PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Inclusion Criteria
- Laboratory-confirmed SARS-CoV-2 infection
- Diagnosis of ARDS according to Berlin definition [16]
- Deep sedation, paralysis, and controlled mechanical ventilation
2.3. Exclusion Criteria
- Age < 18 years
- Contraindications to recruitment maneuver due to one of the following conditions: hemodynamic instability (defined as mean artery pressure < 60 mmHg with norepinephrine > 0.3 mg/kg/min), emphysema with subpleural pulmonary bullae, pneumomediastinum, bronchopleural fistulae
- Contraindications to mobilization (i.e., unstable spinal injury, intracranial hypertension)
- Pregnancy
2.4. Respiratory Monitoring
2.5. Study Protocol
- Vital signs: heart rate; blood pressure; central venous pressure; peripheral oxygen saturation.
- Partitioned respiratory mechanics: tidal volume; respiratory rate; mean airway pressure; total positive end-expiratory pressure; plateau pressure; driving pressure; esophageal pressure at end-inspiration and at end-expiration; transpulmonary pressure at end-inspiration and at end-expiration; driving transpulmonary pressure; respiratory system, chest wall, and lung compliance.
- Venous and arterial blood gas analysis: pH; SaO2; SvO2; PaO2:FiO2; oxygenation index; PaCO2; ∆PvCO2-PaCO2; venous admixture; alveolar dead space; ventilatory ratio; lactates.
- Electrical Impedance Tomography: EIT data were acquired and stored throughout the study; end-expiratory lung impedance (EELI); change in end-expiratory lung volume (EELV) based on EELI (see below); percentage of ventilation distribution in the ventral and dorsal regions; regional respiratory system compliance (ventral and dorsal); global inhomogeneity index [22,23].
2.6. Sample Size Calculation
2.7. Statistical Analyses
3. Results
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef]
- Tonetti, T.; Vasques, F.; Rapetti, F.; Maiolo, G.; Collino, F.; Romitti, F.; Camporota, L.; Cressoni, M.; Cadringher, P.; Quintel, M.; et al. Driving Pressure and Mechanical Power: New Targets for VILI Prevention. Ann. Transl. Med. 2017, 5, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-Related Causes of Lung Injury: The Mechanical Power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef]
- Langer, T.; Brioni, M.; Guzzardella, A.; Carlesso, E.; Cabrini, L.; Castelli, G.; Dalla Corte, F.; De Robertis, E.; Favarato, M.; Forastieri, A.; et al. Prone Position in Intubated, Mechanically Ventilated Patients with COVID-19: A Multi-Centric Study of More than 1000 Patients. Crit. Care 2021, 25, 128. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.-C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Dellamonica, J.; Lerolle, N.; Sargentini, C.; Hubert, S.; Beduneau, G.; Di Marco, F.; Mercat, A.; Diehl, J.L.; Richard, J.C.M.; Bernardin, G.; et al. Effect of Different Seated Positions on Lung Volume and Oxygenation in Acute Respiratory Distress Syndrome. Intensive Care Med. 2013, 39, 1121–1127. [Google Scholar] [CrossRef]
- Mezidi, M.; Guérin, C. Effect of Body Position and Inclination in Supine and Prone Position on Respiratory Mechanics in Acute Respiratory Distress Syndrome. Intensive Care Med. 2019, 45, 292–294. [Google Scholar] [CrossRef]
