The Efficacy of Electromagnetic Diathermy for the Treatment of Musculoskeletal Disorders: A Systematic Review with Meta-Analysis
Abstract
:1. Background
2. Methods
2.1. Type of Studies
2.2. Type of Participants
2.3. Type of Interventions
2.4. Exclusion Criteria
2.5. Outcome Measures
2.6. Search Strategy
2.7. Other Sources
2.8. Selection of the Studies
2.9. Data Extraction
2.10. Risk of Bias Assessment
2.11. Measures of Treatment Effect
2.12. Certainty of Evidence
2.13. Dealing with Missing Data
2.14. Data Synthesis
3. Results
3.1. Knee and Hip Osteoarthritis
3.2. Low Back Pain
3.3. Shoulder Tendinopathies (STN)
3.4. Frozen Shoulder (FS)
3.5. Carpal Tunnel Syndrome (CTS)
3.6. Lower Limb Tendinopathies (LLT)
3.7. Neck Pain (NP)
3.8. Patellofemoral Pain (PFP)
3.9. Temporomandibular Joint (TMJ)
3.10. Delayed Onset of Muscular Soreness (DOMS)
3.11. Humerus Fractures
3.12. Ulnar Nerve Entrapment (UNE)
3.13. Lateral Epicondylitis (LE)
3.14. Ankle or Foot Sprain
3.15. Lower Limb Acute Muscle Injury (LAMI)
3.16. Tension-Type Headache (TTH)
3.17. Total Knee Replacement (TKR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Musculoskeletal Conditions. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed on 2 November 2021).
- Briggs, A.M.; Dreinhöfer, K.E. Rehabilitation 2030: A Call to Action Relevant to Improving Musculoskeletal Health Care Globally. J. Orthop. Sports Phys. Ther. 2017, 47, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Ayanniyi, O.; Egwu, R.F.; Adeniyi, A.F. Physiotherapy Management of Knee Osteoarthritis in Nigeria—A Survey of Self-Reported Treatment Preferences. Hong Kong Physiother. J. 2017, 36, 1–9. [Google Scholar] [CrossRef]
- Bahns, C.; Happe, L.; Thiel, C.; Kopkow, C. Physical Therapy for Patients with Low Back Pain in Germany: A Survey of Current Practice. BMC Musculoskelet. Disord. 2021, 22, 563. [Google Scholar] [CrossRef] [PubMed]
- Zadro, J.; O’Keeffe, M.; Maher, C. Do Physical Therapists Follow Evidence-Based Guidelines When Managing Musculoskeletal Conditions? Systematic Review. BMJ Open 2019, 9, e032329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Peng, R.-Y. Biological Effects and Mechanisms of Shortwave Radiation: A Review. Mil. Med. Res. 2017, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Giombini, A.; Giovannini, V.; Cesare, A.D.; Pacetti, P.; Ichinoseki-Sekine, N.; Shiraishi, M.; Naito, H.; Maffulli, N. Hyperthermia Induced by Microwave Diathermy in the Management of Muscle and Tendon Injuries. Br. Med. Bull. 2007, 83, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Dept. of Health, Education, and Welfare Public Health Service Food and Drug Administration. Diathermy; FDA: Silver Spring, MD, USA, 2018.
- Papadopoulos, E.S.; Mani, R. The Role of Ultrasound Therapy in the Management of Musculoskeletal Soft Tissue Pain. Int. J. Low. Extrem. Wounds 2020, 19, 350–358. [Google Scholar] [CrossRef]
- Smallcomb, M.; Khandare, S.; Vidt, M.E.; Simon, J.C. Therapeutic Ultrasound and Shockwave Therapy for Tendinopathy: A Narrative Review. Am. J. Phys. Med. Rehabil. 2022, 101, 801–807. [Google Scholar] [CrossRef]
- Jiang, X.; Savchenko, O.; Li, Y.; Qi, S.; Yang, T.; Zhang, W.; Chen, J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans. Biomed. Eng. 2019, 66, 2704–2718. [Google Scholar] [CrossRef]
- Van den Bekerom, M.P.; van der Windt, D.A.; Ter Riet, G.; van der Heijden, G.J.; Bouter, L.M. Therapeutic Ultrasound for Acute Ankle Sprains. Cochrane Database Syst. Rev. 2011, 2011, CD001250. [Google Scholar] [CrossRef]
- López-de-Celis, C.; Hidalgo-García, C.; Pérez-Bellmunt, A.; Fanlo-Mazas, P.; González-Rueda, V.; Tricás-Moreno, J.M.; Ortiz, S.; Rodríguez-Sanz, J. Thermal and Non-Thermal Effects off Capacitive-Resistive Electric Transfer Application on the Achilles Tendon and Musculotendinous Junction of the Gastrocnemius Muscle: A Cadaveric Study. BMC Musculoskelet. Disord. 2020, 21, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadler, S.F.; Weingand, K.; Kruse, R.J. The Physiologic Basis and Clinical Applications of Cryotherapy and Thermotherapy for the Pain Practitioner. Pain Physician 2004, 7, 395–399. [Google Scholar] [CrossRef]
- Davis, K.D.; Kwan, C.L.; Crawley, A.P.; Mikulis, D.J. Functional MRI Study of Thalamic and Cortical Activations Evoked by Cutaneous Heat, Cold, and Tactile Stimuli. J. Neurophysiol. 1998, 80, 1533–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, C.; Gao, C.; Zhu, S.; Yang, L.; Wei, Q.; He, C. Effects of Short-Wave Therapy in Patients with Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2017, 31, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, R.; Ronconi, G.; Ferrara, P.E.; Salgovic, L.; Vercelli, S.; Solaro, C.; Ferriero, G. Capacitive and Resistive Electric Transfer Therapy in Rehabilitation: A Systematic Review. Int. J. Rehabil. Res. Int. Z. Rehabil. Rev. Int. Rech. Readapt. 2020, 43, 291–298. [Google Scholar] [CrossRef]
- Tian, F.; Wang, J.; Xi, X.; He, M.; Zhao, C.; Feng, F.; Wang, H.; Sun, W.; Mao, L.; Hu, X.; et al. Efficacy and Safety of Short-Wave Diathermy Treatment for Moderate COVID-19 Patients: A Prospective, Double-Blind, Randomized Controlled Clinical Study. Eur. J. Phys. Rehabil. Med. 2021, 58, 137–143. [Google Scholar] [CrossRef]
- Picelli, A.; Munari, D.; Serina, A.; Filippetti, M.; Baricich, A.; Santamato, A.; Guerrazzi, F.; Modenese, A.; Smania, N. Short-Wave Diathermy for Spastic Equinus Foot in Chronic Stroke Patients: A Proof-of-Concept Pilot Study. Minerva Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Minozzi, S.; Cinquini, M.; Gianola, S.; Gonzalez-Lorenzo, M.; Banzi, R. The Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB 2) Showed Low Interrater Reliability and Challenges in Its Application. J. Clin. Epidemiol. 2020, 126, 37–44. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook; Updated October 2013. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 20 January 2023).
