Microcyclophotocoagulation in Glaucoma Treatment: A Medium-Term Follow-Up Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IOP | Intraocular Pressure |
MD | Mean Deviation |
SS-OCT | Swept-Source Optical Coherence Tomography |
TSCPC | Transscleral Cyclophotocoagulation |
µCPC | Transscleral Microcyclophotocoagulation |
UCP | Ultrasound Ciliary Plasty |
References
- Souissi, S.; Le Mer, Y.; Metge, F.; Portmann, A.; Baudouin, C.; Labbé, A.; Hamard, P. An update on continuous-wave cyclophotocoagulation (CW-CPC) and micropulse transscleral laser treatment (MP-TLT) for adult and paediatric refractory glaucoma. Acta Ophthalmol. 2021, 99, e621–e653. [Google Scholar] [CrossRef]
- Dastiridou, A.I.; Katsanos, A.; Denis, P.; Francis, B.A.; Mikropoulos, D.G.; Teus, M.A.; Konstas, A.-G. Cyclodestructive Procedures in Glaucoma: A Review of Current and Emerging Options. Adv. Ther. 2018, 35, 2103–2127. [Google Scholar] [CrossRef]
- Michelessi, M.; Bicket, A.K.; Lindsley, K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst. Rev. 2018, 4, CD009313. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.M.; Chockalingam, M.; Aquino, M.C.; Lim, Z.I.; See, J.L.; Chew, P.T. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin. Exp. Ophthalmol. 2010, 38, 266–272. [Google Scholar] [CrossRef]
- Aquino, M.C.D.; Barton, K.; Tan, A.M.W.T.; Sng, C.; Li, X.; Loon, S.C.; Chew, P.T.K. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: A randomized exploratory study. Clin. Exp. Ophthalmol. 2015, 43, 40–46. [Google Scholar] [CrossRef]
- Maslin, J.S.; Chen, P.P.; Sinard, J.; Nguyen, A.T.; Noecker, R. Histopathologic changes in cadaver eyes after MicroPulse and continuous wave transscleral cyclophotocoagulation. Can. J. Ophthalmol. 2020, 55, 330–335. [Google Scholar] [CrossRef]
- Moussa, K.; Feinstein, M.; Pekmezci, M.; Lee, J.H.; Bloomer, M.; Oldenburg, C.; Sun, Z.; Lee, R.K.; Ying, G.-S.; Han, Y. Histologic Changes following Continuous Wave and Micropulse Transscleral Cyclophotocoagulation: A Randomized Comparative Study. Transl. Vis. Sci. Technol. 2020, 9, 22. [Google Scholar] [CrossRef]
- Kotula, M.A.; Paust, K.; Wirdemann, A.; Msigomba, E.; Burusu, L. Glaucoma treatment by transscleral cyclophotocoagulation in micropulse technology in a low-income setting. Die Ophthalmol. 2022, 119, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Shaarawy, T.M.; Sherwood, M.B.; Grehn, F. Guidelines on Design and Reporting of Surgical Trials—World Glaucoma Association; Kugler Publications: Amsterdam, The Netherlands, 2009; ISBN 978-90-6299-219-5. [Google Scholar]
- Sanchez, F.G.; Peirano-Bonomi, J.C.; Grippo, T.M. Micropulse Transscleral Cyclophotocoagulation: A Hypothesis for the Ideal Parameters. Med. Hypothesis Discov. Innov. Ophthalmol. 2018, 7, 94–100. [Google Scholar] [PubMed]
- Sanchez, F.G.; Peirano-Bonomi, J.C.; Barbosa, N.B.; Khoueir, Z.; Grippo, T.M. Update on Micropulse Transscleral Cyclophotocoagulation. J. Glaucoma 2020, 29, 598–603. [Google Scholar] [CrossRef]
