance in patients with chronic hemiparetic stroke. Tohoku J. Exp. Med. 2014, 232, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Van Criekinge, T.; Saeys, W.; Vereeck, L.; De Hertogh, W.; Truijen, S. Are unstable support surfaces superior to stable support surfaces during trunk rehabilitation after stroke? A systematic review. Disabil. Rehabil. 2018, 40, 1981–1988. [Google Scholar] [CrossRef]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PM&R 2014, 6, 635–642. [Google Scholar]
- Kirtley, C. Clinical Gait Analysis: Theory and Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kim, K.; Lee, D.-K.; Jung, S.-I. Effect of coordination movement using the PNF pattern underwater on the balance and gait of stroke patients. J. Phys. Ther. Sci. 2015, 27, 3699–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Lee, D.-K.; Kim, E.-K. Effect of aquatic dual-task training on balance and gait in stroke patients. J. Phys. Ther. Sci. 2016, 28, 2044–2047. [Google Scholar] [CrossRef] [Green Version]
- Peurala, S.H.; Titianova, E.B.; Mateev, P.; Pitkänen, K.; Sivenius, J.; Tarkka, I.M. Gait characteristics after gait-oriented rehabilitation in chronic stroke. Restor. Neurol. Neurosci. 2005, 23, 57–65. [Google Scholar]
- Walker, E.R.; Hyngstrom, A.S.; Schmit, B.D. Influence of visual feedback on dynamic balance control in chronic stroke survivors. J. Biomech. 2016, 49, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-I.; Im, S.-C.; Kim, K. Effects of trunk stabilization exercises using laser pointer visual feedback in patients with chronic stroke: A randomized controlled study. Technol. Health Care 2023, 31, 471–483. [Google Scholar] [CrossRef]
- Schmid, A.; Duncan, P.W.; Studenski, S.; Lai, S.M.; Richards, L.; Perera, S.; Wu, S.S. Improvements in speed-based gait classifications are meaningful. Stroke 2007, 38, 2096–2100. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H.; Choi, S.-J.; Choi, H.-S.; Shin, W.-S. Comparison of visual and auditory biofeedback during sit-to-stand training for performance and balance in chronic stroke patients. J. Korean Soc. Phys. Med. 2015, 10, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y. Effect of weight shift training with electrical sensory stimulation feedback on standing balance in stroke patients. J. Korean Soc. Phys. Med. 2015, 10, 257–263. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel, M.R.; Daffertshofer, A.; Beek, P.J.; Kwakkel, G.; van Wegen, E.E. The effects of visual feedback during a rhythmic weight-shifting task in patients with Parkinson’s disease. Gait Posture 2016, 48, 140–145. [Google Scholar] [CrossRef]
- Nadeau, S.; Gravel, D.; Arsenault, A.B.; Bourbonnais, D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin. Biomech. 1999, 14, 125–135. [Google Scholar] [CrossRef]
- Nadeau, S.; Gravel, D.; Arsenault, A.; Bourbonnais, D.; Goyette, M. Dynamometric assessment of the plantarflexors in hemiparetic subjects: Relations between muscular, gait and clinical parameters. Scand. J. Rehabil. Med. 1997, 29, 137–146. [Google Scholar]
- Chen, C.-L.; Chen, H.-C.; Tang, S.F.-T.; Wu, C.-Y.; Cheng, P.-T.; Hong, W.-H. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am. J. Phys. Med. Rehabil. 2003, 82, 925–935. [Google Scholar] [CrossRef]
- Bae, S.H.; Lee, H.G.; Kim, Y.E.; Kim, G.Y.; Jung, H.W.; Kim, K.Y. Effects of trunk stabilization exercises on different support surfaces on the cross-sectional area of the trunk muscles and balance ability. J. Phys. Ther. Sci. 2013, 25, 741–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.-S.; Cho, H.-Y.; In, T.-S. Trunk exercises performed on an unstable surface improve trunk muscle activation, postural control, and gait speed in patients with stroke. J. Phys. Ther. Sci. 2016, 28, 940–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Hwangbo, G. The effect of trunk stabilization exercises using a sling on the balance of patients with hemiplegia. J. Phys. Ther. Sci. 2014, 26, 219–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
VUSBG | USBG | CG | |
---|---|---|---|
Age (years) | 44.85 (15.63) | 56.92 (8.95) | 51.54 (12.74) |