- Li, T.; Higgins, J.P.; Deeks, J.J. Collecting Data. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 109–141. ISBN 978-1-119-53660-4. [Google Scholar]
- Higgins, J.P.; Li, T.; Deeks, J.J. Choosing Effect Measures and Computing Estimates of Effect. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 143–176. ISBN 978-1-119-53660-4. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattanachaiyanont, M.; Kuptniratsaikul, V. No Additional Benefit of Shortwave Diathermy over Exercise Program for Knee Osteoarthritis in Peri-/Post-Menopausal Women: An Equivalence Trial. Osteoarthr. Cartil. 2008, 16, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Işik, R.; Karapolat, H.; Bayram, K.B.; Uşan, H.; Tanlgör, G.; Atamaz Çallş, F. Effects of Short Wave Diathermy Added on Dextrose Prolotherapy Injections in Osteoarthritis of the Knee. J. Altern. Complement. Med. 2020, 26, 316–322. [Google Scholar] [CrossRef]
- Atamaz, F.C.; Durmaz, B.; Baydar, M.; Demircioglu, O.Y.; Iyiyapici, A.; Kuran, B.; Oncel, S.; Sendur, O.F. Comparison of the Efficacy of Transcutaneous Electrical Nerve Stimulation, Interferential Currents, and Shortwave Diathermy in Knee Osteoarthritis: A Double-Blind, Randomized, Controlled, Multicenter Study. Arch. Phys. Med. Rehabil. 2012, 93, 748–756. [Google Scholar] [CrossRef]
- Callaghan, M.J.; Whittaker, P.E.; Grimes, S.; Smith, L. An Evaluation of Pulsed Shortwave on Knee Osteoarthritis Using Radioleucoscintigraphy: A Randomised, Double Blind, Controlled Trial. Jt. Bone Spine 2005, 72, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.Y.; da Cunha, R.A.; Fukuda, V.O.; Rienzo, F.A.; Cazarini, C., Jr.; Carvalho, N.d.A.A.; Centini, A.A.; Thiago Yukio, F.; da Cunha, R.A.; Fukuda, V.O.; et al. Pulsed Shortwave Treatment in Women With Knee Osteoarthritis: A Multicenter, Randomized, Placebo-Controlled Clinical Trial. Phys. Ther. 2011, 91, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.Y.; Ovanessian, V.; Cunha, R.A.D.; Filho, Z.J.; Cazarini, C.; Rienzo, F.A.; Centini, A.A. Pulsed Short Wave Effect in Pain and Function in Patients with Knee Osteoarthritis. J. Appl. Res. 2008, 8, 189–198. [Google Scholar]
- Klaber Moffett, J.A.; Richardson, P.H.; Frost, H.; Osborn, A. A Placebo Controlled Double Blind Trial to Evaluate the Effectiveness of Pulsed Short Wave Therapy for Osteoarthritic Hip and Knee Pain. Pain 1996, 67, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Klaber Moffett, J.A.K. The Role of Psychological Variables in the Assessment and Physiotherapeutic Management of Musculoskeletal Disorders. Ph.D. Thesis, Department of Academic Psychiatry United Medical and Dental Schools, University of London, London, UK, 1994. Available online: https://kclpure.kcl.ac.uk/portal/ (accessed on 19 January 2023).
- Clarke, G.R.; Willis, L.A.; Stenner, L.; Nichols, P.J.R. Evaluation of Physiotherapy in the Treatment of Osteoarthrosis of the Knee. Rheumatol. Rehabil. 1974, 13, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Bezalel, T.; Carmeli, E.; Katz-Leurer, M. The Effect of a Group Education Programme on Pain and Function through Knowledge Acquisition and Home-Based Exercise among Patients with Knee Osteoarthritis: A Parallel Randomised Single-Blind Clinical Trial. Physiotherapy 2010, 96, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.A.; Care, G.; Harfield, B. Physiotherapy in Osteoarthrosis of the Knees. A Controlled Trial of Hospital versus Home Exercises. Int. Rehabil. Med. 1982, 4, 101–106. [Google Scholar] [CrossRef]
- Akyol, Y.; Durmus, D.; Alayli, G.; Tander, B.; Bek, Y.; Canturk, F.; Tastan Sakarya, S. Does Short-Wave Diathermy Increase the Effectiveness of Isokinetic Exercise on Pain, Function, Knee Muscle Strength, Quality of Life, and Depression in the Patients with Knee Osteoarthritis? A Randomized Controlled Clinical Study. Eur. J. Phys. Rehabil. Med. 2010, 46, 325–336. [Google Scholar]
- De Paula Gomes, C.A.F.; Politti, F.; de Souza Bacelar Pereira, C.; da Silva, A.C.B.; Dibai-Filho, A.V.; de Oliveira, A.R.; Biasotto-Gonzalez, D.A. Exercise Program Combined with Electrophysical Modalities in Subjects with Knee Osteoarthritis: A Randomised, Placebo-Controlled Clinical Trial. BMC Musculoskelet. Disord. 2020, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Cetin, N.; Aytar, A.; Atalay, A.; Akman, M.N. Comparing Hot Pack, Short-Wave Diathermy, Ultrasound, and TENS on Isokinetic Strength, Pain, and Functional Status of Women with Osteoarthritic Knees: A Single-Blind, Randomized, Controlled Trial. Am. J. Phys. Med. Rehabil. 2008, 87, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzi, R.; Altin, F. Evaluation of Short-Wave Diathermy and Ultrasound Treatments as Combined Physical Treatments for Knee Osteoarthritis. J. Phys. Med. Rehabil. Sci. Fiz. Tup Ve Rehabil. Bilim. Derg. 2017, 20, 134–141. [Google Scholar]
- Jia, L.; Li, D.; Wei, X.; Chen, J.; Zuo, D.; Chen, W. Efficacy and Safety of Focused Low-Intensity Pulsed Ultrasound versus Pulsed Shortwave Diathermy on Knee Osteoarthritis: A Randomized Comparative Trial. Sci. Rep. 2022, 12, 12792. [Google Scholar] [CrossRef]
- Boyaci, A.; Tutoglu, A.; Boyaci, N.; Aridici, R.; Koca, I. Comparison of the Efficacy of Ketoprofen Phonophoresis, Ultrasound, and Short-Wave Diathermy in Knee Osteoarthritis. Rheumatol. Int. 2013, 33, 2811–2818. [Google Scholar] [CrossRef]
- Cantarini, L.; Leo, G.; Giannitti, C.; Cevenini, G.; Barberini, P.; Fioravanti, A. Therapeutic Effect of Spa Therapy and Short Wave Therapy in Knee Osteoarthritis: A Randomized, Single Blind, Controlled Trial. Rheumatol. Int. 2007, 27, 523–529. [Google Scholar] [CrossRef]
- Wright, V. Treatment of Osteo-Arthritis of the Knees. Ann. Rheum. Dis. 1964, 23, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Tüzün, E.H.; Otman, S.; Kirdi, N. Comparison of Different Methods of Pulsed Shortwave Diathermy in Knee Osteoarthritis. Pain Clin. 2003, 15, 421–427. [Google Scholar] [CrossRef]
- Teslim, O.A.; Adebowale, A.C.; Ojoawo, A.O.; Sunday, O.A.; Bosede, A. Comparative Effects of Pulsed and Continuous Short Wave Diathermy on Pain and Selected Physiological Parameters among Subjects with Chronic Knee Osteoarthritis. Technol. Health Care 2013, 21, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ovanessian, V.; Júnior, C.C. Use of Different Doses of Pulsed Short Waves in the Treatment of Patients with Osteoarthritis of the Knee. Rev. Ciênc. Méd. 2008, 127, 149–155. [Google Scholar]
