Clinical Profiling and Biomarkers for Post-Operative Atrial Fibrillation Prediction in Patients Undergoing Cardiac Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Primary End-Point
2.3. Clinical, Echocardiography, and Biochemical Variables (Pre- and Peri-Operative)
2.3.1. Clinical Variables
2.3.2. Echocardiography
2.3.3. Pre-Operative Clinical Laboratory Variables
2.3.4. Pre-Operative Circulating Blood Biomarkers
2.3.5. Pre-Operative Neutrophils Migratory Activity
2.3.6. Pre-Operative Neutrophils, Monocytes, Epicardial Fat, and Subcutaneous Fat mRNA Expression Analysis
2.3.7. Peri-Operative Clinical Laboratory Variables
2.3.8. Peri-Operative Clinical Variables
2.4. Statistical Analysis
3. Results
Sexual Dimorphism and Markers
4. Discussion
4.1. Clinical and Biomarker Predictors of POAF
4.2. Clinical Relevance
5. Limitations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eikelboom, R.; Sanjanwala, R.; Le, M.-L.; Yamashita, M.H.; Arora, R.C. Postoperative Atrial Fibrillation After Cardiac Surgery: A Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2021, 111, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-H.; Kamel, H.; Singer, D.E.; Wu, Y.-L.; Lee, M.; Ovbiagele, B. Perioperative/Postoperative Atrial Fibrillation and Risk of Subsequent Stroke and/or Mortality. Stroke 2019, 50, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Creswell, L.L.; Alexander, J.C.; Ferguson, T.B.; Lisbon, A.; Fleisher, L.A. Intraoperative Interventions. Chest 2005, 128, 28S–35S. [Google Scholar] [CrossRef] [PubMed]
- Chyou, J.Y.; Barkoudah, E.; Dukes, J.W.; Goldstein, L.B.; Joglar, J.A.; Lee, A.M.; Lubitz, S.A.; Marill, K.A.; Sneed, K.B.; Streur, M.M.; et al. Atrial Fibrillation Occurring During Acute Hospitalization: A Scientific Statement from the American Heart Association. Circulation 2023, 147, e676–e698. [Google Scholar] [CrossRef]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef]
- Abdelmoneim, S.S.; Rosenberg, E.; Meykler, M.; Patel, B.; Reddy, B.; Ho, J.; Klem, I.; Singh, J.; Worku, B.; Tranbaugh, R.F.; et al. The Incidence and Natural Progression of New-Onset Postoperative Atrial Fibrillation. JACC Clin. Electrophysiol. 2021, 7, 1134–1144. [Google Scholar] [CrossRef]
- Aljure, O.D.; Fabbro, M. Cardiopulmonary Bypass and Inflammation: The Hidden Enemy. J. Cardiothorac. Vasc. Anesthesia 2019, 33, 346–347. [Google Scholar] [CrossRef]
- Hofer, F.; Hammer, A.; Steininger, M.; Kazem, N.; Koller, L.; Steinlechner, B.; Laufer, G.; Andreas, M.; Marculescu, R.; Hengstenberg, C.; et al. The Prognostic Potential of Atrial Natriuretic Peptide on the Development of Postoperative Atrial Fibrillation after Cardiac Surgery. Thromb. Haemost. 2021, 121, 1523–1529. [Google Scholar] [CrossRef]
- Lopez-Canoa, J.N.; Baluja, A.; Couselo-Seijas, M.; Naveira, A.B.; Gonzalez-Melchor, L.; Rozados, A.; Martínez-Sande, L.; García-Seara, J.; Fernandez-Lopez, X.A.; Fernandez, A.; et al. Plasma FABP4 levels are associated with left atrial fat volume in persistent atrial fibrillation and predict recurrence after catheter ablation. Int. J. Cardiol. 2019, 292, 131–135. [Google Scholar] [CrossRef]
- Rienstra, M.; Yin, X.; Larson, M.G.; Fontes, J.D.; Magnani, J.W.; McManus, D.D.; McCabe, E.L.; Coglianese, E.E.; Amponsah, M.; Ho, J.E.; et al. Relation between soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I and incident atrial fibrillation. Am. Heart J. 2014, 167, 109–115.e2. [Google Scholar] [CrossRef]
- Guo, Y.; Lip, G.Y.; Apostolakis, S. Inflammation in Atrial Fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Lei, H.; Sun, Y.; Liu, X.; Su, D.-F. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015, 71, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Almengló, C.; Fu, X.; Flores-Arias, M.T.; Fernández, L.; Viñuela, J.E.; Martínez-Cereijo, J.M.; Durán, D.; Rodríguez-Mañero, M.; González-Juanatey, J.R.; Eiras, S. Synergism between obesity andHFpEFon neutrophils phenotype and its regulation by adipose tissue-molecules andSGLT2idapagliflozin. J. Cell. Mol. Med. 2022, 26, 4416–4427. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Almenglo, C.; Fernandez, L.; Martínez-Cereijo, J.M.; Iglesias-Alvarez, D.; Duran-Muñoz, D.; García-Caballero, T.; Gonzalez-Juanatey, J.R.; Rodriguez-Mañero, M.; Eiras, S. The Effect of Mineralocorticoid Receptor 3 Antagonists on Anti-Inflammatory and Anti-Fatty Acid Transport Profile in Patients with Heart Failure. Cells 2022, 11, 1264. [Google Scholar] [CrossRef]
