Assessment of Self-Reported Executive Function in Patients with Irritable Bowel Syndrome Using a Machine-Learning Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Measures Used to Describe the Participants
2.2.2. Behavior Rating Inventory of Executive Function—Adult Version (BRIEF-A)
2.3. Explorative Data Analysis and the Machine-Learning Framework
- Data preparation: Importing the dataset(s), originally in SPSS.sav format containing IBS patients and healthy control participants with features from multiple sources such as demographic information and reports on questionnaires. This step also included data cleaning and merging using the Pandas data frame structure and functionality.
- Explorative data analysis: Investigating and summarizing the general characteristics of the dataset e.g., feature distributions, correlations and data visualization, employing functionality in ydata_profiling (https://github.com/ydataai/ydata-profiling (accessed on 20 April 2023)) and autoviz (https://github.com/AutoViML/AutoViz (accessed on 20 April 2023)).
- Environment setup: Initializing the PyCaret environment by specifying the target variable (y) and predictor variables and selecting the classification module. The data were randomly split (70%/30%) into a training set (X_train, y_train) and a test set (X_test, y_test). The first was used for training the model and identifying feature importance and the latter was used for the evaluation of classifier performance on unseen data in order to confirm feature importance identified in the training set and to assess generalization ability.
- Model training and tuning: Training the XGBoost model and comparing it with other models within the PyCaret framework using 10-fold cross-validation to obtain the best model.
- Model evaluation: Assessing, on the unseen test data, the classification performance of the best model (XGBoost), using metrics such as accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC).
2.4. Feature Importance: Permutation Importance and SHAP Values
3. Results
3.1. Characteristics of the Participants
3.2. Distributions of EF Features in the IBS and HC Groups
3.3. Correlations and Distributions of EF Features in the IBS and HC Groups
3.4. Model Training and Tuning
3.5. Feature Importance: Permutation Importance and SHAP Values
Model Evaluation in the Test Set
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EF | Executive function |
IBS | Irritable bowel syndrome |
GI | Gastrointestinal |
DGBI | Disorders of the gut–brain interaction |
HADS | Hamilton Anxiety and Depression Scale |
RBANS | Repeatable Battery for the Assessment of Neuropsychological Status |
IBS-SSS | IBS Severity Scoring System |
XGboost | Extreme Gradient Boosting |
References
- Mayer, E.A.; Nance, K.; Chen, S. The Gut–Brain Axis. Annu. Rev. Med. 2022, 73, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Cryan, J.F. Brain–gut-microbiota axis and mental health. Psychosom. Med. 2017, 79, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Vandvik, P.O.; Lydersen, S.; Farup, P.G. Prevalence, comorbidity and impact of irritable bowel syndrome in Norway. Scand. J. Gastroenterol. 2006, 41, 650–656. [Google Scholar] [CrossRef]
- Schmulson, M.J.; Drossman, D.A. What is new in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151. [Google Scholar] [CrossRef]
- Canavan, C.; West, J.; Card, T. The economic impact of the irritable bowel syndrome. Aliment. Pharmacol. Ther. 2014, 40, 1023–1034. [Google Scholar] [CrossRef]
- Corsetti, M.; Whorwell, P. The global impact of IBS: Time to think about IBS-specific models of care? Ther. Adv. Gastroenterol. 2017, 10, 727–736. [Google Scholar] [CrossRef]
- Fraendemark, A.; Toernblom, H.; Jakobsson, S.; Simrén, M. Work Productivity and Activity Impairment in Irritable Bowel Syndrome (IBS): A Multifaceted Problem. Am. J. Gastroenterol. 2018, 113, 1540–1549. [Google Scholar] [CrossRef]
- Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 2020, 396, 1664–1674. [Google Scholar] [CrossRef]
- Drossman, D.A.; Camilleri, M.; Mayer, E.A.; Whitehead, W.E. AGA technical review on irritable bowel syndrome. Gastroenterology 2002, 123, 2108–2131. [Google Scholar] [CrossRef]