- Atamaz, F.; Kirazli, Y.; Akkoc, Y. A Comparison of Two Different Intra-Articular Hyaluronan Drugs and Physical Therapy in the Management of Knee Osteoarthritis. Rheumatol. Int. 2006, 26, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Igatpurikar, P. Effect of Maitland Spinal Mobilization Therapy Versus Conventional Therapy in Lumbar Spondylosis with Radiculopathy. Indian J. Physiother. Occup. Ther. 2013, 7, 177–183. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Shakoor, M.A.; Khan, A.A. Evaluation of the Effects of Shortwave Diathermy in Patients with Chronic Low Back Pain. Bangladesh Med. Res. Counc. Bull. 2009, 35, 18–20. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, V.P.; Negi, M.P. Efficacy of Dynamic Muscular Stabilization Techniques (DMST) over Conventional Techniques in Rehabilitation of Chronic Low Back Pain [with Consumer Summary]. J. Strength Cond. Res. 2009, 23, 2651–2659. [Google Scholar] [CrossRef]
- Kumar, S.; Negi, M.P.S.; Sharma, V.P.; Shukla, R.; Dev, R.; Mishra, U.K. Efficacy of Two Multimodal Treatments on Physical Strength of Occupationally Subgrouped Male with Low Back Pain. J. Back Musculoskelet. Rehabil. 2009, 22, 179–188. [Google Scholar] [CrossRef]
- Shakoor, M.A.; Rahman, M.S.; Moyeenuzzaman, M. Effects of Deep Heat Therapy on the Patients with Chronic Low Back Pain. Mymensingh Med. J. MMJ 2008, 17, S32–S38. [Google Scholar]
- Gibson, T.; Grahame, R.; Harkness, J.; Woo, P.; Blagrave, P.; Hills, R. Controlled Comparison of Short-Wave Diathermy Treatment with Osteopathic Treatment in Non-Specific Low Back Pain. Lancet Lond. Engl. 1985, 1, 1258–1261. [Google Scholar] [CrossRef]
- Ansari, A.; Nayab, M.; Saleem, S.; Ansari, A.N. Effect of Soft and Prolonged Graeco-Arabic Massage in Low Back Pain—A Randomized Controlled Clinical Trial. J. Bodyw. Mov. Ther. 2022, 29, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Kaysin, M.; Akpinar, P.; Aktas, I.; Unlü Ozkan, F.; Silte Karamanlioglu, D.; Cagliyan Hartevioglu, H.; Vural, N. Effectiveness of Shortwave Diathermy for Subacromial Impingement Syndrome and Value of Night Pain for Patient Selection: A Double-Blinded, Randomized, Placebo-Controlled Trial. Am. J. Phys. Med. Rehabil. 2018, 97, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-García, D.; López-Dolado, E.; López-Zarzuela, M.C. Treatment of Calcifying Tendinitis of the Shoulder: Iontophoresis with Acetic Acid or Shortwave? Rehabilitacion 2008, 42, 239–245. [Google Scholar] [CrossRef]
- Guler-Uysal, F.; Kozanoglu, E. Comparison of the Early Response to Two Methods of Rehabilitation in Adhesive Capsulitis. Swiss Med. Wkly. 2004, 134, 353–358. [Google Scholar] [PubMed]
- Leung, M.S.; Cheing, G.L. Effects of Deep and Superficial Heating in the Management of Frozen Shoulder. J. Rehabil. Med. 2008, 40, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyaci, A.; Tutoglu, A.; Koca, I.; Kocaturk, O.; Celen, E. Comparison of the Short-Term Effectiveness of Short-Wave Diathermy Treatment in Patients with Carpal Tunnel Syndrome: A Randomized Controlled Trial. Arch. Rheumatol. 2014, 29, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Incebiyik, S.; Boyaci, A.; Tutoglu, A. Short-Term Effectiveness of Short-Wave Diathermy Treatment on Pain, Clinical Symptoms, and Hand Function in Patients with Mild or Moderate Idiopathic Carpal Tunnel Syndrome. J. Back Musculoskelet. Rehabil. 2015, 28, 221–228. [Google Scholar] [CrossRef]
- Dziedzic, K.; Hill, J.; Lewis, M.; Sim, J.; Daniels, J.; Hay, E.M. Effectiveness of Manual Therapy or Pulsed Shortwave Diathermy in Addition to Advice and Exercise for Neck Disorders: A Pragmatic Randomized Controlled Trial in Physical Therapy Clinics. Arthritis Rheum. 2005, 53, 214–222. [Google Scholar] [CrossRef]
- Verma, C.; Krishnan, V. Comparison between Mc Connell Patellar Taping and Conventional Physio-Therapy Treatment in the Management of Patellofemoral Pain Syndrome—A Randomised Controlled Trial. J. Krishna Inst. Med. Sci. Univ. 2012, 1, 95–104. [Google Scholar]
- Gray, R.J.M.; Quayle, A.A.; Hall, C.A.; Schofield, M.A. Temporomandibular Pain Dysfunction: Can Electrotherapy Help? Physiotherapy 1995, 81, 47–51. [Google Scholar] [CrossRef]
- Talaat, A.M.; El-Dibany, M.M.; El-Garf, A. Physical Therapy in the Management of Myofacial Pain Dysfunction Syndrome. Ann. Otol. Rhinol. Laryngol. 1986, 95, 225–228. [Google Scholar] [CrossRef]
- Livesley, P.J.; Mugglestone, A.; Whitton, J. Electrotherapy and the Management of Minimally Displaced Fracture of the Neck of the Humerus. Injury 1992, 23, 323–327. [Google Scholar] [CrossRef]
- Bilgin Badur, N.; Unlu Ozkan, F.; Aktas, I. Efficacy of Shortwave Diathermy in Ulnar Nerve Entrapment at the Elbow: A Double-Blind Randomized Controlled Clinical Trial. Clin. Rehabil. 2020, 34, 1048–1055. [Google Scholar] [CrossRef]
- Babaei-Ghazani, A.; Shahrami, B.; Fallah, E.; Ahadi, T.; Forough, B.; Ebadi, S. Continuous Shortwave Diathermy with Exercise Reduces Pain and Improves Function in Lateral Epicondylitis More than Sham Diathermy: A Randomized Controlled Trial. J. Bodyw. Mov. Ther. 2020, 24, 69–76. [Google Scholar] [CrossRef]
- Pasila, M.; Visuri, T.; Sundholm, A. Pulsating Shortwave Diathermy: Value in Treatment of Recent Ankle and Foot Sprains. Arch. Phys. Med. Rehabil. 1978, 59, 383–386. [Google Scholar]
- Giombini, A.; Di Cesare, A.; Di Cesare, M.; Ripani, M.; Maffulli, N. Localized Hyperthermia Induced by Microwave Diathermy in Osteoarthritis of the Knee: A Randomized Placebo-Controlled Double-Blind Clinical Trial. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2011, 19, 980–987. [Google Scholar] [CrossRef]
- Rabini, A.; Piazzini, D.B.; Tancredi, G.; Foti, C.; Milano, G.; Ronconi, G.; Specchia, A.; Ferrara, P.E.; Maggi, L.; Amabile, E.; et al. Deep Heating Therapy via Microwave Diathermy Relieves Pain and Improves Physical Function in Patients with Knee Osteoarthritis: A Double-Blind Randomized Clinical Trial. Eur. J. Phys. Rehabil. Med. 2012, 48, 549–559. [Google Scholar] [PubMed]