- Abdelmassih, Y.; Tomey, K.; Khoueir, Z. Micropulse Transscleral Cyclophotocoagulation. J. Curr. Glaucoma Pract. 2021, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, M.E.; Grover, D.S.; Fellman, R.L.; Godfrey, D.G.; Smith, O.; Butler, M.R.; Kornmann, H.L.; Feuer, W.J.; Goyal, S. Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma. J. Glaucoma 2017, 26, 726–729. [Google Scholar] [CrossRef]
- Williams, A.L.; Moster, M.R.; Rahmatnejad, K.; Resende, A.F.; Horan, T.; Reynolds, M.; Yung, E.; Abramowitz, B.; Kuchar, S.; Waisbourd, M. Clinical Efficacy and Safety Profile of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma. J. Glaucoma 2018, 27, 445–449. [Google Scholar] [CrossRef]
- Varikuti, V.N.; Shah, P.; Rai, O.; Chaves, A.C.; Miranda, A.; Lim, B.-A.; Dorairaj, S.K.; Sieminski, S.F. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Eyes with Good Central Vision. J. Glaucoma 2019, 28, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Kass, M.A.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R.; Gordon, M.O. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of Intraocular Pressure and Glaucoma Progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- Frezzotti, P.; Mittica, V.; Martone, G.; Motolese, I.; Lomurno, L.; Peruzzi, S.; Motolese, E. Longterm follow-up of diode laser transscleral cyclophotocoagulation in the treatment of refractory glaucoma. Acta Ophthalmol. 2010, 88, 150–155. [Google Scholar] [CrossRef]
- Grueb, M.; Rohrbach, J.M.; Bartz-Schmidt, K.U.; Schlote, T. Transscleral diode laser cyclophotocoagulation as primary and secondary surgical treatment in primary open-angle and pseudoexfoliatve glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 1293–1299. [Google Scholar] [CrossRef]
- Jankowska-Szmul, J.; Dobrowolski, D.; Wylegala, E. CO2 laser-assisted sclerectomy surgery compared with trabeculectomy in primary open-angle glaucoma and exfoliative glaucoma. A 1-year follow-up. Acta Ophthalmol. 2018, 96, e582–e591. [Google Scholar] [CrossRef]
- Vernon, S.A.; Koppens, J.M.; Menon, G.J.; Negi, A.K. Diode laser cycloablation in adult glaucoma: Long-term results of a standard protocol and review of current literature. Clin. Exp. Ophthalmol. 2006, 34, 411–420. [Google Scholar] [CrossRef]
- Walland, M.J. Diode laser cyclophotocoagulation: Longer term follow up of a standardized treatment protocol. Clin. Exp. Ophthalmol. 2000, 28, 263–267. [Google Scholar] [CrossRef]
- Pucci, V.; Tappainer, F.; Borin, S.; Bellucci, R. Long-Term Follow-Up after Transscleral Diode Laser Photocoagulation in Refractory Glaucoma. Ophthalmologica 2003, 217, 279–283. [Google Scholar] [CrossRef]
- Pantcheva, M.B.; Kahook, M.Y.; Schuman, J.S.; Noecker, R.J. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br. J. Ophthalmol. 2007, 91, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Chen, M.J.; Lin, M.S.; Howes, E.; Stamper, R.L. Vascular effects on ciliary tissue from endoscopic versus trans-scleral cyclophotocoagulation. Br. J. Ophthalmol. 2006, 90, 496–500. [Google Scholar] [CrossRef]
- Berke, S.; Cohen, A.; Sturm, R.; Caronia, R.; Nelson, D. Endoscopic cyclophotocoagulation (Ecp) and phacoemulsification in the treatment of medically controlled primary open-angle glaucoma. J. Glaucoma 2000, 9, 129. [Google Scholar] [CrossRef]