- Hillestad, E.M.R.; van der Meeren, A.; Nagaraja, B.H.; Bjørsvik, B.R.; Haleem, N.; Benitez-Paez, A.; Sanz, Y.; Hausken, T.; Lied, G.A.; Lundervold, A.; et al. Gut bless you: The microbiota-gut–brain axis in irritable bowel syndrome. World J. Gastroenterol. 2022, 28, 412. [Google Scholar] [CrossRef] [PubMed]
- Madva, E.N.; Staller, K.; Huffman, J.C.; Kuo, B.; Garcia-Fischer, I.; Atkins, M.; Keefer, L.; Celano, C.M.; Murray, H.B. Psychiatric comorbidities among adult patients with disorders of gut–brain interaction: Prevalence and relationships to treatment outcomes. Neurogastroenterol. Motil. 2023, 35, e14493. [Google Scholar] [CrossRef] [PubMed]
- Tarar, Z.I.; Farooq, U.; Zafar, Y.; Gandhi, M.; Raza, S.; Kamal, F.; Tarar, M.F.; Ghouri, Y.A. Burden of anxiety and depression among hospitalized patients with irritable bowel syndrome: A nationwide analysis. Ir. J. Med Sci. (1971-) 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Midenfjord, I.; Polster, A.; Sjövall, H.; Törnblom, H.; Simren, M. Anxiety and depression in irritable bowel syndrome: Exploring the interaction with other symptoms and pathophysiology using multivariate analyses. Neurogastroenterol. Motil. 2019, 31, e13619. [Google Scholar] [CrossRef]
- Sibelli, A.; Chalder, T.; Everitt, H.; Workman, P.; Windgassen, S.; Moss-Morris, R. A systematic review with meta-analysis of the role of anxiety and depression in irritable bowel syndrome onset. Psychol. Med. 2016, 46, 3065–3080. [Google Scholar] [CrossRef]
- Kutschke, J.; Harris, J.R.; Bengtson, M.B. The relationships between IBS and perceptions of physical and mental health—A Norwegian twin study. BMC Gastroenterol. 2022, 22, 266. [Google Scholar] [CrossRef] [PubMed]
- Kamp, K.J.; Morgan, H.; Yoo, L.; Munson, S.A.; Heitkemper, M.M.; Levy, R.L. Symptom management needs of patients with irritable bowel syndrome and concurrent anxiety and/or depression: A qualitative study. J. Adv. Nurs. 2023, 79, 775–788. [Google Scholar] [CrossRef]
- Kriesche, D.; Woll, C.F.; Tschentscher, N.; Engel, R.R.; Karch, S. Neurocognitive deficits in depression: A systematic review of cognitive impairment in the acute and remitted state. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 1–24. [Google Scholar] [CrossRef]
- Stuss, D.T.; Alexander, M.P. Executive functions and the frontal lobes: A conceptual view. Psychol. Res. 2000, 63, 289–298. [Google Scholar] [CrossRef]
- Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 2013, 15, 247–262. [Google Scholar] [CrossRef]
- Colom, R.; Karama, S.; Jung, R.E.; Haier, R.J. Human intelligence and brain networks. Dialogues Clin. Neurosci. 2010, 12, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Salami, M. Interplay of good bacteria and central nervous system: Cognitive aspects and mechanistic considerations. Front. Neurosci. 2021, 15, 613120. [Google Scholar] [CrossRef] [PubMed]
- Tooley, K.L. Effects of the human gut microbiota on cognitive performance, brain structure and function: A narrative review. Nutrients 2020, 12, 3009. [Google Scholar] [CrossRef]
- Jarchum, I.; Pamer, E.G. Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol. 2011, 23, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.C.Y.; Yeung, H.Y.; Li, W.K.; Lo, H.Y.; Yuen, C.F.; Chang, R.C.C.; Ho, Y.S. Cognitive impairment in irritable bowel syndrome (IBS): A systematic review. Brain Res. 2019, 1719, 274–284. [Google Scholar] [CrossRef]
- Wong, K.M.F.; Mak, A.D.P.; Yuen, S.Y.; Leung, O.N.W.; Ma, D.Y.; Chan, Y.; Cheong, P.K.; Lui, R.; Wong, S.H.; Wu, J.C.Y. Nature and specificity of altered cognitive functioning in IBS. Neurogastroenterol. Motil. 2019, 31, e13696. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Gilbert, S.J.; Burgess, P.W. Executive function. Curr. Biol. 2008, 18, R110–R114. [Google Scholar] [CrossRef]
- Berentsen, B.; Nagaraja, B.H.; Teige, E.P.; Lied, G.A.; Lundervold, A.J.; Lundervold, K.; Steinsvik, E.K.; Hillestad, E.R.; Valeur, J.; Brønstad, I.; et al. Study protocol of the Bergen brain–gut-microbiota-axis study: A prospective case-report characterization and dietary intervention study to evaluate the effects of microbiota alterations on cognition and anatomical and functional brain connectivity in patients with irritable bowel syndrome. Medicine 2020, 99, e21950. [Google Scholar] [CrossRef]
