Opioid Analgesics after Bariatric Surgery: A Scoping Review to Evaluate Physiological Risk Factors for Opioid-Related Harm
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Premorbid Factors
3.2. Factors Associated with the Surgical Procedure
3.3. Pain Perception in Patients with Obesity
3.4. Pharmacokinetic Changes after Bariatric Surgery
4. Discussion
4.1. Risk Factor Assessment
4.2. Pharmacokinetic Modelling in Bariatric Patients
4.3. Prescribing Drugs after Bariatric Surgery
4.4. Limitations
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Amsterdam, J.; Pierce, M.; van den Brink, W. Is Europe facing an emerging opioid crisis comparable to the U.S.? Drug Monit. 2021, 43, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, G.A.; Kramers, C.; van Dongen, R.T.; van den Brink, W.; Schellekens, A. Trends in use and misuse of opioids in the Netherlands: A retrospective, multi-source database study. Lancet Public Health 2019, 4, e498–e505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiffen, P.J.; Wee, B.; Derry, S.; Bell, R.F.; Moore, R.A. Opioids for cancer pain—An overview of Cochrane reviews. Cochrane Database Syst. Rev. 2017, 7, Cd012592. [Google Scholar] [CrossRef] [PubMed]
- Els, C.; Jackson, T.D.; Hagtvedt, R.; Kunyk, D.; Sonnenberg, B.; Lappi, V.G.; Straube, S. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2023, 3, Cd012299. [Google Scholar] [CrossRef]
- Pierce, M.; van Amsterdam, J.; Kalkman, G.A.; Schellekens, A.; van den Brink, W. Is Europe facing an opioid crisis like the United States? An analysis of opioid use and related adverse effects in 19 European countries between 2010 and 2018. Eur. Psychiatry 2021, 64, e47. [Google Scholar] [CrossRef]
- Kalkman, G.A.; Kramers, C.; van Dongen, R.T.; Schers, H.J.; van Boekel, R.L.M.; Bos, J.M.; Hek, K.; Schellekens, A.F.A.; Atsma, F. Practice variation in opioid prescribing for non-cancer pain in Dutch primary care: A retrospective database study. PLoS ONE 2023, 18, e0282222. [Google Scholar] [CrossRef]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC Guideline for prescribing opioids for chronic pain—United States, 2016. MMWR Recomm. Rep. 2016, 65, 1–49. [Google Scholar] [CrossRef]
- Werb, D.; Scheim, A.I.; Soipe, A.; Aeby, S.; Rammohan, I.; Fischer, B.; Hadland, S.E.; Marshall, B.D.L. Health harms of non-medical prescription opioid use: A systematic review. Drug Alcohol Rev. 2022, 41, 941–952. [Google Scholar] [CrossRef]
- Fishbain, D.A.; Cole, B.; Lewis, J.; Rosomoff, H.L.; Rosomoff, R.S. What percentage of chronic nonmalignant pain patients exposed to chronic opioid analgesic therapy develop abuse/addiction and/or aberrant drug-related behaviors? A structured evidence-based review. Pain Med. 2008, 9, 444–459. [Google Scholar] [CrossRef] [Green Version]
- Edlund, M.J.; Martin, B.C.; Russo, J.E.; DeVries, A.; Braden, J.B.; Sullivan, M.D. The role of opioid prescription in incident opioid abuse and dependence among individuals with chronic noncancer pain: The role of opioid prescription. Clin. J. Pain 2014, 30, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Macintyre, P.E.; Quinlan, J.; Levy, N.; Lobo, D.N. Current issues in the use of opioids for the management of postoperative pain: A review. JAMA Surg. 2022, 157, 158–166. [Google Scholar] [CrossRef]