- Durmus, D.; Ulus, Y.; Alayli, G.; Akyol, Y.; Bilgici, A.; Yazicioglu, K.; Kuru, O. Does Microwave Diathermy Have an Effect on Clinical Parameters in Chronic Low Back Pain? A Randomized-Controlled Trial. J. Back Musculoskelet. Rehabil. 2014, 27, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.P.; Twomey, L.T. Acute Low Back Pain. Comparison of Two Conservative Treatment Approaches. Med. J. Aust. 1982, 1, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Akyol, Y.; Ulus, Y.; Durmus, D.; Canturk, F.; Bilgici, A.; Kuru, O.; Bek, Y. Effectiveness of Microwave Diathermy on Pain, Functional Capacity, Muscle Strength, Quality of Life, and Depression in Patients with Subacromial Impingement Syndrome: A Randomized Placebo-Controlled Clinical Study. Rheumatol. Int. 2012, 32, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Rabini, A.; Piazzini, D.B.; Bertolini, C.; Deriu, L.; Saccomanno, M.F.; Santagada, D.A.; Sgadari, A.; Bernabei, R.; Fabbriciani, C.; Marzetti, E.; et al. Effects of Local Microwave Diathermy on Shoulder Pain and Function in Patients with Rotator Cuff Tendinopathy in Comparison to Subacromial Corticosteroid Injections: A Single-Blind Randomized Trial. J. Orthop. Sports Phys. Ther. 2012, 42, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Giombini, A.; Di Cesare, A.; Safran, M.R.; Ciatti, R.; Maffulli, N. Short-Term Effectiveness of Hyperthermia for Supraspinatus Tendinopathy in Athletes: A Short-Term Randomized Controlled Study. Am. J. Sports Med. 2006, 34, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Frasca, G.; Maggi, L.; Padua, L.; Ferrara, P.E.; Granata, G.; Minciotti, I.; Marzetti, E.; Specchia, A.; Ronconi, G.; Rabini, A.; et al. Short-Term Effects of Local Microwave Hyperthermia on Pain and Function in Patients with Mild to Moderate Carpal Tunnel Syndrome: A Double Blind Randomized Sham-Controlled Trial. Clin. Rehabil. 2011, 25, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Giombini, A.; Di Cesare, A.; Casciello, G.; Sorrenti, D.; Dragoni, S.; Gabriele, P. Hyperthermia at 434 MHz in the Treatment of Overuse Sport Tendinopathies: A Randomised Controlled Clinical Trial. Int. J. Sports Med. 2002, 23, 207–211. [Google Scholar] [CrossRef]
- Cheng, L.; Chang, S.; Qian, L.; Wang, Y.; Yang, M. Extracorporeal Shock Wave Therapy for Isokinetic Muscle Strength around the Knee Joint in Athletes with Patellar Tendinopathy. J. Sports Med. Phys. Fit. 2019, 59, 822–827. [Google Scholar] [CrossRef]
- Andrade Ortega, J.A.; Cerón Fernández, E.; García Llorent, R.; Ribeiro González, M.; Delgado Martínez, A.D.; Ortega, J.A.A.; Fernandez, E.C.; Llorent, R.G.; Gonzalez, M.R.; Delgado, A.D. Microwave Diathermy for Treating Nonspecific Chronic Neck Pain: A Randomized Controlled Trial. Spine J. 2014, 14, 1712–1721. [Google Scholar] [CrossRef]
- Giombini, A.; Casciello, G.; Di Cesare, M.C.; Di Cesare, A.; Dragoni, S.; Sorrenti, D. A Controlled Study on the Effects of Hyperthermia at 434 MHz and Conventional Ultrasound upon Muscle Injuries in Sport. J. Sports Med. Phys. Fit. 2001, 41, 521–527. [Google Scholar]
- Georgoudis, G.; Felah, B.; Nikolaidis, P.; Damigos, D. The Effect of Myofascial Release and Microwave Diathermy Combined with Acupuncture versus Acupuncture Therapy in Tension-Type Headache Patients: A Pragmatic Randomized Controlled Trial [with Consumer Summary]. Physiother. Res. Int. 2018, 23, e1700. [Google Scholar] [CrossRef]
- Hammad, S.M.; Arsh, A.; Iqbal, M.; Khan, W.; Bilal; Shah, A. Comparing the Effectiveness of Kaltenborn Mobilization with Thermotherapy versus Kaltenborn Mobilization Alone in Patients with Frozen Shoulder [Adhesive Capsulitis]: A Randomized Control Trial. JPMA J. Pak. Med. Assoc. 2019, 69, 1421–1424. [Google Scholar] [CrossRef]
- Coccetta, C.A.; Sale, P.; Ferrara, P.E.; Specchia, A.; Maccauro, G.; Ferriero, G.; Ronconi, G. Effects of Capacitive and Resistive Electric Transfer Therapy in Patients with Knee Osteoarthritis: A Randomized Controlled Trial. Int. J. Rehabil. Res. 2019, 42, 106–111. [Google Scholar] [CrossRef]
- Kumaran, B.; Watson, T. Treatment Using 448kHz Capacitive Resistive Monopolar Radiofrequency Improves Pain and Function in Patients with Osteoarthritis of the Knee Joint: A Randomised Controlled Trial. Physiotherapy 2019, 105, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Alcidi, L.; Beneforti, E.; Maresca, M.; Santosuosso, U.; Zoppi, M. Low Power Radiofrequency Electromagnetic Radiation for the Treatment of Pain Due to Osteoarthritis of the Knee. Reumatismo 2007, 59, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zati, A.; Cavazzuti, L.; Colori, B.C.M.; Benedetti, M.G. Deep Heating Therapy via MF Radiowaves versus Superficial Heating Therapy in the Treatment of Nonspecific Chronic Low Back Pain: A Double Blind Randomized Trial. J. Back Musculoskelet. Rehabil. 2018, 31, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Maccagnano, G.; Gallone, M.F.; Covelli, I.; Tafurp, S.; Moretti, B. Short Term Efficacy of Capacitive-Resistive Diathermy Therapy in Patients with Low Back Pain: A Prospective Randomized Controlled Trial. J. Biol. Regul. Homeost. Agents 2017, 31, 509–515. [Google Scholar] [PubMed]
- Wachi, M.; Jiroumaru, T.; Satonaka, A.; Ikeya, M.; Oka, Y.; Fujikawa, T. Effect of Electromyographic Activity Using Capacitive and Resistive Electric Transfer on Non-Specific Chronic Low Back Pain: A Double-Blind Randomized Clinical Trial. Electromagn. Biol. Med. 2022, 41, 222–229. [Google Scholar] [CrossRef]
- Avendaño-Coy, J.; Aceituno-Gómez, J.; García-Durán, S.; Arroyo-Fernández, R.; Blázquez-Gamallo, R.; García-Madero, V.M.; Escribá-de-la-Fuente, S.M.; Fernández-Pérez, C. Capacitive Resistive Monopolar Radiofrequency at 448 KHz plus Exercising versus Exercising Alone for Subacromial Pain: A Sham-Controlled Randomized Clinical Trial. Clin. Rehabil. 2022, 36, 1450–1462. [Google Scholar] [CrossRef]
- Albornoz-Cabello, M.; Ibáñez-Vera, A.J.; Aguilar-Ferrándiz, M.E.; Espejo-Antúnez, L. Monopolar Dielectric Diathermy by Emission of Radiofrequency in Patellofemoral Pain. A Single-Blind-Randomized Clinical Trial. Electromagn. Biol. Med. 2020, 39, 282–289. [Google Scholar] [CrossRef]
- Visconti, L.; Forni, C.; Coser, R.; Trucco, M.; Magnano, E.; Capra, G. Comparison of the Effectiveness of Manual Massage, Long-Wave Diathermy, and Sham Long-Wave Diathermy for the Management of Delayed-Onset Muscle Soreness: A Randomized Controlled Trial. Arch. Physiother. 2020, 10, 1. [Google Scholar] [CrossRef]
- Nakamura, M.; Sato, S.; Kiyono, R.; Yahata, K.; Yoshida, R.; Kasahara, K.; Konrad, A. The Effect of Capacitive and Resistive Electric Transfer Intervention on Delayed-Onset Muscle Soreness Induced by Eccentric Exercise. Int. J. Environ. Res. Public. Health 2022, 19, 5723. [Google Scholar] [CrossRef]