- Francis, C.Y.; Morris, J.; Whorwell, P.J. The irritable bowel severity scoring system: A simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharmacol. Ther. 1997, 11, 395–402. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale: An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.; Isquith, P.; Gioia, G. Behavior Rating Inventory of Executive Function—Adult Version (BRIEF-A); PAR, Inc.: Lutz, FL, USA, 2005. [Google Scholar]
- Roth, R.M.; Lance, C.E.; Isquith, P.K.; Fischer, A.S.; Giancola, P.R. Confirmatory factor analysis of the behavior rating inventory of executive function-adult version in healthy adults and application to attention-deficit/hyperactivity disorder. Arch. Clin. Neuropsychol. 2013, 28, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.P.; Kapoor, A.; Fogel, J.; Elbulok-Charcape, M.M.; Roth, R.M.; Katz, M.J.; Lipton, R.B.; Rabin, L.A. Association of psychological, cognitive and functional variables with self-reported executive functioning in a sample of nondemented community-dwelling older adults. Appl. Neuropsychol. Adult 2017, 24, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Malo, R.; Acier, D.; Bulteau, S. Psychological Flexibility: Toward a Better Understanding of a Key Concept. Trends Psychol. 2022, 1–26. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Theories, models and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef]
- D’Esposito, M.; Postle, B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015, 66, 115–142. [Google Scholar] [CrossRef]
- Drossman, D.A.; Tack, J. Rome Foundation clinical diagnostic criteria for disorders of gut–brain interaction. Gastroenterology 2022, 162, 675–679. [Google Scholar] [CrossRef]
- Cowan, N. What are the differences between long-term, short-term and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar] [CrossRef]
- Oei, N.Y.; Everaerd, W.T.; Elzinga, B.M.; van Well, S.; Bermond, B. Psychosocial stress impairs working memory at high loads: An association with cortisol levels and memory retrieval. Stress 2006, 9, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Han, C.J.; Yang, G.S. Fatigue in irritable bowel syndrome: A systematic review and meta-analysis of pooled frequency and severity of fatigue. Asian Nurs. Res. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Wang, B.; Duan, R.; Duan, L. Prevalence of sleep disorder in irritable bowel syndrome: A systematic review with meta-analysis. Saudi J. Gastroenterol. 2018, 24, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Moran, T.P. Anxiety and working memory capacity: A meta-analysis and narrative review. Psychol. Bull. 2016, 142, 831. [Google Scholar] [CrossRef]
- Sugaya, N.; Yoshida, E.; Yasuda, S.; Tochigi, M.; Takei, K.; Ohtani, T.; Otowa, T.; Minato, T.; Umekage, T.; Sakano, Y.; et al. Irritable bowel syndrome, its cognition, anxiety sensitivity and anticipatory anxiety in panic disorder patients. Psychiatry Clin. Neurosci. 2013, 67, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.W.; Eastman, A.; Lo, S.; Hearon, B.A.; Bickel, W.K.; Zvolensky, M.; Smits, J.A.; Doan, S.N. Anxiety sensitivity and working memory capacity: Risk factors and targets for health behavior promotion. Clin. Psychol. Rev. 2016, 49, 67–78. [Google Scholar] [CrossRef]
- Keefer, L.; Ballou, S.K.; Drossman, D.A.; Ringstrom, G.; Elsenbruch, S.; Ljótsson, B. A Rome working team report on brain–gut behavior therapies for disorders of gut–brain interaction. Gastroenterology 2022, 162, 300–315. [Google Scholar] [CrossRef]
- Sugaya, N.; Shirotsuki, K.; Nakao, M. Cognitive behavioral treatment for irritable bowel syndrome: A recent literature review. Biopsychosoc. Med. 2021, 15, 23. [Google Scholar] [CrossRef]
- Kim, H.; Oh, Y.; Chang, S.J. Internet-Delivered Cognitive Behavioral Therapy in Patients With Irritable Bowel Syndrome: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2022, 24, e35260. [Google Scholar] [CrossRef]