- Sitter, T.; Forget, P. Persistent postoperative opioid use in Europe: A systematic review. Eur. J. Anaesthesiol. 2021, 38, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.D.; Gold, J.; Murthy, A.; Ruchi, R.; Bavry, E.; Hume, A.L.; Lewkowitz, A.K.; Brothers, T.; Wen, X. Rate and Risk Factors Associated with Prolonged Opioid Use After Surgery: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e207367. [Google Scholar] [CrossRef] [PubMed]
- Brummett, C.M.; Waljee, J.F.; Goesling, J.; Moser, S.; Lin, P.; Englesbe, M.J.; Bohnert, A.S.B.; Kheterpal, S.; Nallamothu, B.K. New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg. 2017, 152, e170504. [Google Scholar] [CrossRef] [PubMed]
- Neff, K.J.; Olbers, T.; le Roux, C.W. Bariatric surgery: The challenges with candidate selection, individualizing treatment and clinical outcomes. BMC Med. 2013, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Ramos, A.; Shikora, S.; Kow, L. Bariatric surgery Survey 2018: Similarities and disparities among the 5 IFSO chapters. Obes. Surg. 2021, 31, 1937–1948. [Google Scholar] [CrossRef]
- Nasser, K.; Verhoeff, K.; Mocanu, V.; Kung, J.Y.; Purich, K.; Switzer, N.J.; Birch, D.W.; Karmali, S. New persistent opioid use after bariatric surgery: A systematic review and pooled proportion meta-analysis. Surg. Endosc. 2023, 37, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Raebel, M.A.; Newcomer, S.R.; Reifler, L.M.; Boudreau, D.; Elliott, T.E.; DeBar, L.; Ahmed, A.; Pawloski, P.A.; Fisher, D.; Donahoo, W.T.; et al. Chronic use of opioid medications before and after bariatric surgery. JAMA 2013, 310, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Raebel, M.A.; Newcomer, S.R.; Bayliss, E.A.; Boudreau, D.; DeBar, L.; Elliott, T.E.; Ahmed, A.T.; Pawloski, P.A.; Fisher, D.; Toh, S.; et al. Chronic opioid use emerging after bariatric surgery. Pharm. Drug Saf. 2014, 23, 1247–1257. [Google Scholar] [CrossRef]
- King, W.C.; Chen, J.Y.; Belle, S.H.; Courcoulas, A.P.; Dakin, G.F.; Flum, D.R.; Hinojosa, M.W.; Kalarchian, M.A.; Mitchell, J.E.; Pories, W.J.; et al. Use of prescribed opioids before and after bariatric surgery: Prospective evidence from a U.S. multicenter cohort study. Surg. Obes. Relat. Dis. 2017, 13, 1337–1346. [Google Scholar] [CrossRef]
- Wallén, S.; Szabo, E.; Palmetun-Ekbäck, M.; Näslund, I. Use of opioid analgesics before and after gastric bypass surgery in Sweden: A population-based study. Obes. Surg. 2018, 28, 3518–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, R.R.; Holtestaul, T.A.; Morte, D.R.; Jones, I.F.; Forte, D.M.; Bingham, J.R. Influence of preoperative psychotropic medications on opioid requirements and outcomes following bariatric surgery. Am. J. Surg. 2020, 219, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Lloret-Linares, C.; Lopes, A.; Declèves, X.; Serrie, A.; Mouly, S.; Bergmann, J.F.; Perrot, S. Challenges in the optimisation of post-operative pain management with opioids in obese patients: A literature review. Obes. Surg. 2013, 23, 1458–1475. [Google Scholar] [CrossRef]
- Belcaid, I.; Eipe, N. Perioperative Pain Management in Morbid Obesity. Drugs 2019, 79, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Slama, C.; Jerome, J.; Jacquot, C.; Bonan, B. Prescription errors with cytotoxic drugs and the inadequacy of existing classifications. Pharm. World Sci. PWS 2005, 27, 339–343. [Google Scholar] [CrossRef]
