Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Participants
2.2. Cerebral Microinfarcts
2.3. Cerebral Vasculopathies
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. The Associations between Covariates and Vasculopathies and Presence of Microinfarcts
3.3. The Associations between Covariates and Vasculopathies and Location of Microinfarcts
3.4. Associations of Severity of Arteriolosclerosis with Presence, Number, and Location of Cerebral Microinfarcts
3.5. Associations of Severity of CAA with Presence, Number, and Severity of Cerebral Microinfarcts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Biessels, G.J.; Hilal, S.; Chong, J.S.X.; Liu, S.; Shim, H.Y.; Xu, X.; Chong, E.J.Y.; Wong, Z.X.; Loke, Y.M.; et al. Cerebral microinfarcts affect brain structural network topology in cognitively impaired patients. J. Cereb. Blood Flow Metab. 2020, 41, 105–115. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Sepulveda-Falla, D. Cerebral Small Vessel Disease in Sporadic and Familial Alzheimer Disease. Am. J. Pathol. 2021, 191, 1888–1905. [Google Scholar] [CrossRef] [PubMed]
- Kapasi, A.; Leurgans, S.; Arvanitakis, Z.; Barnes, L.; Bennett, D.; Schneider, J. Aβ (Amyloid Beta) and Tau Tangle Pathology Modifies the Association Between Small Vessel Disease and Cortical Microinfarcts. Stroke 2021, 52, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Balado, J.; Riba-Llena, I.; Abril, O.; Garde, E.; Penalba, A.; Ostos, E.; Maisterra, O.; Montaner, J.; Noviembre, M.; Mundet, X.; et al. Cognitive Impact of Cerebral Small Vessel Disease Changes in Patients with Hypertension. Hypertension 2019, 73, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Boulouis, G.; Charidimou, A.; Pasi, M.; Roongpiboonsopit, D.; Xiong, L.; Auriel, E.; van Etten, E.S.; Martinez-Ramirez, S.; Ayres, A.; Vashkevich, A.; et al. Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers. J. Neurol. Sci. 2017, 380, 64–67. [Google Scholar] [CrossRef]
- Charidimou, A.; Boulouis, G.; Pasi, M.; Auriel, E.; van Etten, E.S.; Haley, K.; Ayres, A.; Schwab, K.M.; Martinez-Ramirez, S.; Goldstein, J.N.; et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2017, 88, 1157–1164. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Buchman, A.S.; Bennett, D.A.; Schneider, J.A. The Relationship of Cerebral Vessel Pathology to Brain Microinfarcts. Brain Pathol. 2016, 27, 77–85. [Google Scholar] [CrossRef]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2017, 134, 226–239. [Google Scholar] [CrossRef]
- Wilcock, D.M.; Gordon, M.N.; Morgan, D. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat. Protoc. 2006, 1, 1591–1595. [Google Scholar] [CrossRef]
- Rensink, A.A.; de Waal, R.M.; Kremer, B.; Verbeek, M.M. Pathogenesis of cerebral amyloid angiopathy. Brain Res. Rev. 2003, 43, 207–223. [Google Scholar] [CrossRef]
- Grabowski, T.J.; Cho, H.S.; Vonsattel, J.P.; Rebeck, G.W.; Greenberg, S.M. Novel amyloid precursor protein mutation in an Iowa fam-ily with dementia and severe cerebral amyloid angiopathy. Ann. Neurol. 2001, 49, 697–705. [Google Scholar] [CrossRef] [PubMed]