- Richard, J.-C.M.; Maggiore, S.M.; Mancebo, J.; Lemaire, F.; Jonson, B.; Brochard, L. Effects of Vertical Positioning on Gas Exchange and Lung Volumes in Acute Respiratory Distress Syndrome. Intensive Care Med. 2006, 32, 1623–1626. [Google Scholar] [CrossRef]
- Marrazzo, F.; Spina, S.; Forlini, C.; Guarnieri, M.; Giudici, R.; Bassi, G.; Bastia, L.; Bottiroli, M.; Fumagalli, R.; Langer, T. Effects of Trunk Inclination on Respiratory Mechanics in Patients with COVID-19–Associated Acute Respiratory Distress Syndrome: Let’s Always Report the Angle! Am. J. Respir. Crit. Care Med. 2022, 205, 582–584. [Google Scholar] [CrossRef]
- Selickman, J.; Crooke, P.S.; Tawfik, P.; Dries, D.J.; Gattinoni, L.; Marini, J.J. Paradoxical Positioning: Does “Head Up” Always Improve Mechanics and Lung Protection? Crit. Care Med. 2022, 50, 1599–1606. [Google Scholar] [CrossRef]
- Hellyer, T.P.; Ewan, V.; Wilson, P.; Simpson, A.J. The Intensive Care Society Recommended Bundle of Interventions for the Prevention of Ventilator-Associated Pneumonia. J. Intensive Care Soc. 2016, 17, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.L.V.; Borges, J.B.; Melo, A.; Suarez-Sipmann, F.; Toufen, C.; Bohm, S.H.; Amato, M.B.P. Bedside Estimation of Recruitable Alveolar Collapse and Hyperdistension by Electrical Impedance Tomography. Intensive Care Med. 2009, 35, 1132–1137. [Google Scholar] [CrossRef]
- Van der Zee, P.; Somhorst, P.; Endeman, H.; Gommers, D. Electrical Impedance Tomography for Positive End-Expiratory Pressure Titration in COVID-19–Related Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 202, 280–284. [Google Scholar] [CrossRef]
- The ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Spinelli, E.; Mauri, T.; Fogagnolo, A.; Scaramuzzo, G.; Rundo, A.; Grieco, D.L.; Grasselli, G.; Volta, C.A.; Spadaro, S. Electrical Impedance Tomography in Perioperative Medicine: Careful Respiratory Monitoring for Tailored Interventions. BMC Anesthesiol. 2019, 19, 140. [Google Scholar] [CrossRef] [Green Version]
- Adler, A.; Amato, M.B.; Arnold, J.H.; Bayford, R.; Bodenstein, M.; Böhm, S.H.; Brown, B.H.; Frerichs, I.; Stenqvist, O.; Weiler, N.; et al. Whither Lung EIT: Where Are We, Where Do We Want to Go and What Do We Need to Get There? Physiol. Meas. 2012, 33, 679–694. [Google Scholar] [CrossRef] [Green Version]
- Baydur, A.; Behrakis, P.K.; Zin, W.A.; Jaeger, M.; Milic-Emili, J. A Simple Method for Assessing the Validity of the Esophageal Balloon Technique. Am. Rev. Respir. Dis. 1982, 126, 788–791. [Google Scholar] [CrossRef]
- Costa, E.L.V.; Lima, R.G.; Amato, M.B.P. Electrical Impedance Tomography. Curr. Opin. Crit. Care 2009, 15, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Gibot, S.; Conrad, M.; Courte, G.; Cravoisy, A. Positive End-Expiratory Pressure Setting in COVID-19-Related Acute Respiratory Distress Syndrome: Comparison Between Electrical Impedance Tomography, PEEP/FiO2 Tables, and Transpulmonary Pressure. Front. Med. 2021, 8, 720920. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Möller, K.; Steinmann, D.; Frerichs, I.; Guttmann, J. Evaluation of an Electrical Impedance Tomography-Based Global Inhomogeneity Index for Pulmonary Ventilation Distribution. Intensive Care Med. 2009, 35, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Pulletz, S.; Frerichs, I.; Müller-Lisse, U.; Möller, K. The EIT-Based Global Inhomogeneity Index Is Highly Correlated with Regional Lung Opening in Patients with Acute Respiratory Distress Syndrome. BMC Res. Notes 2014, 7, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Piraino, T.; Lima, C.A.S.; Kavanagh, B.P.; Amato, M.B.P.; Brochard, L. Regional Ventilation Displayed by Electrical Impedance Tomography as an Incentive to Decrease Positive End-Expiratory Pressure. Am. J. Respir. Crit. Care Med. 2019, 200, 933–937. [Google Scholar] [CrossRef]
- Hinz, J.; Hahn, G.; Neumann, P.; Sydow, M.; Mohrenweiser, P.; Hellige, G.; Burchardi, H. End-Expiratory Lung Impedance Change Enables Bedside Monitoring of End-Expiratory Lung Volume Change. Intensive Care Med. 2003, 29, 37–43. [Google Scholar] [CrossRef]
- Mauri, T.; Eronia, N.; Turrini, C.; Battistini, M.; Grasselli, G.; Rona, R.; Volta, C.A.; Bellani, G.; Pesenti, A. Bedside Assessment of the Effects of Positive End-Expiratory Pressure on Lung Inflation and Recruitment by the Helium Dilution Technique and Electrical Impedance Tomography. Intensive Care Med. 2016, 42, 1576–1587. [Google Scholar] [CrossRef]
- Yoshida, T.; Amato, M.B.P.; Grieco, D.L.; Chen, L.; Lima, C.A.S.; Roldan, R.; Morais, C.C.A.; Gomes, S.; Costa, E.L.V.; Cardoso, P.F.G.; et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am. J. Respir. Crit. Care Med. 2018, 197, 1018–1026. [Google Scholar] [CrossRef]
- Van Genderingen, H.R.; van Vught, A.J.; Jansen, J.R.C. Estimation of Regional Lung Volume Changes by Electrical Impedance Pressures Tomography during a Pressure-Volume Maneuver. Intensive Care Med. 2003, 29, 233–240. [Google Scholar] [CrossRef]
- Bastia, L.; Rezoagli, E.; Guarnieri, M.; Engelberts, D.; Forlini, C.; Marrazzo, F.; Spina, S.; Bassi, G.; Giudici, R.; Post, M.; et al. External Chest-Wall Compression in Prolonged COVID-19 ARDS with Low-Compliance: A Physiological Study. Ann. Intensive Care 2022, 12, 35. [Google Scholar] [CrossRef]
- Marini, J.J.; Gattinoni, L. Improving Lung Compliance by External Compression of the Chest Wall. Crit. Care 2021, 25, 264. [Google Scholar] [CrossRef]
- Hedenstierna, G.; Tokics, L.; Lundquist, H.; Andersson, T.; Strandberg, Å.; Brismar, B. Phrenic Nerve Stimulation during Halothane Anesthesia: Effects on Atelectasis. Anesthesiology 1994, 80, 751–760. [Google Scholar] [CrossRef]
- Froese, A.B.; Bryan, A.C. Effects of Anesthesia and Paralysis on Diaphragmatic Mechanics in Man. Anesthesiology 1974, 41, 242–255. [Google Scholar] [CrossRef]
- Yoshida, T.; Engelberts, D.; Otulakowski, G.; Katira, B.; Post, M.; Ferguson, N.D.; Brochard, L.; Amato, M.B.P.; Kavanagh, B.P. Continuous Negative Abdominal Pressure Recruits Lungs at Lower Distending Pressures. Am. J. Respir. Crit. Care Med. 2018, 197, 534–537. [Google Scholar] [CrossRef]
- Selickman, J.; Marini, J.J. Chest Wall Loading in the ICU: Pushes, Weights, and Positions. Ann. Intensive Care 2022, 12, 103. [Google Scholar] [CrossRef]