- Sarter, L.; Heider, J.; Kirchner, L.; Schenkel, S.; Witthöft, M.; Rief, W.; Kleinstäuber, M. Cognitive and emotional variables predicting treatment outcome of cognitive behavior therapies for patients with medically unexplained symptoms: A meta-analysis. J. Psychosom. Res. 2021, 146, 110486. [Google Scholar] [CrossRef]
- Jensen, D.A.; Halmøy, A.; Stubberud, J.; Haavik, J.; Lundervold, A.J.; Sørensen, L. An exploratory investigation of Goal Management Training in adults with ADHD: Improvements in inhibition and everyday functioning. Front. Psychol. 2021, 12, 659480. [Google Scholar] [CrossRef]
- Boyd, J.E.; Sanger, B.D.; Cameron, D.H.; Protopopescu, A.; McCabe, R.E.; O’connor, C.; Lanius, R.A.; McKinnon, M.C. A Pilot Study Assessing the Effects of Goal Management Training on Cognitive Functions among Individuals with Major Depressive Disorder and the Effect of Post-Traumatic Symptoms on Response to Intervention. Brain Sci. 2022, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Haugen, I.; Stubberud, J.; Haug, E.; McGurk, S.R.; Hovik, K.T.; Ueland, T.; Øie, M.G. A randomized controlled trial of Goal Management Training for executive functioning in schizophrenia spectrum disorders or psychosis risk syndromes. BMC Psychiatry 2022, 22, 575. [Google Scholar] [CrossRef] [PubMed]
- Robertson, I.H.; Tegnér, R.; Tham, K.; Lo, A.; Nimmo-Smith, I. Sustained attention training for unilateral neglect: Theoretical and rehabilitation implications. J. Clin. Exp. Neuropsychol. 1995, 17, 416–430. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Hausken, T.; Hatlebakk, J.G. Current status of fecal microbiota transplantation for irritable bowel syndrome. Neurogastroenterol. Motil. 2021, 33, e14157. [Google Scholar] [CrossRef] [PubMed]
Clinical Scale | Mean IBS/HC | SD IBS/HC | p-Value | Cohen’s d |
---|---|---|---|---|
Age | 35.0/36.1 | 10.2/12.0 | 0.711 | −0.10 |
Inhibition | 54.5/49.0 | 9.8/6.9 | 0.011 | 0.62 |
Shifting | 57.4/46.3 | 11.5/7.3 | <0.001 | 1.07 |
Emotional_control | 59.4/49.4 | 11.2/9.7 | <0.001 | 0.93 |
Self_monitoring | 49.3/47.0 | 9.5/7.1 | 0.288 | 0.25 |
Initiate | 61.2/52.1 | 10.4/7.7 | <0.001 | 0.95 |
Working_memory | 63.5/49.5 | 10.0/5.2 | <0.001 | 1.62 |
Planning | 57.5/51.0 | 9.3/8.2 | 0.006 | 0.72 |
Task_monitoring | 59.7/54.4 | 10.3/7.6 | 0.020 | 0.57 |
Organization | 53.1/48.6 | 10.1/8.8 | 0.071 | 0.46 |
Clinical Scale | Mean IBS/HC | SD IBS/HC | p-Value | Cohen’s d |
---|---|---|---|---|
HADS_anx | 8.3/3.1 | 3.9/2.5 | <0.001 | 1.48 |
HADS_dep | 4.8/1.3 | 3.1/1.6 | <0.001 | 1.25 |
HADS_tot | 13.0/4.4 | 5.8/3.8 | <0.001 | 1.65 |
IBS-SSS | 273.2/29.9 | 73.9/29.6 | <0.001 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundervold, A.J.; Hillestad, E.M.R.; Lied, G.A.; Billing, J.; Johnsen, T.E.; Steinsvik, E.K.; Hausken, T.; Berentsen, B.; Lundervold, A. Assessment of Self-Reported Executive Function in Patients with Irritable Bowel Syndrome Using a Machine-Learning Framework. J. Clin. Med. 2023, 12, 3771. https://doi.org/10.3390/jcm12113771
Lundervold AJ, Hillestad EMR, Lied GA, Billing J, Johnsen TE, Steinsvik EK, Hausken T, Berentsen B, Lundervold A. Assessment of Self-Reported Executive Function in Patients with Irritable Bowel Syndrome Using a Machine-Learning Framework. Journal of Clinical Medicine. 2023; 12(11):3771. https://doi.org/10.3390/jcm12113771
Chicago/Turabian StyleLundervold, Astri J., Eline M. R. Hillestad, Gülen Arslan Lied, Julie Billing, Tina E. Johnsen, Elisabeth K. Steinsvik, Trygve Hausken, Birgitte Berentsen, and Arvid Lundervold. 2023. "Assessment of Self-Reported Executive Function in Patients with Irritable Bowel Syndrome Using a Machine-Learning Framework" Journal of Clinical Medicine 12, no. 11: 3771. https://doi.org/10.3390/jcm12113771
APA StyleLundervold, A. J., Hillestad, E. M. R., Lied, G. A., Billing, J., Johnsen, T. E., Steinsvik, E. K., Hausken, T., Berentsen, B., & Lundervold, A. (2023). Assessment of Self-Reported Executive Function in Patients with Irritable Bowel Syndrome Using a Machine-Learning Framework. Journal of Clinical Medicine, 12(11), 3771. https://doi.org/10.3390/jcm12113771