- Diaz, S.E.; Dandalides, A.M.; Carlin, A.M. Hospital opioid use predicts the need for discharge opioid prescriptions following laparoscopic bariatric surgery. Surg. Endosc. 2022, 36, 6312–6318. [Google Scholar] [CrossRef]
- Iranmanesh, P.; Barlow, K.; Anvari, M. The effect of bariatric surgery on opioid consumption in patients with obesity: A registry-based cohort study. Surg. Obes. Relat. Dis. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Wallén, S.; Bruze, G.; Ottosson, J.; Marcus, C.; Sundström, J.; Szabo, E.; Olbers, T.; Palmetun-Ekbäck, M.; Näslund, I.; Neovius, M. Opioid use after gastric bypass, sleeve gastrectomy or intensive lifestyle intervention. Ann. Surg. 2023, 277, e552–e560. [Google Scholar] [CrossRef]
- King, W.C.; Chen, J.Y.; Mitchell, J.E.; Kalarchian, M.A.; Steffen, K.J.; Engel, S.G.; Courcoulas, A.P.; Pories, W.J.; Yanovski, S.Z. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA 2012, 307, 2516–2525. [Google Scholar] [CrossRef]
- Mitchell, J.E.; Selzer, F.; Kalarchian, M.A.; Devlin, M.J.; Strain, G.W.; Elder, K.A.; Marcus, M.D.; Wonderlich, S.; Christian, N.J.; Yanovski, S.Z. Psychopathology before surgery in the longitudinal assessment of bariatric surgery-3 (LABS-3) psychosocial study. Surg. Obes. Relat. Dis. 2012, 8, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kelley, J.; Ikramuddin, S.; Magel, J.; Richards, N.; Adams, T. Pre-operative substance use disorder is associated with higher risk of long-term mortality following bariatric surgery. Obes. Surg. 2023, 33, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Eisler, R.A.; Hu, A.; Rogers, A.M.; Rigby, A. Incidence of substance use disorder following bariatric surgery: A retrospective cohort study. Obes. Surg. 2023, 33, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, L.T. Substance use after bariatric surgery: A review. J. Psychiatr. Res. 2016, 76, 16–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivezaj, V.; Saules, K.K.; Schuh, L.M. New-onset substance use disorder after gastric bypass surgery: Rates and associated characteristics. Obes. Surg. 2014, 24, 1975–1980. [Google Scholar] [CrossRef]
- Lin, A.; Verhoeff, K.; Mocanu, V.; Purich, K.; Nasser, K.; Kung, J.Y.; Birch, D.W.; Karmali, S.; Switzer, N.J. Opioid prescribing practices following bariatric surgery: A systematic review and pooled proportion meta-analysis. Surg. Endosc. 2023, 37, 62–74. [Google Scholar] [CrossRef]
- Yang, P.; Bonham, A.J.; Carlin, A.M.; Finks, J.F.; Ghaferi, A.A.; Varban, O.A. Patient characteristics and outcomes among bariatric surgery patients with high narcotic overdose scores. Surg. Endosc. 2022, 36, 9313–9320. [Google Scholar] [CrossRef]
- Deak, J.D.; Johnson, E.C. Genetics of substance use disorders: A review. Psychol. Med. 2021, 51, 2189–2200. [Google Scholar] [CrossRef]
- Donaldson, K.; Demers, L.; Taylor, K.; Lopez, J.; Chang, S. Multi-variant genetic panel for genetic risk of opioid addiction. Ann. Clin. Lab. Sci. 2017, 47, 452–456. [Google Scholar]
- Blum, K.; Bailey, J.; Gonzalez, A.M.; Oscar-Berman, M.; Liu, Y.; Giordano, J.; Braverman, E.; Gold, M. Neuro-genetics of Reward Deficiency Syndrome (RDS) as the root cause of “Addiction Transfer”: A new phenomenon common after bariatric surgery. J. Genet. Syndr. Gene 2012, 3, S2-001. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wise, R.A.; Baler, R. The dopamine motive system: Implications for drug and food addiction. Nat. Rev. Neurosci. 2017, 18, 741–752. [Google Scholar] [CrossRef]