- Siegel, M.J.; Boling, W.S.; Faridi, O.S.; Gupta, C.K.; Kim, C.; Boling, R.C.; Citron, M.E.; Siegel, M.J.; Siegel, L.I. Combined endoscopic cyclophotocoagulation and phacoemulsification versus phacoemulsification alone in the treatment of mild to moderate glaucoma. Clin. Exp. Ophthalmol. 2015, 43, 531–539. [Google Scholar] [CrossRef]
- Noecker, R.J.; Kahook, M.Y.; Berke, S.J.M.; Nichamin, L.D.; Weston, J.-M.; Mackool, R.; Tyson, F.; Lima, F.; Kleinfeldt, N. Uncontrolled Intraocular Pressure after Endoscopic Cyclophotocoagulation. J. Glaucoma 2008, 17, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Noecker, R.J.; ECS Group. Complications of Endoscopic Cyclophotocoagulation. In Proceedings of the ASCRS Symposium on Cataract, IOL and Refractive Surgery, San Diego, CA, USA, 27 April–2 May 2007. [Google Scholar]
- Schubert, H.D.; Agarwala, A. Quantitative CW Nd:YAG Pars Plana Transscleral Photocoagulation in Postmortem Eyes. Ophthalmic Surg. 1990, 21, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-J.; Mizukawa, A.; Okisaka, S. Mechanism of Intraocular Pressure Decrease after Contact Transscleral Continuous-Wave Nd:YAG Laser Cyclophotocoagulation. Ophthalmic Res. 1994, 26, 65–79. [Google Scholar] [CrossRef]
- Barac, R.; Vuzitas, M.; Balta, F. Choroidal thickness increase after micropulse transscleral cyclophotocoagulation. Rom. J. Ophthalmol. 2018, 61, 144–148. [Google Scholar] [CrossRef]
- Johnstone, M.A.; Song, S.; Padilla, S.; Wen, K.; Xin, C.; Wen, J.C.; Martin, E.; Wang, R.K. Microscope Real-Time Video (MRTV), High-Resolution OCT (HROCT) & Histopathology (HP) to Assess How Transcleral Micropulse Laser (TML) Affects the Sclera, Ciliary Body (CB), Muscle (CM), Secretory Epithelium (CBSE), Suprachoroidal Space (SCS) & Aqueous Outflow System. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2825. [Google Scholar]
- Quigley, H.A. Improved Outcomes for Transscleral Cyclophotocoagulation Through Optimized Treatment Parameters. J. Glaucoma 2018, 27, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Maslin, J.; Noecker, R.J. Early results of micropulse transscleral cyclophotocoagulation for the treatment of glaucoma. Eur. J. Ophthalmol. 2020, 30, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shi, Y.; Amoozgar, B.; Aderman, C.; Campomanes, A.D.A.; Lin, S.; Han, Y. Outcome of Micropulse Laser Transscleral Cyclophotocoagulation on Pediatric versus Adult Glaucoma Patients. J. Glaucoma 2017, 26, 936–939. [Google Scholar] [CrossRef]
- Sarrafpour, S.; Saleh, D.; Ayoub, S.; Radcliffe, N.M. Micropulse Transscleral Cyclophotocoagulation: A Look at Long-Term Effectiveness and Outcomes. Ophthalmol. Glaucoma 2019, 2, 167–171. [Google Scholar] [CrossRef]
- Abdelrahman, A.M.; El Sayed, Y.M. Micropulse versus Continuous Wave Transscleral Cyclophotocoagulation in Refractory Pediatric Glaucoma. J. Glaucoma 2018, 27, 900–905. [Google Scholar] [CrossRef]
- Subramaniam, K.; Price, M.O.; Feng, M.T.; Price, F.W. Micropulse Transscleral Cyclophotocoagulation in Keratoplasty Eyes. Cornea 2019, 38, 542–545. [Google Scholar] [CrossRef]