- García-Marín, M.; Rodríguez-Almagro, D.; Castellote-Caballero, Y.; Achalandabaso-Ochoa, A.; Lomas-Vega, R.; Ibáñez-Vera, A.J. Efficacy of Non-Invasive Radiofrequency-Based Diathermy in the Postoperative Phase of Knee Arthroplasty: A Double-Blind Randomized Clinical Trial. J. Clin. Med. 2021, 10, 1611. [Google Scholar] [CrossRef]
- Clijsen, R.; Stoop, R.; Hohenauer, E.; Aerenhouts, D.; Clarys, P.; Deflorin, C.; Taeymans, J. Local Heat Applications as a Treatment of Physical and Functional Parameters in Acute and Chronic Musculoskeletal Disorders or Pain. Arch. Phys. Med. Rehabil. 2022, 103, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Malanga, G.A.; Yan, N.; Stark, J. Mechanisms and Efficacy of Heat and Cold Therapies for Musculoskeletal Injury. Postgrad. Med. 2015, 127, 57–65. [Google Scholar] [CrossRef] [PubMed]
- De Sousa-De Sousa, L.; Tebar Sanchez, C.; Maté-Muñoz, J.L.; Hernández-Lougedo, J.; Barba, M.; Lozano-Estevan, M.d.C.; Garnacho-Castaño, M.V.; García-Fernández, P. Application of Capacitive-Resistive Electric Transfer in Physiotherapeutic Clinical Practice and Sports. Int. J. Environ. Res. Public. Health 2021, 18, 12446. [Google Scholar] [CrossRef] [PubMed]
Database | Search Strategy |
---|---|
MEDLINE (Pubmed) |
|
PEDro | Tecar, method: clinical trial Radiofrequency, method: clinical trial Capacitive AND resistive, method: clinical trial Electric AND transfer, method: clinical trial Deep AND heating, method: clinical trial Diathermy, method: clinical trial Radiowaves, method: clinical trial Hyperthermia, method: clinical trial |
Cochrane Central Register of Controlled Trials | MeSH descriptor: [diathermy] explode all trees MeSH descriptor: [radio waves] explode all trees MeSH descriptor: [hyperthermia] explode all trees (“Tecar” OR “radiofrequency treatment” OR “(capacitive NEAR/6 resistive)” OR “electric transfer” OR “deep heating” OR “diathermy” OR “radiowaves” OR “hyperthermia”):ti,ab,kw |
EMBASE |
|
CINAHL | (MH “Diathermy+”) OR (MM “radio waves”) OR (MH “hyperthermia, induced+”) OR TI (“tecar” OR “radiofrequency treatment” OR “capacitive resistive” OR “capacitive and resistive” OR “electric transfer” OR “deep heating” OR “diathermy” OR “radiowaves” OR “hyperthermia”) OR AB(“Tecar” OR “radiofrequency treatment” OR “(capacitive N6 resistive)” OR “electric transfer” OR “deep heating” OR “diathermy” OR “radiowaves” OR “hyperthermia”) OR SU(“Tecar” OR “radiofrequency treatment” OR “(capacitive N6 resistive)” OR “electric transfer” OR “deep heating” OR “diathermy” OR “radiowaves” OR “hyperthermia”) AND ((MH “randomized controlled trials”) OR (MH “double-blind studies”) OR (MH “single-blind studies”) OR (MH “random assignment”) OR (MH “pretest-posttest design”) OR (MH “cluster sample”) OR TI(randomised OR randomized) OR AB(random*) OR TI(trial) OR ((MH “sample size”) AND AB(assigned OR allocated OR control)) OR (MH “placebos”) OR PT(“randomized controlled trial”) OR AB(control W5 group) OR (MH “crossover design”) OR (MH “comparative studies”) OR AB(cluster W3 RCT)) NOT (((MH “animals+”) OR (MH “animal studies”) OR TI(animal model*)) NOT (MH “human”)) |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD vs. Active exercises | ||||||
Bezalel 2010 [37] | ST | WOMAC pain subscale | 4.76 | 3.82 to 5.70 | Active exercises | ⨁⨁◯◯ Low |
Akyol 2010 [39] | IT | VAS | 0.30 | −1.66 to 2.26 | // | ⨁◯◯◯ Very low |
SWD vs. Ultrasound therapy | ||||||
Terzi 2017 [42] | ST | VAS | −0.47 | −0.90 to −0.04 | SWD | ⨁◯◯◯ Very low |
Jia 2022 [43] | IT | VAS | −0.11 | −0.47 to 0.25 | // | ⨁⨁◯◯ Low |
LT | VAS | 1.30 | 0.93 to 1.63 | Ultrasound therapy | ⨁⨁◯◯ Low | |
SWD vs. Other physical agent therapy | ||||||
Atamaz 2012 [30] | IT | VAS | −0.58 | −10.26 to 9.10 | // | ⨁◯◯◯ Very low |
LT | VAS | 5.12 | −5.71 to 15.95 | // | ||
SWD vs. Photobiomodulation | ||||||
Gomes 2020 [40] | PT | NPRS | 0.20 | −0.35 to 0.75 | // | ⨁◯◯◯ Very low |
SWD vs. Ice | ||||||
Clarke 1974 [36] | PT | Likert scale | 2.70 | 0.06 to 5.34 | Ice | ⨁◯◯◯ Very low |
SWD vs. Phonophoresis | ||||||
Boyaci 2013 [44] | PT | VAS | 0.48 | −0.43 to 1.39 | // | ⨁◯◯◯ Very low |
SWD vs. Routine ambulatory care | ||||||
Cantarini 2006 [45] | PT | VAS | −25.14 | −39.19 to −11.09 | SWD | ⨁◯◯◯ Very low |
IT | VAS | −22.04 | −40.24 to −3.84 | SWD | ||
SWD + Other physical agents therapy vs. Intra-articular injections | ||||||
Atamaz 2006 [50] | PT | VAS | −9.95 | −18.10 to −1.80 | SWD | ⨁◯◯◯ Very low |
IT | VAS | −5.05 | −11.13 to 1.03 | // | ||
LT | VAS | 6.65 | −2.16 to 15.46 | // | ||
SWD continuous mode vs. SWD pulsed mode | ||||||
Teslim 2013 [48] | PT | NPRS | −0.91 | −1.68 to −0.14 | SWD continuous mode | ⨁⨁◯◯ Low |
MWD vs. Sham MWD | ||||||
Giombini 2010 [72] | PT | WOMAC pain subscale | −7.40 | −9.35 to −5.45 | MWD | ⨁⨁◯◯ Low |
IT | WOMAC pain subscale | −8.00 | −10.28 to −5.72 | MWD | ||
LPRER vs. TENS | ||||||
Alcidi 2007 [88] | PT | VAS | −3.00 | −19.79 to 13.79 | // | ⨁◯◯◯ Very low |
ST | VAS | 1.25 | −15.17 to 17.66 | // | ||
CRET vs. Sham CRET | ||||||
Kumaran 2019 [87] | PT | VAS | −1.50 | −2.32 to −0.67 | CRET | ⨁◯◯◯ Very low |
ST | VAS | −1.68 | −3.13 to −0.23 | CRET | ||
IT | VAS | −1.04 | −2.90 to 0.82 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD vs. Sham SWD | ||||||
Rattanachaiyanont 2008 [28] | PT | WOMAC physical function subscale | −0.11 | −0.57 to 0.80 | // | ⨁⨁◯◯ Low |
SWD vs. active exercises | ||||||
Bezalel 2010 [37] | ST | WOMAC physical function subscale | 12.35 | 10.06, 14.46 | Active exercises | ⨁⨁◯◯ Low |
Akyol 2010 [39] | IT | WOMAC physical function subscale | −0.20 | −10.17 to 9.77 | MWD | ⨁◯◯◯ Very low |
SWD vs. Ultrasound therapy | ||||||
Terzi 2017 [42] | ST | Lequesne Index | 0.24 | −0.24 to 0.72 | // | ⨁◯◯◯ Very low |
Jia 2022 [43] | IT | WOMAC total score | 7.57 | 4.54 to 10.60 | Ultrasound therapy | ⨁⨁◯◯ Low |
LT | WOMAC total score | 6.96 | 3.85 to 10.07 | Ultrasound therapy | ⨁⨁◯◯ Low | |
SWD vs. Other physical agent therapy | ||||||
Atamaz 2012 [30] | IT | WOMAC physical function subscale | −3.85 | −10.01 to 2.31 | // | ⨁◯◯◯ Very low |
LT | WOMAC physical function subscale | −1.76 | −7.66 to 4.14 | // | ||
SWD vs. Photobiomodulation | ||||||
Gomes 2020 [40] | PT | WOMAC physical function subscale | −2.35 | −3.71 to −0.99 | SWD | ⨁◯◯◯ Very low |