- Simoni, A.H.; Ladebo, L.; Christrup, L.L.; Drewes, A.M.; Johnsen, S.P.; Olesen, A.E. Chronic abdominal pain and persistent opioid use after bariatric surgery. Scand. J. Pain 2020, 20, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Torensma, B.; Hany, M.; Bakker, M.J.S.; van Velzen, M.; In‘t Veld, B.A.; Dahan, A.; Swank, D.J. Cross-sectional E-survey on the incidence of pre- and postoperative chronic pain in bariatric surgery. Obes. Surg. 2023, 33, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, M.L.; Smith, V.A.; Berkowitz, T.S.Z.; Arterburn, D.E.; Bradley, K.A.; Olsen, M.K.; Liu, C.F.; Livingston, E.H.; Funk, L.M.; Mitchell, J.E. Long-term opioid use after bariatric surgery. Surg. Obes. Relat. Dis. 2020, 16, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Cantone, E.; Cassarano, S.; Tuccinardi, D.; Barrea, L.; Savastano, S.; Colao, A. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019, 9, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Lotfipour, S. The role of the gut microbiome in opioid use. Behav. Pharm. 2020, 31, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Colon-Perez, L.; Montesinos, J.; Monsivais, M. The future of neuroimaging and gut-brain axis research for substance use disorders. Brain Res. 2022, 1781, 147835. [Google Scholar] [CrossRef]
- Bennett, K.G.; Kelley, B.P.; Vick, A.D.; Lee, J.S.; Gunaseelan, V.; Brummett, C.M.; Waljee, J.F. Persistent opioid use and high-risk prescribing in body contouring patients. Plast. Reconstr. Surg. 2019, 143, 87–96. [Google Scholar] [CrossRef]
- Torensma, B.; Thomassen, I.; van Velzen, M.; In ‘t Veld, B.A. Pain experience and perception in the obese subject: Systematic review (Revised version). Obes. Surg. 2016, 26, 631–639. [Google Scholar] [CrossRef]
- Torensma, B.; Oudejans, L.; van Velzen, M.; Swank, D.; Niesters, M.; Dahan, A. Pain sensitivity and pain scoring in patients with morbid obesity. Surg. Obes. Relat. Dis. 2017, 13, 788–795. [Google Scholar] [CrossRef]
- Heinberg, L.J.; Pudalov, L.; Alameddin, H.; Steffen, K. Opioids and bariatric surgery: A review and suggested recommendations for assessment and risk reduction. Surg. Obes. Relat. Dis. 2019, 15, 314–321. [Google Scholar] [CrossRef]
- Angeles, P.C.; Robertsen, I.; Seeberg, L.T.; Krogstad, V.; Skattebu, J.; Sandbu, R.; Åsberg, A.; Hjelmesæth, J. The influence of bariatric surgery on oral drug bioavailability in patients with obesity: A systematic review. Obes. Rev. 2019, 20, 1299–1311. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.; Stier, C.; Raab, H.; Weiner, R. Review article: The nutritional and pharmacological consequences of obesity surgery. Aliment. Pharm. 2014, 40, 582–609. [Google Scholar] [CrossRef] [PubMed]
- Yska, J.P. Exploring Optimal Pharmacotherapy after Bariatric Surgery: Where Two Worlds Meet. Ph.D. Thesis, Rijksuniversiteit Groningen, Groningen, The Netherlands, 2017. [Google Scholar]