- Magacho, L.; Lima, F.E.; Ávila, M.P. Double-Session Micropulse Transscleral Laser (CYCLO G6) as a Primary Surgical Procedure for Glaucoma. J. Glaucoma 2020, 29, 205–210. [Google Scholar] [CrossRef]
- Aquino, M.C.D.; Chew, P.T. Long-Term Efficacy of MicroPulse Diode Transscleral Cyclophotocoagulation in the Treatment of Refractory Glaucoma. Malay 2016, 3, 22. [Google Scholar]
Age (Years), Mean (SD) [Range] | 69.00 ± 14.22 [30–92] |
---|---|
Gender (male/female) | 29/35 |
Type of glaucoma: | |
Primary open-angle glaucoma | 37 |
Secondary open-angle glaucoma | |
Post-penetrating keratoplasty glaucoma | 13 |
Exfoliative | 0 |
Pigmentary | 0 |
Uveitic glaucoma | 2 |
Neovascular glaucoma | 3 |
Other | 2 |
Primary angle-closure glaucoma | 4 |
Secondary angle-closure glaucoma | 1 |
Aniridic glaucoma | 2 |
Prior glaucoma surgeries: | |
Trabeculectomy | 9 |
Deep sclerectomy | 1 |
Surgery (tube/stents) | 2 |
Transscleral cyclophotocoagulation | 16 |
Ultrasound Cyclo Plasty | 5 |
Lens status: | |
Phakic | 35 |
Pseudophakic | 29 |
Aphakic | 0 |
Mean IOP ± SD | p-Value | Number of Hypotensive Medications ± SD | p-Value | % IOP Reduction | No. Patietns | |||||
---|---|---|---|---|---|---|---|---|---|---|
Preop | 25.1 | ± | 8.4 | 4.2 | ± | 1 | - | 64 | ||
1 day | 17.3 | ± | 4.5 | p < 0.001 | 2.4 | ± | 1.1 | p < 0.001 | 31.2 | 60 |
1 week | 16.5 | ± | 6.1 | p < 0.001 | 2.6 | ± | 1.1 | p < 0.001 | 34.4 | 59 |
1 month | 20.5 | ± | 8.3 | p < 0.001 | 2.7 | ± | 1.1 | p < 0.001 | 18.6 | 55 |
3 months | 17.1 | ± | 6.2 | p < 0.001 | 3 | ± | 1.2 | p < 0.001 | 32.1 | 46 |
6 months | 18 | ± | 7.1 | p < 0.001 | 3 | ± | 1.1 | p < 0.001 | 28.4 | 35 |
12 months | 15.8 | ± | 3.2 | p < 0.001 | 3.3 | ± | 1 | p < 0.001 | 37 | 30 |
18 months | 17 | ± | 5.9 | p < 0.001 | 3.3 | ± | 1.1 | p < 0.001 | 32.5 | 27 |
Complications | |
---|---|
Intraoperative: | |
Pain | 15/64 (23.4%) |
Corneal thermal injury | 0/64 (0%) |
Subconjunctival hemorrhage | 38/64 (59.4%) |
Postoperative: | |
Conjunctival hyperemia | 44/64 (68.8%) |
Epithelial defects | 0/64 (0%) |
Corneal edema | 0/64 (0%) |
Subconjunctival hemorrhage | 0/64 (0%) |
Hypotony, choroid detachment | 1/64 (1.6%) |
Retinal detachment | 0/64 (0%) |
Cataract | 0/64 (0%) |
Phthisis bulbi | 0/64 (0%) |
Scleral mark | 0/64 (0%) |
Uveitis | 2/64 (3.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolek, B.; Wylęgała, A.; Wylęgała, E. Microcyclophotocoagulation in Glaucoma Treatment: A Medium-Term Follow-Up Study. J. Clin. Med. 2023, 12, 4342. https://doi.org/10.3390/jcm12134342
Bolek B, Wylęgała A, Wylęgała E. Microcyclophotocoagulation in Glaucoma Treatment: A Medium-Term Follow-Up Study. Journal of Clinical Medicine. 2023; 12(13):4342. https://doi.org/10.3390/jcm12134342
Chicago/Turabian StyleBolek, Bartłomiej, Adam Wylęgała, and Edward Wylęgała. 2023. "Microcyclophotocoagulation in Glaucoma Treatment: A Medium-Term Follow-Up Study" Journal of Clinical Medicine 12, no. 13: 4342. https://doi.org/10.3390/jcm12134342
APA StyleBolek, B., Wylęgała, A., & Wylęgała, E. (2023). Microcyclophotocoagulation in Glaucoma Treatment: A Medium-Term Follow-Up Study. Journal of Clinical Medicine, 12(13), 4342. https://doi.org/10.3390/jcm12134342