SWD vs. Phonophoresis | ||||||
Boyaci 2013 [44] | PT | WOMAC physical function subscale | −0.81 | −5.17 to 3.55 | // | ⨁◯◯◯ Very low |
SWD vs. Routine ambulatory care | ||||||
Cantarini 2006 [45] | PT | Lequesne Index | −3.34 | −6.07 to −0.61 | SWD | ⨁◯◯◯ Very low |
IT | Lequesne Index | −1.47 | −4.08 to 1.14 | // | ||
SWD + Other physical agents therapy vs. Intra-articular injections | ||||||
Atamaz 2006 [50] | PT | WOMAC physical function subscale | −0.05 | −5.86 to 5.761.80 | // | ⨁◯◯◯ Very low |
IT | WOMAC physical function subscale | −0.05 | −5.90 to 5.80 | // | ||
LT | WOMAC physical function subscale | −0.05 | −5.56 to 5.46 | // | ||
SWD continuous mode vs. SWD pulsed mode | ||||||
Teslim 2013 [48] | PT | Active knee flexion ROM | 12.65 | 5.88 to 19.42 | SWD continuous mode | ⨁⨁◯◯ Low |
MWD vs. Sham MWD | ||||||
Giombini 2010 [72] | PT | WOMAC physical function subscale | −30.90 | −37.77 to −24.03 | MWD | ⨁⨁◯◯ Low |
IT | WOMAC physical function subscale | −33.30 | −40.77 to −25.83 | MWD | ||
CRET vs. Sham CRET | ||||||
Kumaran 2019 [87] | PT | WOMAC total score | −0.77 | −1.51 to −0.02 | CRET | ⨁◯◯◯ Very low |
ST | WOMAC total score | −12.33 | −22.92 to −1.74 | CRET | ||
IT | WOMAC total score | −4.27 | −17.58 to 9.04 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
SWD vs. Sham SWD | |||||
Işik 2020 [29] | IT | SF-36—General Health subscale | 2.75 | −4.26 to 9.76 | // |
Fukuda 2011 [32] | LT | Knee injury and osteoarthritis outcome score-QoL subscale | 3.37 | −5.24 to 11.98 | // |
SWD vs. Active exercises | |||||
Akyol 2010 [39] | PT | SF-36—General Health subscale | 4.25 | −4.49 to 12.99 | // |
IT | SF-36—General Health subscale | 0.50 | −9.36 to 10.36 | // | |
SWD vs. Routine ambulatory care | |||||
Cantarini 2006 [45] | PT | Arthritis impact measurement scale | −0.16 | −0.45 to 0.13 | // |
IT | Arthritis impact measurement scale | −0.33 | −0.65 to −0.01 | SWD | |
SWD + Other physical agents therapy vs. Intra-articular injections | |||||
Atamaz 2006 [50] | PT | SF-36—Physical functioning subscale | 10.50 | 0.33 to 20.67 | SWD |
IT | SF-36—Physical functioning subscale | −2.00 | −11.82 to 7.82 | // | |
LT | SF-36—Physical functioning subscale | 1.90 | −7.12 to 10.92 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | Grade |
---|---|---|---|---|---|---|
MWD + active exercises vs. active exercises | ||||||
Durmus 2014 [74] | PT | VAS | −0.34 | −1.32, 0.64 | // | ⨁◯◯◯ Very low |
ST | VAS | −0.21 | −0.21, 0.68 | // | ||
SWD + traction + core stabilization vs. Maitland mobilization + hot packs + core stabilization | ||||||
Igatpurkiar 2013 [51] | PT | VAS | 0.60 | 0.23, 0.97 | Maitland mobilization + hot packs + core stabilization | ⨁◯◯◯ Very low |
SWD vs. Graeco-Arabic massage | ||||||
Ansari 2022 [57] | PT | VAS | 2.50 | 1.50, 3.50 | Graeco-Arabic massage | ⨁⨁◯◯ Low |
CRET deep heating vs. CRET superficial heating | ||||||
Zati 2018 [89] | PT | NPRS | −0.90 | −1.57, −0.23 | CRET deep heating | ⨁◯◯◯ Very low |
ST | NPRS | −0.70 | −1.85, 0.45 | // | ||
CRET vs. Laser | ||||||
Notarnicola 2017 [90] | PT | VAS | 0.10 | −0.97, 1.17 | // | ⨁◯◯◯ Very low |
ST | VAS | −1.90 | −2.85, −0.95 | CRET | ||
CRET vs. Sham CRET | ||||||
Wachi 2022 [91] | PT | VAS | −3.30 | −4.12, −2.48 | CRET | ⨁⨁◯◯ Low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | Grade |
---|---|---|---|---|---|---|
SWD + Ultrasound + Lumbar strengthening exercises vs. Dynamic Muscular Stabilization Techniques | ||||||
Kumar 2009 [53] | PT | Stair climbing [number/min] | 5.74 | 3.07, 8.41 | Dynamic Muscular Stabilization Techniques | ⨁◯◯◯ Very low |
Kumar 2009 [54] | PT | BPC [mmHg] | 11.35 | 10.15, 12.55 | Dynamic Muscular Stabilization Techniques | |
PT | APC [mmHg] | 6.57 | 5.96, 7.18 | Dynamic Muscular Stabilization Techniques | ||
SWD vs. Sham SWD | ||||||
Gibson 1985 [56] | PT | Lumbar spine flexion + | 0.80 | 0.09, 1.51 | SWD | ⨁◯◯◯ Very low |
IT | Lumbar spine flexion + | 0.60 | −0.26, 1.46 | // | ||
SWD vs. Osteopathy | ||||||
Gibson 1985 [56] | PT | Lumbar spine flexion + | 0.20 | −0.46, 0.86 | // | ⨁◯◯◯ Very low |
IT | Lumbar spine flexion + | 0.30 | −0.50, 1.10 | // | ||
SWD + traction + core stabilization vs. Maitland mobilization + hot packs + core stabilization | ||||||
Igatpurkiar 2013 [51] | PT | ODI | −5.70 | −10.94, −0.46 | SWD + traction + core stabilization | ⨁◯◯◯ Very low |
SWD vs. Graeco-Arabic massage | ||||||
Ansari 2022 [57] | PT | ODI | 3.80 | 0.73, 6.87 | Graeco-Arabic massage | ⨁⨁◯◯ Low |
MWD + active exercises vs. Active exercises | ||||||
Durmus 2014 [74] | PT | ODI | −0.47 * | −3.22, 2.28 | // | ⨁◯◯◯ Very low |
ST | ODI | −1.52 * | −4.35, 1.31 | // | ||
CRET (deep heating vs. superficial heating) | ||||||
Zati 2018 [89] | PT | ODI | −0.50 | −8.18, 7.18 | // | ⨁◯◯◯ Very low |
ST | ODI | −3.80 | −11.05, 3.45 | // | ||
CRET vs. Laser therapy | ||||||
Notarnicola 2017 [90] | PT | ODI | −6.40 | −13.95, 1.15 | // | ⨁◯◯◯ Very low |
ST | ODI | −17.40 | −26.20, −8.60 | CRET |
Author Year | Assessment Time | Outcome Measure | MD value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
MWD + active exercises vs. Active exercises | |||||
Durmus 2014 [74] | PT | SF-36 general health subscale * | 0.82 | −7.62, 9.26 | // |
ST | SF-36 general health subscale * | 0.68 | −6.57, 7.93 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD (+ conservative treatment program) vs. Sham SWD (+ conservative treatment program) | ||||||
Yilmaz Kaysin 2018 [58] | PT | VAS | −0.98 | −2.36 to 0.40 | // | ⨁⨁◯◯ Low |
ST | VAS | −1.64 | −2.98 to −0.31 | SWD | ||
IT | VAS | −2.10 | −3.48 to −0.73 | SWD | ||
SWD (+ Ultrasound + active exercises) vs. Iontophoresis with acetic acid (+ Ultrasound + active exercises) | ||||||
Jiménez-Garcia 2008 [59] | PT | VAS | −0.62 | −2.01 to 0.77 | // | ⨁◯◯◯ Very low |
MWD vs. Subacromial corticosteroid injections | ||||||
Rabini 2012 [77] | PT | VAS | 5.50 | −2.13 to 13.13 | // | ⨁◯◯◯ Very low |
IT | VAS | 8.60 | −1.41 to 18.61 | // | ||
LT | VAS | 9.50 | 1.70 to 17.30 | Subacromial corticosteroid injections | ||
MWD vs. active exercises | ||||||
Giombini 2006 [78] | PT | VAS | −2.90 | −3.35 to −2.45 | MWD | ⨁◯◯◯ Very low |
IT | VAS | −3.70 | −4.32 to −3.08 | MWD | ||
MWD vs. Ultrasound therapy | ||||||
Giombini 2006 [78] | PT | VAS | −3.40 | −3.99 to −2.81 | MWD | ⨁◯◯◯ Very low |
IT | VAS | −2.95 | −3.54 to −2.36 | MWD | ||