- Hachon, L.; Declèves, X.; Faucher, P.; Carette, C.; Lloret-Linares, C. RYGB and drug disposition: How to do better? Analysis of pharmacokinetic studies and recommendations for clinical practice. Obes. Surg. 2017, 27, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Darwich, A.S.; Henderson, K.; Burgin, A.; Ward, N.; Whittam, J.; Ammori, B.J.; Ashcroft, D.M.; Rostami-Hodjegan, A. Trends in oral drug bioavailability following bariatric surgery: Examining the variable extent of impact on exposure of different drug classes. Br. J. Clin. Pharmacol. 2012, 74, 774–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenblatt, H.K.; Greenblatt, D.J. Altered drug disposition following bariatric surgery: A research challenge. Clin. Pharm. 2015, 54, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Allain, F.; Minogianis, E.A.; Roberts, D.C.; Samaha, A.N. How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neurosci. Biobehav. Rev. 2015, 56, 166–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloret-Linares, C.; Hirt, D.; Bardin, C.; Bouillot, J.L.; Oppert, J.M.; Poitou, C.; Chast, F.; Mouly, S.; Scherrmann, J.M.; Bergmann, J.F.; et al. Effect of a Roux-en-Y gastric bypass on the pharmacokinetics of oral morphine using a population approach. Clin. Pharm. 2014, 53, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Hachon, L.; Reis, R.; Labat, L.; Poitou, C.; Jacob, A.; Declèves, X.; Lloret-Linares, C. Morphine and metabolites plasma levels after administration of sustained release morphine in Roux-en-Y gastric bypass subjects versus matched control subjects. Surg. Obes. Relat. Dis. 2017, 13, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Ladebo, L.; Abuhelwa, A.Y.; Foster, D.J.R.; Kroustrup, J.P.; Pacyk, G.J.; Kongstad, K.T.; Drewes, A.M.; Christrup, L.L.; Olesen, A.E. Effect of Roux-en-Y gastric bypass on the pharmacokinetic-pharmacodynamic relationships of liquid and controlled-release formulations of oxycodone. Basic. Clin. Pharmacol. Toxicol. 2021, 129, 232–245. [Google Scholar] [CrossRef]
- Szałek, E.; Karbownik, A.; Murawa, D.; Połom, K.; Tezyk, A.; Gracz, J.; Grabowski, T.; Grześkowiak, E.; Biczysko-Murawa, A.; Murawa, P. The pharmacokinetics of oral oxycodone in patients after total gastric resection. Eur. Rev. Med. Pharm. Sci. 2014, 18, 3126–3133. [Google Scholar]
- Krabseth, H.M.; Strømmen, M.; Spigset, O.; Helland, A. Effect of sleeve gastrectomy on buprenorphine pharmacokinetics: A planned case observation. Clin. Ther. 2020, 42, 2232–2237. [Google Scholar] [CrossRef] [PubMed]
- Strømmen, M.; Helland, A.; Kulseng, B.; Spigset, O. Bioavailability of methadone after sleeve gastrectomy: A planned case observation. Clin. Ther. 2016, 38, 1532–1536. [Google Scholar] [CrossRef] [Green Version]
- Lloret-Linares, C.; Luo, H.; Rouquette, A.; Labat, L.; Poitou, C.; Tordjman, J.; Bouillot, J.L.; Mouly, S.; Scherrmann, J.M.; Bergmann, J.F.; et al. The effect of morbid obesity on morphine glucuronidation. Pharm. Res. 2017, 118, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Jovey, R.D. Opioids, pain and addiction-practical strategies. Br. J. Pain 2012, 6, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, H.K.; Tuulari, J.J.; Tuominen, L.; Hirvonen, J.; Honka, H.; Parkkola, R.; Helin, S.; Salminen, P.; Nuutila, P.; Nummenmaa, L. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol. Psychiatry 2016, 21, 1057–1062. [Google Scholar] [CrossRef]
- McGregor, M.; Hamilton, J.; Hajnal, A.; Thanos, P.K. Roux-en-Y gastric bypass in rat reduces mu-opioid receptor levels in brain regions associated with stress and energy regulation. PLoS ONE 2019, 14, e0218680. [Google Scholar] [CrossRef]