- Rezoagli, E.; Bastia, L.; Grassi, A.; Chieregato, A.; Langer, T.; Grasselli, G.; Caironi, P.; Pradella, A.; Santini, A.; Protti, A.; et al. Paradoxical Effect of Chest Wall Compression on Respiratory System Compliance: A Multicenter Case Series of Patients With ARDS, With Multimodal Assessment. Chest 2021, 160, 1335–1339. [Google Scholar] [CrossRef]
- Rezoagli, E.; Bellani, G. How I Set up Positive End-Expiratory Pressure: Evidence- and Physiology-Based! Crit. Care 2019, 23, 412. [Google Scholar] [CrossRef] [Green Version]
- Millington, S.J.; Cardinal, P.; Brochard, L. Setting and Titrating Positive End-Expiratory Pressure. Chest 2022, 161, 1566–1575. [Google Scholar] [CrossRef]
- Oppersma, E.; Geraats, S.; Heikens, N.H.; Welleweerd, A.; Woerts, C.A.; Fresiello, L.; Meuwese, C.L.; Donker, D.W. Finite Element Modeling of Pulmonary Mechanics in Severe ARDS: Explaining the Inclination Angle? Am. J. Respir. Crit. Care Med. 2022, 206, 798–799. [Google Scholar] [CrossRef]
- Talmor, D.; Sarge, T.; Malhotra, A.; O’Donnell, C.R.; Ritz, R.; Lisbon, A.; Novack, V.; Loring, S.H. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. N. Engl. J. Med. 2008, 359, 2095–2104. [Google Scholar] [CrossRef] [Green Version]
- Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators; Cavalcanti, A.B.; Suzumura, É.A.; Laranjeira, L.N.; Paisani, D.d.M.; Damiani, L.P.; Guimarães, H.P.; Romano, E.R.; Regenga, M.d.M.; Taniguchi, L.N.T.; et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2017, 318, 1335–1345. [Google Scholar] [CrossRef]
- Li Bassi, G.; Panigada, M.; Ranzani, O.T.; Zanella, A.; Berra, L.; Cressoni, M.; Parrini, V.; Kandil, H.; Salati, G.; Selvaggi, P.; et al. Randomized, Multicenter Trial of Lateral Trendelenburg versus Semirecumbent Body Position for the Prevention of Ventilator-Associated Pneumonia. Intensive Care Med. 2017, 43, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo-Carrascosa, D.P.; Cobo-Cuenca, A.I.; Carmona-Torres, J.M.; Laredo-Aguilera, J.A.; Santacruz-Salas, E.; Fernandez-Rodriguez, R. Body Position for Preventing Ventilator-Associated Pneumonia for Critically Ill Patients: A Systematic Review and Network Meta-Analysis. J. Intensive Care 2022, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 Pneumonia: Different Respiratory Treatments for Different Phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Huang, X.; Liu, R.; Lan, Y.; Lei, Y.; Zeng, F.; Tang, X.; He, H. Comparison of COVID-19 Induced Respiratory Failure and Typical ARDS: Similarities and Differences. Front. Med. 2022, 9, 829771. [Google Scholar] [CrossRef]
- Sinha, P.; Calfee, C.S.; Beitler, J.R.; Soni, N.; Ho, K.; Matthay, M.A.; Kallet, R.H. Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2019, 199, 333–341. [Google Scholar] [CrossRef]
- Hussain, T.; Braithwaite, I.; Hancock, S. Errors and Inaccuracies in Internet Medical Calculator Applications: An Example Using Oxygenation Index. Arch. Dis. Child. 2018, 104, 716–717. [Google Scholar] [CrossRef]
Variables | n = 12 |
---|---|
Age, years | 65 ± 8 |
Male sex, n (%) | 10 (83) |
BMI, Kg/m2 | 28.1 ± 5.1 |
PBW, Kg | 68 ± 8 |
SAPS II | 36 ± 8 |