MWD (+ hot packs and active exercises) vs. Sham MWD (+ hot packs and active exercises) | ||||||
Akyol 2012 [76] | PT | VAS during activity | −0.60 | −2.34 to 1.14 | // | ⨁◯◯◯ Very low |
ST | VAS during activity | −1.00 | −2.68 to 0.68 | // | ||
CRET (+ exercises) vs. Sham CRET (+ exercises) | ||||||
Avendaño-Coy 2022 [92] | PT | VAS at rest | 0.15 | −1.37, 1.67 | // | ⨁⨁◯◯ Low |
ST | VAS at rest | −0.05 | −1.80, 1.70 | // | ||
IT | VAS at rest | 0.20 | −1.75, 2.15 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD (+ conservative treatment program) vs. Sham SWD (+ conservative treatment program) | ||||||
Yilmaz Kaysin 2018 [58] | PT | Constant-Murley total score | 7.48 | −0.56 to 15.52 | // | ⨁⨁◯◯ Low |
ST | Constant-Murley total score | 10.48 | 2.65 to 18.32 | SWD | ||
IT | Constant-Murley total score | 14.15 | 6.26 to 22.04 | SWD | ||
SWD (+ Ultrasound + active exercises) vs. Iontophoresis with acetic acid (+ Ultrasound + active exercises) | ||||||
Jiménez-Garcia 2008 [59] | PT | Constant-Murley total score | −3.24 | −13.27 to 6.79 | // | ⨁◯◯◯ Very low |
MWD vs. Subacromial corticosteroid injections | ||||||
Rabini 2012 [77] | PT | QuickDASH | −3.90 | −10.07 to 2.27 | // | ⨁◯◯◯ Very low |
IT | QuickDASH | 6.10 | −0.22 to 12.42 | // | ||
LT | QuickDASH | 2.00 | −6.34 to 10.34 | // | ||
MWD vs. active exercises | ||||||
Giombini 2006 [78] | PT | Constant-Murley total score | 16.90 | 13.54 to 20.26 | MWD | ⨁◯◯◯ Very low |
IT | Constant-Murley total score | 18.73 | 14.28 to 23.18 | MWD | ||
MWD vs. Ultrasound therapy | ||||||
Giombini 2006 [78] | PT | Constant-Murley total score | 18.10 | 15.24 to 20.96 | MWD | ⨁◯◯◯ Very low |
IT | Constant-Murley total score | 20.25 | 16.43 to 24.07 | MWD | ||
MWD (+ hot packs and active exercises) vs. Sham MWD (+ hot packs and active exercises) | ||||||
Akyol 2012 [76] | PT | Shoulder Pain and Disability Index—Disability subscale | −2.35 | −3.50 to −1.20 | Sham MWD | ⨁◯◯◯ Very low |
ST | Shoulder Pain and Disability Index—Disability subscale | −4.05 | −5.23 to −2.87 | Sham MWD | ||
CRET (+ exercises) vs. Sham CRET (+ exercises) | ||||||
Avendaño-Coy 2022 [92] | PT | QuickDASH | 3.35 | −8.98, 15.68 | // | ⨁⨁◯◯ Low |
ST | QuickDASH | −1.10 | −13.88, 11.68 | // | ||
IT | QuickDASH | −1.40 | −15.74, 12.94 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
MWD (+ hot packs and active exercises) vs. Sham MWD (+ hot packs and active exercises) | |||||
Akyol 2012 [76] | PT | SF-36 general health subscale | −0.01 | −0.09 to 0.07 | // |
ST | SF-36 general health subscale | −0.05 | −0.15 to 0.05 | // | |
CRET (+ exercises) vs. Sham CRET (+ exercises) | |||||
Avendaño-Coy 2022 [92] | PT | European Quality of Life—Five Dimensions | 0.03 | −0.07, 0.13 | // |
ST | European Quality of Life—Five Dimensions | 0.02 | −0.11, 0.16 | // | |
IT | European Quality of Life—Five Dimensions | −0.02 | −0.17, 0.13 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD + Hot packs (+ pendulum, active stretching and exercises) vs. Cyriax treatment (+ pendulum and active stretching and exercises) | ||||||
Guler-Uysal 2008 [60] | PT | VAS (during motion) | 12.10 | 0.03 to 24.17 | Cyriax treatment | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD + Hot packs (+ pendulum, active stretching and exercises) vs. Cyriax treatment (+ pendulum and active stretching and exercises) | ||||||
Guler-Uysal 2008 [60] | PT | VAS during motion | −21.60 | −33.93 to −9.27 | Cyriax treatment | ⨁◯◯◯ Very low |
SWD (+ stretching exercises) vs. Hot packs (+ stretching exercises) | ||||||
Leung 2008 [61] | PT | American Shoulder and Elbow Surgeons assessment form | 11.30 | −1.50 to 24.10 | // | ⨁◯◯◯ Very low |
ST | American Shoulder and Elbow Surgeons assessment form | 13.50 | −2.16 to 29.16 | // | ||
SWD + Stretching exercises vs. Stretching exercises | ||||||
Leung 2008 [61] | PT | American Shoulder and Elbow Surgeons assessment form | 21.70 | 9.47 to 33.93 | SWD + Stretching exercises | ⨁◯◯◯ Very low |
ST | American Shoulder and Elbow Surgeons assessment form | 17.50 | 1.76 to 33.24 | SWD + Stretching exercises | ||
Diathermy [MWD or SWD] + Kaltenborn mobilization vs. Kaltenborn mobilization | ||||||
Hammad 2019 [85] | ST | Shoulder pain and disability index | −51.80 | −54.94 to −48.66 | Diathermy | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
MWD vs. Ultrasound therapy | ||||||
Giombini 2002 [80] | PT | VAS manual pressure pain | −2.10 | −3.09 to −1.11 | MWD | ⨁◯◯◯ Very low |
Acupuncture + Ultrasound therapy + MWD vs. Extracorporeal shock wave therapy | ||||||
Cheng 2018 [81] | PT | VAS | 3.70 | 3.12 to 4.28 | Extracorporeal shock wave therapy | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
Acupuncture + Ultrasound therapy + MWD vs. Extracorporeal shock wave therapy | ||||||
Cheng 2018 [81] | PT | Extension muscle endurance | −0.06 | −0.14 to 0.02 | // | ⨁◯◯◯ Very low |
Author Year | ASSESSMENT TIME | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD + Education + Active exercises vs. Education + Active exercises | ||||||
Dziedzic 2005 [64] | PT | Northwick Park Neck Pain Questionnaire | 3.30 | −0.94 to 7.54 | // | ⨁◯◯◯ Very low |
LT | Northwick Park Neck Pain Questionnaire | 2.70 | −2.06 to 7.46 | // | ||
SWD (+ Education + Active exercises) vs. Manual therapy (+ Education + Active exercises) | ||||||
Dziedzic 2005 [64] | PT | Northwick Park Neck Pain Questionnaire | −0.70 | −4.67 to 3.27 | // | ⨁◯◯◯ Very low |
LT | Northwick Park Neck Pain Questionnaire | −0.90 | −5.78 to 3.98 | // | ||
MWD [continuous + pulsed] (+ active exercises + TENS) vs. Sham MWD (+ active exercises + TENS) | ||||||
Ortega 2013 [82] | PT | VAS | 1.54 | −6.24 to 9.32 | // | ⨁⨁◯◯ Low |
LT | VAS | −1.41 | −9.42 to 6.60 | // | ||
MWD continuous (+ active exercises + TENS) vs. MWD pulsed (+ active exercises + TENS) | ||||||
Ortega 2013 [82] | PT | VAS | −3.40 | −11.80 to 5.00 | // | ⨁⨁◯◯ Low |
LT | VAS | −1.60 | −9.41 to 6.21 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
MWD [continuous + pulsed] (+ active exercises + TENS) vs. Sham MWD (+ active exercises + TENS) | ||||||
Ortega 2013 [82] | PT | Neck disability Index | −1.55 | −6.71 to 3.61 | // | ⨁⨁◯◯ Low |
LT | Neck disability Index | −2.06 | −7.18 to 3.06 | // | ||
MWD continuous (+ active exercises + TENS) vs. MWD pulsed (+ active exercises + TENS) | ||||||
Ortega 2013 [82] | PT | Neck disability Index | −0.10 | −5.91 to 5.71 | // | ⨁⨁◯◯ Low |