Sex (male/female) | 9/4 | 11/2 | 11/2 |
Height (cm) | 168.69 (8.84) | 167.08 (8.39) | 167.46 (10.83) |
Weight (kg) | 67.00 (7.30) | 69.23 (8.12) | 65.38 (4.41) |
K-MMSE (score) | 27.08 (1.85) | 28.23 (1.24) | 28.00 (1.83) |
Onset period (month) | 15.15 (4.67) | 14.92 (5.42) | 16.85 (4.74) |
Affected hemisphere (Rt/Lt) | 8/5 | 7/6 | 5/8 |
Subtype (Infarction/Hemorrhage) | 8/5 | 8/5 | 11/2 |
Variables | Group | VUSBG | USBG | CG | F(p) | Post-Hoc Comparisons | |||
---|---|---|---|---|---|---|---|---|---|
A vs. B | A vs. C | B vs. C | |||||||
Balance | TIS (score) | Baseline | 13.00 (4.56) | 13.23 (2.56) | 15.15 (2.88) | 118.255 (<0.001) * | <0.001 | <0.001 | 0.003 |
4 weeks | 20.00 (4.26) | 15.23 (2.56) | 15.54 (2.82) | ||||||
p | <0.001 | <0.001 | 0.096 | ||||||
BBS (score) | Baseline | 24.08 (6.21) | 23.08 (5.84) | 25.54 (6.86) | 110.092 (<0.001) * | <0.001 | <0.001 | 0.006 | |
4 weeks | 32.31 (6.34) | 25.08 (6.10) | 25.62 (7.05) | ||||||
p | <0.001 | <0.001 | 0.584 | ||||||
Gait ability | TUG (s) | Baseline | 37.91 (16.59) | 23.19 (13.04) | 24.66 (12.12) | 24.393 (<0.001) * | <0.001 | <0.001 | 0.554 |
4 weeks | 21.53 (8.95) | 19.16 (11.18) | 23.82 (11.98) | ||||||
p | <0.001 | <0.001 | 0.350 | ||||||
Cadence (step/min) | Baseline | 73.47 (17.00) | 79.25 (24.06) | 82.96 (14.93) | 0.266 (0.768) | 1.000 | 1.000 | 1.000 | |
4 weeks | 76.00 (19.97) | 82.88 (25.29) | 83.85 (13.75) | ||||||
p | 0.391 | 0.281 | 0.615 | ||||||
Gait velocity (m/s) | Baseline | 0.38 (0.20) | 0.48 (0.26) | 0.65 (0.39) | 14.101 (<0.001) * | 0.122 | <0.001 | 0.010 | |
4 weeks | 1.15 (0.60) | 0.95 (0.40) | 0.67 (0.31) | ||||||
p | <0.001 | <0.001 | 0.767 | ||||||
Stride time (s) | Baseline | 1.71 (0.65) | 1.75 (0.71) | 1.52 (0.38) | 0.280 (0.758) | 1.000 | 1.000 | 1.000 | |
4 weeks | 1.61 (0.56) | 1.63 (0.57) | 1.50 (0.38) | ||||||
p | 0.394 | 0.414 | 0.502 | ||||||
Stride length (m) | Baseline | 0.59 (0.23) | 0.71 (0.26) | 0.94 (0.51) | 13.356 (<0.001) * | 0.179 | <0.001 | 0.009 | |
4 weeks | 1.75 (0.76) | 1.45 (0.67) | 0.96 (0.33) | ||||||
p | <0.001 | 0.002 | 0.854 | ||||||
Hip flexion (°) | Baseline | 12.00 (6.89) | 15.51 (10.40) | 24.63 (12.56) | 45.908 (<0.001) * | 0.001 | <0.001 | <0.001 | |
4 weeks | 30.24 (11.73) | 26.05 (11.63) | 24.41 (11.82) | ||||||
p | <0.001 | <0.001 | 0.588 | ||||||
Hip extension (°) | Baseline | 2.15 (3.78) | 3.51 (3.82) | 5.99 (7.30) | 4.267 (0.022) * | 0.533 | 0.018 | 0.394 | |
4 weeks | 4.00 (4.06) | 4.42 (4.50) | 5.84 (7.15) | ||||||
p | 0.017 | 0.078 | 0.418 | ||||||
Knee flexion (°) | Baseline | 26.77 (10.23) | 27.31 (9.76) | 37.43 (18.93) | 70.958 (<0.001) * | <0.001 | <0.001 | <0.001 | |
4 weeks | 50.13 (10.70) | 40.52 (11.24) | 37.51 (18.97) | ||||||
p | <0.001 | <0.001 | 0.530 | ||||||
Knee extension (°) | Baseline | 2.23 (3.10) | 2.42 (2.36) | 2.09 (3.26) | 0.456 (0.638) | 1.000 | 1.000 | 1.000 | |
4 weeks | 2.69 (3.33) | 2.94 (2.71) | 2.05 (3.06) | ||||||
p | 0.508 | 0.181 | 0.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, S.-S.; Koo, D.-K.; Ko, S.-Y.; Park, S.-Y. Effect of Balance Training in Sitting Position Using Visual Feedback on Balance and Gait Ability in Chronic Stroke Patients. J. Clin. Med. 2023, 12, 4383. https://doi.org/10.3390/jcm12134383
Yeo S-S, Koo D-K, Ko S-Y, Park S-Y. Effect of Balance Training in Sitting Position Using Visual Feedback on Balance and Gait Ability in Chronic Stroke Patients. Journal of Clinical Medicine. 2023; 12(13):4383. https://doi.org/10.3390/jcm12134383
Chicago/Turabian StyleYeo, Sang-Seok, Dong-Kyun Koo, Seong-Young Ko, and Seo-Yoon Park. 2023. "Effect of Balance Training in Sitting Position Using Visual Feedback on Balance and Gait Ability in Chronic Stroke Patients" Journal of Clinical Medicine 12, no. 13: 4383. https://doi.org/10.3390/jcm12134383
APA StyleYeo, S.-S., Koo, D.-K., Ko, S.-Y., & Park, S.-Y. (2023). Effect of Balance Training in Sitting Position Using Visual Feedback on Balance and Gait Ability in Chronic Stroke Patients. Journal of Clinical Medicine, 12(13), 4383. https://doi.org/10.3390/jcm12134383