- Hankir, M.K.; Patt, M.; Patt, J.T.; Becker, G.A.; Rullmann, M.; Kranz, M.; Deuther-Conrad, W.; Schischke, K.; Seyfried, F.; Brust, P.; et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front. Neurosci. 2016, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- Burghardt, P.R.; Rothberg, A.E.; Dykhuis, K.E.; Burant, C.F.; Zubieta, J.K. Endogenous opioid mechanisms are implicated in obesity and weight loss in humans. J. Clin. Endocrinol. Metab. 2015, 100, 3193–3201. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Stoll, C.R.; Song, J.; Varela, J.E.; Eagon, C.J.; Colditz, G.A. The effectiveness and risks of bariatric surgery: An updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 2014, 149, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Martinou, E.; Stefanova, I.; Iosif, E.; Angelidi, A.M. Neurohormonal changes in the gut-brain axis and underlying neuroendocrine mechanisms following bariatric surgery. Int. J. Mol. Sci. 2022, 23, 3339. [Google Scholar] [CrossRef]
- Eskandaros, M.S. Antrum preservation versus antrum resection in laparoscopic sleeve gastrectomy with effects on gastric emptying, body mass index, and Type II diabetes remission in diabetic patients with body massi ndex 30–40 kg/m2: A randomized controlled study. Obes. Surg. 2022, 32, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Lin, K.; Du, N.; Ng, D.M.; Lou, D.; Chen, P. Differences in the effects of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass on gut hormones: Systematic and meta-analysis. Surg. Obes. Relat. Dis. 2021, 17, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Hany, M.; Elfiky, S.; Mansour, N.; Zidan, A.; Ibrahim, M.; Samir, M.; Allam, H.E.; Yassin, H.A.A.; Torensma, B. Dialectical behavior therapy for emotional and mindless eating after bariatric surgery: A prospective exploratoru cohort study. Obes. Surg. 2022, 32, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Farhadipour, M.; Depoortere, I. The function of bastrointestinal hormones in obesity-Implications for the regulation of energy intake. Nutrients 2021, 13, 1839. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Jirapinyo, P.; Thompson, C.C. Effect of sleeve gastrectomy on Ghrelin, GLP-1, PYY, and GIP gut hormones: A systematic review and meta-analysis. Ann. Surg. 2020, 272, 72–80. [Google Scholar] [CrossRef] [PubMed]
- King, W.C.; Hinerman, A.S.; White, G.E. A 7-year study of the durability of improvements in pain, physical function, and work productivity after Roux-en-Y gastric bypass and sleeve gastrectomy. JAMA Netw. Open 2022, 5, e2231593. [Google Scholar] [CrossRef]
- Chahal-Kummen, M.; Våge, V.; Kristinsson, J.A.; Mala, T. Chronic abdominal pain and quality of life after Roux-en-Y gastric bypass and sleeve gastrectomy—A cross-cohort analysis of two prospective longitudinal observational studies. Surg. Obes. Relat. Dis. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Björklund, P.; Maleckas, A.; Lönroth, H.; Björnfot, N.; Thörn, S.E.; Fändriks, L. Roux limb motility in gastric bypass patients with chronic abdominal pain-Is there an association to prescribed ppioids? Obes. Surg. 2019, 29, 3860–3867. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.N.; Temm, C.J.; Saxena, R.; Vuppalanchi, R.; Schauer, P.; Rabinovitz, M.; Krasinskas, A.; Chalasani, N.; Mattar, S.G. Bariatric surgery-induced weight loss reduces hepatic lipid peroxidation levels and affects hepatic cytochrome P-450 protein content. Ann. Surg. 2010, 251, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, E.; Dos Reis Falcão, L.F.; O’Kane, M.; Liem, R.; Pournaras, D.J.; Salminen, P.; Urman, R.D.; Wadhwa, A.; Gustafsson, U.O.; Thorell, A. Guidelines for perioperative care in bariatric surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations: A 2021 update. World J. Surg. 2022, 46, 729–751. [Google Scholar] [CrossRef]
- Yalcin, S.; Walsh, S.M.; Figueroa, J.; Heiss, K.F.; Wulkan, M.L. Does ERAS impact outcomes of laparoscopic sleeve gastrectomy in adolescents? Surg. Obes. Relat. Dis. 2020, 16, 1920–1926. [Google Scholar] [CrossRef] [PubMed]
- Pardue, B.; Thomas, A.; Buckley, J.; Suggs, W.J. An opioid-sparing protocol improves recovery time and reduces opioid use after laparoscopic sleeve gastrectomy. Obes. Surg. 2020, 30, 4919–4925. [Google Scholar] [CrossRef] [PubMed]
- Sapin, A.; Hilden, P.; Cinicolo, L.; Stein, J.; Turner, A.; Pitera, R.; Yodicei, P.; Paragi, P.R. Enhanced recovery after surgery for sleeve gastrectomies: Improved patient outcomes. Surg. Obes. Relat. Dis. 2021, 17, 1541–1547. [Google Scholar] [CrossRef]
- Monte, S.V.; Rafi, E.; Cantie, S.; Wohaibi, E.; Sanders, C.; Scovazzo, N.C. Reduction in opiate use, pain, nausea, and length of stay after implementation of a bariatric Enhanced Recovery After Surgery protocol. Obes. Surg. 2021, 31, 2896–2905. [Google Scholar] [CrossRef]
- Seu, R.; Pereira, X.; Goriacko, P.; Yaghdjian, V.; Appiah, D.; Moran-Atkin, E.; Camacho, D.; Kim, J.; Choi, J. Effectiveness of Bariatric Surgery Targeting Opioid Prescriptions (BSTOP) protocol on postoperative pain control. Surg. Endosc. 2022, 37, 4902–4909. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Said, S.A.; Rydzinski, S.; Gutnick, J.; Aminian, A.; Augustin, T. How much narcotics are really needed after bariatric surgery: Results of a prospective study. Surg. Obes. Relat. Dis. 2023, 19, 541–546. [Google Scholar] [CrossRef]
- Tan, W.H.; Ford, J.; Kindel, T.; Higgins, R.M.; Lak, K.; Gould, J.C. Implementation of a standardized multimodal pain regimen significantly reduces postoperative inpatient opioid utilization in patients undergoing bariatric surgery. Surg. Endosc. 2023, 37, 3103–3112. [Google Scholar] [CrossRef]
- Ashton, K.; Heinberg, L.; Merrell, J.; Lavery, M.; Windover, A.; Alcorn, K. Pilot evaluation of a substance abuse prevention group intervention for at-risk bariatric surgery candidates. Surg. Obes. Relat. Dis. 2013, 9, 462–467. [Google Scholar] [CrossRef]
- Adams, T.D.; Meeks, H.; Fraser, A.; Davidson, L.E.; Holmen, J.; Newman, M.; Ibele, A.R.; Richards, N.; Hunt, S.C.; Kim, J. Long-term all-cause and cause-specific mortality for four bariatric surgery procedures. Obesity 2023, 31, 574–585. [Google Scholar] [CrossRef]
LAGB 1 | SG 1 | RYGB 1 | |
---|---|---|---|
Gastric pH | - | ↑ | ↑ |
Gastric volume | - | ↓ | ↓ |
Gastric emptying | - | ↑ | ↓ |
Exposure to gastric digestive enzymes | - | ↓ | ↓ |
Small intestinal bacterial overgrowth | - | ↑ | ↑ |
Intestinal surface area for absorption | - | - | ↓ |
Intestinal transit time | - | - | ↓ |
Exposure to metabolic enzymes and drug transporters in the intestinal wall | - | - | ↓ |