- van Rooden, S.; Goos, J.D.C.; van Opstal, A.M.; Versluis, M.J.; Webb, A.G.; Blauw, G.J.; van der Flier, W.M.; Scheltens, P.; Barkhof, F.; van Buchem, M.A.; et al. Increased Number of Microinfarcts in Alzheimer Disease at 7-T MR Imaging. Radiology 2014, 270, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Soontornniyomkij, V.; Lynch, M.D.; Mermash, S.; Pomakian, J.; Badkoobehi, H.; Clare, R.; Vinters, H.V. Cerebral Microinfarcts Associated with Severe Cerebral β-Amyloid Angiopathy. Brain Pathol. 2010, 20, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Schneider, J.A.; Wardlaw, J.M.; Greenberg, S.M. Cerebral microinfarcts: The invisible lesions. Lancet Neurol. 2012, 11, 272–282. [Google Scholar] [CrossRef]
- Suter, O.-C.; Sunthorn, T.; Kraftsik, R.; Straubel, J.; Darekar, P.; Khalili, K.; Miklossy, J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke 2002, 33, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A.; Schneider, J.A. Microinfarct Pathology, Dementia, and Cognitive Systems. Stroke 2011, 42, 722–727. [Google Scholar] [CrossRef]
- Cholerton, B.; Larson, E.B.; Baker, L.D.; Craft, S.; Crane, P.K.; Millard, S.P.; Sonnen, J.A.; Montine, T.J. Neuropathologic Correlates of Cognition in a Population-Based Sample. J. Alzheimer’s Dis. 2013, 36, 699–709. [Google Scholar] [CrossRef]
- Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. Exercise Is Associated with Reduced Risk for Incident Dementia among Persons 65 Years of Age and Older. Ann. Intern. Med. 2006, 144, 73–81. [Google Scholar] [CrossRef]
- Kukull, W.A.; Higdon, R.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Schellenberg, G.D.; van Belle, G.; Jolley, L.; Larson, E.B. Dementia and Alzheimer Disease Incidence. Arch. Neurol. 2002, 59, 1737–1746. [Google Scholar] [CrossRef]
- Siskind, V. Quantification of completeness of follow-up: A prospective cohort study. Lancet 2002, 360, 724. [Google Scholar] [CrossRef]
- Montine, T.J.; Phelps, C.H.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; Mirra, S.S.; et al. National Institute on Aging—Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol. 2011, 123, 1–11. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic parkin-son’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Sonnen, J.A.; Larson, E.B.; Crane, P.; Haneuse, S.; Li, G.; Schellenberg, G.D.; Craft, S.; Leverenz, J.; Montine, T.J. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 2007, 62, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Blevins, B.L.; Vinters, H.V.; Love, S.; Wilcock, D.M.; Grinberg, L.T.; Schneider, J.A.; Kalaria, R.N.; Katsumata, Y.; Gold, B.T.; Wang, D.J.J.; et al. Brain arteriolosclerosis. Acta Neuropathol. 2020, 141, 1–24. [Google Scholar] [CrossRef]
- Skrobot, O.A.; Attems, J.; Esiri, M.; Hortobágyi, T.; Ironside, J.W.; Kalaria, R.N.; King, A.; Lammie, G.A.; Mann, D.; Neal, J.; et al. Vascular cognitive impairment neuropathology guidelines (VCING): The contribution of cerebrovascular pathology to cognitive impairment. Brain 2016, 139, 2957–2969. [Google Scholar] [CrossRef]