Days from onset of symptoms, n | 12 ± 5 |
Days from intubation, n | 3 ± 2 |
PaO2:FiO2 | 155 ± 41 |
ARDS severity, n (%) | |
Mild | 2 (17) |
Moderate | 10 (83) |
Severe | 0 (0) |
CRS, mL/cmH2O | 44 ± 15 |
VT/PBW, mL/kg | 6.0 ± 0.6 |
Respiratory rate, n/min | 21 ± 3 |
PEEP, cmH2O | 12 ± 3 |
FiO2 | 0.67 ± 0.15 |
Variables Measured after 30 min at “Best” PEEPEIT | Supine-Flat (0°) | Semi-Recumbent (40°) | p |
---|---|---|---|
Peak Inspiratory Pressure, cmH2O | 29 ± 2 | 25 ± 3 | <0.001 |
Plateau Pressure, cmH2O | 22 ± 2 | 19 ± 3 | <0.001 |
Mean Airway Pressure, cmH2O | 17 ± 1 | 12 ± 1 | <0.001 |
End–expiratory airway pressure, cmH2O | 14 ± 2 | 9 ± 2 | <0.001 |
Driving pressure, cmH2O | 9 ± 3 | 10 ± 4 | 0.005 |
End–inspiratory esophageal pressure, cmH2O | 16 ± 2 | 10 ± 4 | <0.001 |
End–expiratory esophageal pressure, cmH2O | 14 ± 2 | 7 ± 4 | <0.001 |
PLes, cmH2O | 7 ± 3 | 9 ± 5 | 0.07 |
PLer, cmH2O | 17 ± 3 | 13 ± 4 | <0.001 |
Pleural pressure gradient, cmH2O | 11 ± 3 | 4 ± 4 | <0.001 |
Driving transpulmonary pressure, cmH2O | 7 ± 3 | 7 ± 4 | 0.64 |
End-expiratory transpulmonary pressure, cmH2O | 0 ± 3 | 2 ± 3 | 0.06 |
CRS, mL/cmH2O | 48 (38–67) | 42 (36–68) | 0.005 |
CCW, mL/cmH2O | 253 (166–427) | 159 (117–197) | 0.002 |
CLUNG, mL/cmH2O | 61 (50–88) | 64 (45–116) | 0.19 |
PaO2:FiO2 | 141 ± 46 | 196 ± 99 | 0.02 |
Venous admixture, % | 34 ± 12 | 28 ± 12 | 0.02 |
Oxygenation index | 14 ± 6 | 8 ± 4 | <0.001 |
PaCO2, mmHg | 45 ± 4 | 47 ± 5 | 0.19 |
Ventilatory ratio | 1.51 ± 0.27 | 1.56 ± 0.29 | 0.19 |
Alveolar dead space, % | 30 ± 9 | 28 ± 11 | 0.47 |
Ventral regional ventilation, % | 62 ± 8 | 60 ± 8 | 0.35 |
Dorsal regional ventilation, % | 38 ± 9 | 40 ± 8 | 0.39 |
Ventral regional compliance, mL/cmH2O | 25.9 (22.8–38.7) | 23.3 (16.8–36.5) | 0.03 |
Dorsal regional compliance, mL/cmH2O | 18.1 (9.9–30) | 18.9 (8.4–22.4) | 0.49 |
Global Inhomogeneity index | 53 ± 11 | 46 ± 10 | 0.008 |
ΔEELV, mL | −153 ± 162 | 27 ± 203 | 0.007 |
Ventral region, mL | −61 ± 94 | −30 ± 127 | 0.39 |
Dorsal region, mL | −91 ± 80 | 57 ± 89 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrazzo, F.; Spina, S.; Zadek, F.; Forlini, C.; Bassi, G.; Giudici, R.; Bellani, G.; Fumagalli, R.; Langer, T. PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study. J. Clin. Med. 2023, 12, 3914. https://doi.org/10.3390/jcm12123914
Marrazzo F, Spina S, Zadek F, Forlini C, Bassi G, Giudici R, Bellani G, Fumagalli R, Langer T. PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study. Journal of Clinical Medicine. 2023; 12(12):3914. https://doi.org/10.3390/jcm12123914
Chicago/Turabian StyleMarrazzo, Francesco, Stefano Spina, Francesco Zadek, Clarissa Forlini, Gabriele Bassi, Riccardo Giudici, Giacomo Bellani, Roberto Fumagalli, and Thomas Langer. 2023. "PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study" Journal of Clinical Medicine 12, no. 12: 3914. https://doi.org/10.3390/jcm12123914
APA StyleMarrazzo, F., Spina, S., Zadek, F., Forlini, C., Bassi, G., Giudici, R., Bellani, G., Fumagalli, R., & Langer, T. (2023). PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study. Journal of Clinical Medicine, 12(12), 3914. https://doi.org/10.3390/jcm12123914