Exposure to bile acids | - | - | ↓ |
Enterohepatic cycle | - | - | ↓ |
Morphine [58] | Morphine [59] | Oxycodone [60] | Oxycodone * [61] | Buprenorphine [62] | Methadone [63] | |
---|---|---|---|---|---|---|
Galenic oral formulation | Oral solution | Prolonged release | Oral solution vs. controlled release (lipid-based vs. water-swellable) | Prolonged release | Sublingual tablet | Oral capsule |
Procedure | RYGB | RYGB | RYGB | Total gastrectomy | SG | SG |
Study population | 30 patients (men/women) | 12 women | 21 patients (men/women) | 24 patients (men/women) | 1 women (case report) | 1 women (case report) |
Controls | Before-after surgery | Matched controls | Reference PK/PD model in healthy volunteers | Healthy subjects (reference publications) | / | / |
Blood sample timing | 3 visits: * V0: before * V1: +7–15 days * V2: +6 months | 12 samples 2 years after surgery | 12 samples at least 1 year after surgery | 12 samples in 5–12 days after surgery | 4 visits: * V0: before * V1: +1 week * V2: +1 month * V3: +1 year | 4 visits: * V0: 8 days before * V1: +5 days * V2: + 1 month * V3: +7 months |
Tmax | * V0 vs. V1: ↓ (−2×) * V0 vs. V2: ↓ (−7.5×) | = (control: 3.0 (1.5–5.0) h vs. patient: 2.6 (1.4–6.0) | Controlled release: absorption lag time ↓ (control: 14 min vs. patient: 11.5 min) No PK differences between CR formulations | ↓ (control: 3 h vs. patient: 2.2 h) | * V0 vs. V1: ↓ (0.8 h → 0.5 h) * V0 vs. V2: ↓ (0.8 h → 0.5 h) * V0 vs. V3: ↑ (0.8 h → 1 h) | * V0 vs. V1: ↓ (2.5 h → 1.5 h) * V0 vs. V2: ↓ (2.5 h → 1.5 h) * V0 vs. V3: ↓ (2.5 h → 1 h) |
Cmax | * V0 vs. V1: ↑ (1.7×) * V0 vs. V2: ↑ (3.3×) | = (control: 16 (4–29) nM vs. patient: 11 (7–67) nM; p = 0.72) | No data | = (control: 10.6 vs. patient: 12.97 ng/mL) | * V0 vs. V1: ↑ (11.2 → 20.7 nmol/L) * V0 vs. V2: ↓ (11.2 → 8.1 nmol/L) * V0 vs. V3: ↓ (11.2 → 10.0 nmol/L) | * V0 vs. V1: ↑ (945 → 1414 nmol/L) * V0 vs. V2: ↑ (945 → 2128 nmol/L) * V0 vs. V3: ↑ (945 → 2564 nmol/L) |
AUC | V0 vs. V1: ↑ (+23.4%) V0 vs. V2: ↑ (+55.5%) | = (control: 80 (34–156) nmol.hr/L vs. patient: 66 (32–406) nmol.hr; p = 0.71) | ↑ (+14.4%) | ? | * V0 vs. V1: ↓ (−6.3%) * V0 vs. V2: ↓ (−43%) * V0 vs. V3: ↓ (−42%) | * V0 vs. V1: ↑ (+41%) * V0 vs. V2: ↑ (+143%) * V0 vs. V3: ↑ (+213%) |
Advice | Divide dose | No dose reduction | Bioequivalence demonstrated for both CR formulations | No dose reduction | Perioperative monitoring | Perioperative monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuyts, S.C.M.; Torensma, B.; Schellekens, A.F.A.; Kramers, C. Opioid Analgesics after Bariatric Surgery: A Scoping Review to Evaluate Physiological Risk Factors for Opioid-Related Harm. J. Clin. Med. 2023, 12, 4296. https://doi.org/10.3390/jcm12134296
Wuyts SCM, Torensma B, Schellekens AFA, Kramers C. Opioid Analgesics after Bariatric Surgery: A Scoping Review to Evaluate Physiological Risk Factors for Opioid-Related Harm. Journal of Clinical Medicine. 2023; 12(13):4296. https://doi.org/10.3390/jcm12134296
Chicago/Turabian StyleWuyts, Stephanie C. M., Bart Torensma, Arnt F. A. Schellekens, and Cornelis (Kees) Kramers. 2023. "Opioid Analgesics after Bariatric Surgery: A Scoping Review to Evaluate Physiological Risk Factors for Opioid-Related Harm" Journal of Clinical Medicine 12, no. 13: 4296. https://doi.org/10.3390/jcm12134296