- Rabin, J.S.; Nichols, E.; La Joie, R.; Casaletto, K.B.; Palta, P.; Dams-O’connor, K.; Kumar, R.G.; George, K.M.; Satizabal, C.L.; Schneider, J.A.; et al. Cerebral amyloid angiopathy interacts with neuritic amyloid plaques to promote tau and cognitive decline. Brain 2022, 145, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Vonsattel, J.P.G.; Myers, R.; Hedley-Whyte, E.T.; Ropper, A.H.; Bird, E.D.; Richardson, E.P. Cerebral amyloid angiopathy without and with cerebral hemorrhages: A comparative histological study. Ann. Neurol. 1991, 30, 637–649. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, L.; Wang, Z.; Wang, X.; Wang, Y.; Wei, H.; Li, R.; Du, Y. Dynamic analysis of blood pressure changes in progressive cerebral infarction. Int. Health 2014, 7, 293–297. [Google Scholar] [CrossRef]
- Emi, M. Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics 1988, 3, 373–379. [Google Scholar] [CrossRef]
- Hixson, J.; Vernier, D. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 1990, 31, 545–548. [Google Scholar] [CrossRef]
- Postupna, N.; Rose, S.E.; Bird, T.D.; Gonzalez-Cuyar, L.F.; Sonnen, J.A.; Larson, E.B.; Keene, C.D.; Montine, T.J. Novel Antibody Capture Assay for Paraffin-Embedded Tissue Detects Wide-Ranging Amyloid Beta and Paired Helical Filament-Tau Accumulation in Cognitively Normal Older Adults. Brain Pathol. 2011, 22, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Wharton, S.B.; Wang, D.; Parikh, C.; Matthews, F.E.; Brayne, C.; Ince, P.G.; on behalf of Cognitive Function and Ageing Neuropathology Study Group. Epidemiological pathology of Aβ deposition in the ageing brain in CFAS: Addition of multiple Aβ-derived measures does not improve dementia assessment using logistic regression and machine learning approaches. Acta Neuropathol. Commun. 2019, 7, 198. [Google Scholar] [CrossRef]
- Dos Santos, V.P.; Pozzan, G.; Castelli, V.; Caffaro, R.A. Arteriosclerosis, atherosclerosis, arteriolosclerosis, and monckeberg me-dial calcific sclerosis: What is the difference? J. Vasc. Bras. 2021, 20, e20200211. [Google Scholar] [CrossRef]
- van Veluw, S.J.; Shih, A.Y.; Smith, E.E.; Chen, C.; Schneider, J.A.; Wardlaw, J.M.; Greenberg, S.M.; Jan Biessels, G. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 2017, 16, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Vasan, R.S.; Pan, S.; Larson, M.G.; Mitchell, G.F.; Xanthakis, V. Arteriosclerosis, Atherosclerosis, and Cardiovascular Health: Joint Relations to the Incidence of Cardiovascular Disease. Hypertension 2021, 78, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Miklossy, J. Cerebral hypoperfusion induces cortical watershed microinfarcts which may further aggravate cognitive decline in Alzheimer’s disease. Neurol. Res. 2003, 25, 605–610. [Google Scholar] [CrossRef]
- Boyle, P.A.; Yu, L.; Nag, S.; Leurgans, S.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015, 85, 1930–1936. [Google Scholar] [CrossRef]
- Cao, L.; Tan, L.; Wang, H.-F.; Jiang, T.; Zhu, X.-C.; Yu, J.-T. Cerebral microinfarcts and dementia: A systematic review and meta-analysis. Curr. Alzheimer Res. 2017, 13, 802–808. [Google Scholar] [CrossRef]
- Okamoto, Y.; Yamamoto, T.; Kalaria, R.N.; Senzaki, H.; Maki, T.; Hase, Y.; Kitamura, A.; Washida, K.; Yamada, M.; Ito, H.; et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 2011, 123, 381–394. [Google Scholar] [CrossRef]