LT | Neck disability Index | 0.90 | −4.74 to 6.54 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
SWD + Education + Active exercises vs. Education + Active exercises | |||||
Dziedzic 2005 [64] | PT | SF-12 Mental component | −1.10 | −3.64 to 1.44 | // |
LT | SF-12 Mental component | 0.50 | −2.02 to 3.02 | // | |
SWD (+ Education + Active exercises) vs. Manual therapy (+ Education + Active exercises) | |||||
Dziedzic 2005 [64] | PT | SF-12 Mental component | −0.20 | −2.72 to 2.32 | // |
LT | SF-12 Mental component | 0.60 | −1.88 to 3.08 | // | |
MWD [continuous + pulsed] (+ active exercises + TENS) vs. Sham MWD (+ active exercises + TENS) | |||||
Ortega 2013 [82] | PT | SF-36 total score | 1.64 | −3.72 to 7.00 | // |
LT | SF-36 total score | 1.35 | −3.99 to 6.69 | // | |
MWD continuous (+ active exercises + TENS) vs. MWD pulsed (+ active exercises + TENS) | |||||
Ortega 2013 [82] | PT | SF-36 total score | −4.00 | −10.08 to 2.08 | // |
LT | SF-36 total score | −3.90 | −9.92 to 2.12 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
Monopolar dielectric radiofrequency + Active exercises vs. Active exercises | ||||||
Albornoz-Cabello 2020 [93] | PT | VAS worst pain (last 24 h) | −53.00 | −59.22 to −46.78 | Monopolar dielectric radiofrequency | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
Monopolar dielectric radiofrequency + Active exercises vs. Active exercises | ||||||
Albornoz-Cabello 2020 [93] | PT | Lower Extremity Functionality Scale | 22.00 | 15.45 to 28.55 | Monopolar dielectric radiofrequency | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD vs. Ultrasound therapy | ||||||
Talaat 1986 [67] | PT | Likert [0–3] | 0.23 | −0.15 to 0.61 | // | ⨁◯◯◯ Very low |
SWD vs. Tablet of methocarbamol + acetyl salicylic acid (Robaxisal) | ||||||
Talaat 1986 [67] | PT | Likert [0–3] | −1.12 | −1.49 to −0.75 | SWD | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
CRET vs. Sham CRET | ||||||
Visconti 2020 [94] | PT | NPRS | 0.20 | −0.94 to 1.34 | // | ⨁⨁◯◯ Low |
CRET vs. Massage | ||||||
Visconti 2020 [94] | PT | NPRS | 0.00 | −1.21 to 1.21 | // | ⨁⨁◯◯ Low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
CRET vs. No intervention | ||||||
Nakamura 2022 [95] | PT | Maximum voluntary concentric contraction | 49.70 | 20.25, 79.15 | // | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD vs. Sham SWD | ||||||
Badur 2020 [69] | PT | VAS | 0.07 | −1.30 to 1.44 | // | ⨁⨁◯◯ Low |
ST | VAS | −0.36 | −1.66 to 0.94 | // | ||
IT | VAS | −0.37 | −1.59 to 0.85 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD vs. Sham SWD | ||||||
Badur 2020 [69] | PT | Quick-DASH | 0.69 | −9.69 to 11.07 | // | ⨁⨁◯◯ Low |
ST | Quick-DASH | 3.70 | −5.05 to 12.45 | // | ||
IT | Quick-DASH | −4.71 | −14.13 to 4.71 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
SWD vs. Sham SWD | |||||
Badur 2020 [69] | PT | SF-36 | 0.98 | −2.72 to 4.68 | // |
ST | SF-36 | 1.04 | −2.36 to 4.44 | // | |
IT | SF-36 | 1.03 | −2.56 to 4.62 | // |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD + (transverse friction massage + stretching + strengthening + education) vs. Sham SWD + (transverse friction massage + stretching + strengthening + education) | ||||||
Babaei-Ghazani 2019 [70] | PT | VAS | −26.30 | −32.60 to −20.00 | SWD | ⨁⨁◯◯ Low |
IT | VAS | −21.20 | −26.11 to −16.29 | SWD |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
SWD + (transverse friction massage + stretching + strengthening + education) vs. Sham SWD + (transverse friction massage + stretching + strengthening + education) | ||||||
Babaei-Ghazani 2019 [70] | PT | Quick-DASH | −21.20 | −28.52 to −13.88 | SWD | ⨁⨁◯◯ Low |
IT | Quick-DASH | −17.20 | −23.39 to −11.01 | SWD |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
MWD vs. Ultrasound therapy | ||||||
Giombini 2001 [83] | PT | VAS pain pressure and active resisted contraction of the muscle involved | −2.20 | −2.90 to −1.50 | MWD | ⨁◯◯◯ Very low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
CRET + usual physiotherapy vs. Usual physiotherapy | ||||||
García-Marín 2021 [96] | PT | VAS | −1.21 | −2.93 to 0.51 | // | ⨁⨁◯◯ Low |
CRET + usual physiotherapy vs. Sham CRET + usual physiotherapy | ||||||
García-Marín 2021 [96] | PT | VAS | −1.11 | −2.46 to 0.24 | // | ⨁⨁◯◯ Low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of | GRADE |
---|---|---|---|---|---|---|
CRET + usual physiotherapy vs. Usual physiotherapy | ||||||
García-Marín 2021 [96] | PT | WOMAC total score | −0.04 | −11.95 to 11.87 | // | ⨁⨁◯◯ Low |
CRET + usual physiotherapy vs. Sham CRET + usual physiotherapy | ||||||
García-Marín 2021 [96] | PT | WOMAC total score | −1.16 | −14.07 to 11.75 | // | ⨁⨁◯◯ Low |
Author Year | Assessment Time | Outcome Measure | MD Value | 95% CI | Significantly in Favour of |
---|---|---|---|---|---|
CRET + usual physiotherapy vs. Usual physiotherapy | |||||
García-Marín 2021 [96] | PT | SF-12 mental component | −4.32 | −9.88 to 1.24 | // |
CRET + usual physiotherapy vs. Sham CRET + usual physiotherapy | |||||
García-Marín 2021 [96] | PT | SF-12 mental component | 4.92 | −1.42 to 11.26 | // |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollet, J.; Ranica, G.; Pedersini, P.; Lazzarini, S.G.; Pancera, S.; Buraschi, R. The Efficacy of Electromagnetic Diathermy for the Treatment of Musculoskeletal Disorders: A Systematic Review with Meta-Analysis. J. Clin. Med. 2023, 12, 3956. https://doi.org/10.3390/jcm12123956
Pollet J, Ranica G, Pedersini P, Lazzarini SG, Pancera S, Buraschi R. The Efficacy of Electromagnetic Diathermy for the Treatment of Musculoskeletal Disorders: A Systematic Review with Meta-Analysis. Journal of Clinical Medicine. 2023; 12(12):3956. https://doi.org/10.3390/jcm12123956
Chicago/Turabian StylePollet, Joel, Giorgia Ranica, Paolo Pedersini, Stefano G. Lazzarini, Simone Pancera, and Riccardo Buraschi. 2023. "The Efficacy of Electromagnetic Diathermy for the Treatment of Musculoskeletal Disorders: A Systematic Review with Meta-Analysis" Journal of Clinical Medicine 12, no. 12: 3956. https://doi.org/10.3390/jcm12123956
APA StylePollet, J., Ranica, G., Pedersini, P., Lazzarini, S. G., Pancera, S., & Buraschi, R. (2023). The Efficacy of Electromagnetic Diathermy for the Treatment of Musculoskeletal Disorders: A Systematic Review with Meta-Analysis. Journal of Clinical Medicine, 12(12), 3956. https://doi.org/10.3390/jcm12123956