- Olichney, J.M.; Hansen, L.A.; Hofstetter, C.R.; Grundman, M.; Katzman, R.; Thal, L.J. Cerebral Infarction in Alzheimer’s Disease Is Associated with Severe Amyloid Angiopathy and Hypertension. Arch. Neurol. 1995, 52, 702–708. [Google Scholar] [CrossRef]
Variables N/Mean (%/STD) | Microinfarcts Presence | Cortical Microinfarcts | Subcortical Microinfarcts | ||||||
---|---|---|---|---|---|---|---|---|---|
No (n = 425) | Yes (n = 417) | p | No (n = 541) | Yes (n = 301) | p | No (n = 593) | Yes (n = 249) | p | |
Age at death | |||||||||
<80 | 68 | 27 | <0.0001 | 79 | 16 | <0.0001 | 81 | 14 | <0.01 |
(16.0) | (6.5) | (14.6) | (5.3) | (13.7) | (5.6) | ||||
80–89 | 173 | 162 | 220 | 115 | 231 | 104 | |||
(40.7) | (38.8) | (40.7) | (38.2) | (39.0) | (41.8) | ||||
90+ | 184 | 228 | 242 | 170 | 281 | 131 | |||
(43.3) | (54.7) | (44.7) | (56.5) | (47.4) | (52.6) | ||||
Sex | |||||||||
Male | 185 | 171 | 0.46 | 231 | 125 | 0.74 | 248 | 98 | 0.27 |
(43.5) | (41.0) | (42.7) | (41.5) | (43.5) | (39.4) | ||||
Female | 240 | 246 | 310 | 176 | 335 | 151 | |||
(56.5) | (59.0) | (57.3) | (58.5) | (56.5) | (60.6) | ||||
APOE e4 | |||||||||
No | 293 | 294 | 0.33 | 337 | 210 | 0.70 | 410 | 177 | 0.79 |
(68.9) | (70.5) | (69.7) | (69.8) | (69.1) | (71.1) | ||||
Yes | 121 | 106 | 148 | 79 | 162 | 65 | |||
(28.5) | (25.4) | (27.4) | (26.2) | (27.3) | (26.1) | ||||
Unknown | 11 | 17 | 16 | 12 | 21 | 7 | |||
(2.6) | (4.1) | (3.0) | (4.0) | (3.5) | (2.8) | ||||
Braak | |||||||||
0 | 16 | 9 | 0.11 | 19 | 6 | 0.11 | 21 | 4 | 0.16 |
(3.8) | (2.2) | (3.5) | (2.0) | (3.5) | (1.6) | ||||
I–II | 114 | 90 | 144 | 60 | 145 | 59 | |||
(26.8) | (21.6) | (26.6) | (19.9) | (24.5) | (23.7) | ||||
III–IV | 152 | 148 | 190 | 110 | 218 | 82 | |||
(35.8) | (35.5) | (35.1) | (36.5) | (36.8) | (32.9) | ||||
V–VI | 141 | 169 | 186 | 124 | 206 | 104 | |||
(33.2) | (40.5) | (34.4) | (41.2) | (34.7) | (41.8) | ||||
Unknown | 2 | 1 | 2 | 1 | 3 | 0 | |||
(0.5) | (0.2) | (0.4) | (0.3) | (0.5) | (0.0) | ||||
CERAD | |||||||||
Absent | 105 | 86 | 0.15 | 130 | 61 | 0.11 | 143 | 48 | 0.41 |
(24.7) | (20.6) | (24.0) | (20.3) | (24.1) | (19.3) | ||||
Sparse | 113 | 95 | 141 | 67 | 146 | 62 | |||
(26.6) | (22.8) | (26.1) | (22.3) | (24.6) | (24.9) | ||||
Moderate | 94 | 110 | 118 | 86 | 143 | 61 | |||
(22.1) | (26.4) | (21.8) | (28.6) | (24.1) | (24.5) | ||||
Severe | 113 | 126 | 152 | 87 | 161 | 78 | |||
(26.6) | (30.2) | (28.1) | (28.9) | (27.2) | (31.3) | ||||
Antihypertensive Medication use | |||||||||
No | 138 | 112 | 0.08 | 169 | 81 | 0.39 | 193 | 57 | <0.01 |
(32.5) | (26.9) | (31.2) | (26.9) | (32.5) | (22.9) | ||||
Yes | 287 | 303 | 371 | 219 | 400 | 190 | |||
(67.5) | (72.7) | (68.6) | (72.8) | (67.5) | (76.3) | ||||
Unknown | 0 | 2 | 1 | 1 | 0 | 2 | |||
(0) | (0.5) | (0.2) | (0.3) | (0) | (0.8) | ||||
Mean systolic blood pressure | 132 | 136 | <0.001 | 133 | 136 | 0.03 | 132 | 139 | <0.0001 |
(21.5) | (22.5) | (21.6) | (22.9) | (21.2) | (23.5) | ||||
≥140 mmHg | 138 | 177 | 183 | 132 | 200 | 115 | |||
(32.5) | (42.4) | (33.8) | (43.9) | (33.7) | (46.2) | ||||
<140 mmHg | 285 | 238 | 0.01 | 355 | 168 | <0.01 | 390 | 133 | <0.01 |
(67.1) | (57.1) | (65.6) | (55.8) | (65.8) | (53.4) | ||||
Unknown | 2 | 2 | 3 | 1 | 3 | 1 | |||
(0.5) | (0.5) | (0.6) | (0.3) | (0.5) | (0.4) | ||||
Mean diastolic blood pressure | 69 | 71 | 0.02 | 70 | 71 | 0.14 | 70 | 72 | <0.01 |
(10.6) | (11.9) | (10.7) | (12.3) | (11.0) | (11.8) | ||||
≥90 mmHg | 13 | 32 | 19 | 26 | 26 | 19 | |||
(3.1) | (7.7) | (3.5) | (8.6) | (4.4) | (7.6) | ||||
<90 mmHg | 410 | 383 | 0.02 | 519 | 274 | <0.01 | 564 | 229 | 0.16 |
(96.5) | (91.8) | (95.9) | (91.0) | (95.1) | (92.0) | ||||
Unknown | 2 | 2 | 3 | 1 | 3 | 1 | |||
(0.5) | (0.5) | (0.6) | (0.3) | (0.5) | (0.4) | ||||
Cerebral amyloid angiopathy | |||||||||
Absent | 268 | 254 | 0.71 | 350 | 172 | 0.07 | 363 | 159 | 0.82 |
(63.1) | (60.9) | (64.7) | (57.1) | (61.2) | (63.9) | ||||
Mild | 77 | 75 | 97 | 55 | 108 | 44 | |||
(18.1) | (18.0) | (17.9) | (18.3) | (18.2) | (17.7) | ||||
Moderate | 70 | 73 | 81 | 62 | 105 | 38 | |||
(16.5) | (17.5) | (15.0) | (20.6) | (17.7) | (15.3) | ||||
Severe | 10 | 15 | 13 | 12 | 17 | 8 | |||
(2.4) | (3.6) | (2.4) | (4.0) | (2.9) | (3.2) | ||||
Arteriolosclerosis | |||||||||
Absent | 5 | 3 | <0.0001 | 7 | 1 | <0.0001 | 5 | 3 | <0.0001 |
(1.2) | (0.7) | (1.3) | (0.3) | (0.8) | (1.2) | ||||
Mild | 123 | 55 | 139 | 39 | 153 | 25 | |||
(28.9) | (13.2) | (25.7) | (13.0) | (25.8) | (10.0) | ||||
Moderate | 170 | 183 | 226 | 127 | 245 | 108 | |||
(40.0) | (43.9) | (41.8) | (42.2) | (41.3) | (43.4) | ||||
Severe | 53 | 124 | 81 | 96 | 98 | 79 | |||
(12.5) | (29.7) | (15.0) | (31.9) | (16.5) | (31.7) | ||||
Unknown | 74 | 52 | 88 | 38 | 92 | 34 | |||
(17.4) | (12.5) | (16.3) | (12.6) | (15.5) | (13.7) | ||||
Dementia (yes) | 116 | 215 | <0.01 | 223 | 158 | <0.01 | 243 | 138 | <0.01 |
(39.1) | (51.6) | (41.2) | (52.5) | (41.0) | (55.4) |
Variables | Adjusted Odds Ratio (95% CI) | |||
---|---|---|---|---|
Microinfarcts (Presence) | Microinfarcts (Numbers) | Microinfarcts (Cortical) | Microinfarcts (Subcortical) | |
Arteriolosclerosis 1 | ||||
Moderate | 2.16 (1.46–3.18) * | 2.25 (1.54–3.30) * | 1.86 (1.21–2.86) ** | 2.23 (1.38–3.61) ** |
Severe | 4.63 (2.90–7.40) * | 4.91 (3.18–7.60) * | 3.79 (2.35–6.12) * | 4.04 (2.39–6.82) * |
Unknown | 1.61 (0.98–2.62) | 2.20 (1.38–3.52) ** | 1.69 (0.99–2.89) | 2.13 (1.19–3.82) *** |
Cerebral amyloid angiopathy 2 | ||||
Mild | 0.93 (0.64–1.36) | 0.95 (0.66–1.35) | 1.05 (0.71–1.56) | 0.84 (0.55–1.28) |
Moderate | 1.02 (0.68–1.54) | 1.04 (0.71–1.52) | 1.50 (0.99–2.27) | 0.72 (0.46–1.14) |
Severe | 1.40 (0.60–3.29) | 2.05 (0.94–4.45) | 1.69 (0.73–3.91) | 0.92 (0.37–2.28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sin, M.-K.; Cheng, Y.; Roseman, J.M.; Zamrini, E.; Ahmed, A. Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults. J. Clin. Med. 2023, 12, 3807. https://doi.org/10.3390/jcm12113807
Sin M-K, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults. Journal of Clinical Medicine. 2023; 12(11):3807. https://doi.org/10.3390/jcm12113807
Chicago/Turabian StyleSin, Mo-Kyung, Yan Cheng, Jeffrey M. Roseman, Edward Zamrini, and Ali Ahmed. 2023. "Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults" Journal of Clinical Medicine 12, no. 11: 3807. https://doi.org/10.3390/jcm12113807
APA StyleSin, M.-K., Cheng, Y., Roseman, J. M., Zamrini, E., & Ahmed, A. (2023). Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults. Journal of Clinical Medicine, 12(11), 3807. https://doi.org/10.3390/jcm12113807