- Bhave, P.; Passman, R. Age as a Risk factor for Atrial Fibrillation and Flutter after Coronary Artery Bypass Grafting. J. Atr. Fibrillation 2012, 4, 482. [Google Scholar]
- Kawczynski, M.J.; Gilbers, M.; Van De Walle, S.; Schalla, S.; Crijns, H.J.; Maessen, J.G.; Schotten, U.; Maesen, B.; Bidar, E. Role of pre-operative transthoracic echocardiography in predicting post-operative atrial fibrillation after cardiac surgery: A systematic review of the literature and meta-analysis. EP Eur. 2021, 23, 1731–1743. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, M.-J.; Hwang, H.Y. Perioperative Beta-Blocker for Atrial Fibrillation after Cardiac Surgery: A Meta-Analysis. Thorac. Cardiovasc. Surg. 2021, 69, 133–140. [Google Scholar] [CrossRef]
- Lee, Y.; Cha, S.J.; Park, J.-H.; Shin, J.-H.; Lim, Y.-H.; Park, H.-C.; Shin, J.; Kim, C.K.; Park, J.-K. Association between insulin resistance and risk of atrial fibrillation in non-diabetics. Eur. J. Prev. Cardiol. 2020, 27, 1934–1941. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.-J.; Liu, Z.-Y.; Li, Q.; Kong, Y.-W.; Chen, Y.-W.; Sun, Y.-H.; Dong, J.-Z. Effect of Insulin Resistance on Recurrence after Radiofrequency Catheter Ablation in Patients with Atrial Fibrillation. Cardiovasc. Drugs Ther. 2022, 1–9. [Google Scholar] [CrossRef]
- Viviano, A.; Yin, X.; Zampetaki, A.; Fava, M.; Gallagher, M.; Mayr, M.; Jahangiri, M. Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation. EP Eur. 2018, 20, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Couselo-Seijas, M.; Lopez-Canoa, J.N.; Fernandez, L.; González-Melchor, L.; Seoane, L.M.; Duran-Muñoz, D.; Rozados-Luis, A.; González-Juanatey, J.R.; Rodríguez-Mañero, M.; Eiras, S. Inflammatory and lipid regulation by cholinergic activity in epicardial stromal cells from patients who underwent open-heart surgery. J. Cell. Mol. Med. 2020, 24, 10958–10969. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.; Pokushalov, E.; Ponomarev, D.; Bayramova, S.; Shabanov, V.; Losik, D.; Stenin, I.; Elesin, D.; Mikheenko, I.; Strelnikov, A.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Heart Rhythm. 2019, 16, 172–177. [Google Scholar] [CrossRef]
- Liu, Z.; Khuong, J.N.; Caruana, C.B.; Jackson, S.M.; Campbell, R.; Ramson, D.M.; Penny-Dimri, J.C.; Kluger, M.; Segal, R.; Perry, L.A. The Prognostic Value of Elevated Perioperative Neutrophil-Lymphocyte Ratio in Predicting Postoperative Atrial Fibrillation after Cardiac Surgery: A Systematic Review and Meta-Analysis. Heart Lung Circ. 2020, 29, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- López-Canoa, J.N.; Couselo-Seijas, M.; Baluja, A.; González-Melchor, L.; Rozados, A.; Llorente-Cortés, V.; de Gonzalo-Calvo, D.; Guerra, J.M.; Vilades, D.; Leta, R.; et al. Sex-related differences of fatty acid-binding protein 4 and leptin levels in atrial fibrillation. EP Eur. 2021, 23, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Sanna, T.; Ballman, K.V.; Robinson, N.B.; Hameed, I.; Audisio, K.; Rahouma, M.; Di Franco, A.; Soletti, G.J.; Lau, C.; et al. Posterior left pericardiotomy for the prevention of atrial fibrillation after cardiac surgery: An adaptive, single-centre, single-blind, randomised, controlled trial. Lancet 2021, 398, 2075–2083. [Google Scholar] [CrossRef]
- Agra-Bermejo, R.M.; Cacho-Antonio, C.; Gonzalez-Babarro, E.; Rozados-Luis, A.; Couselo-Seijas, M.; Gómez-Otero, I.; Varela-Román, A.; López-Canoa, J.N.; Gómez-Rodríguez, I.; Pata, M.; et al. A New Biomarker Tool for Risk Stratification in “de novo” Acute Heart Failure (OROME). Front. Physiol. 2022, 12, 2438. [Google Scholar] [CrossRef]
- Zakkar, M.; Ascione, R.; James, A.; Angelini, G.; Suleiman, M. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef]
- Arsenault, K.A.; Yusuf, A.M.; Crystal, E.; Healey, J.S.; Morillo, C.A.; Nair, G.M.; Whitlock, R.P. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst. Rev. 2013, 2021, CD003611. [Google Scholar] [CrossRef]
- Dunning, J.; Treasure, T.; Versteegh, M.; Nashef, S.A. Guidelines on the prevention and management of de novo atrial fibrillation after cardiac and thoracic surgery. Eur. J. Cardio-Thorac. Surg. 2006, 30, 852–872. [Google Scholar] [CrossRef]
Characteristics | Cohort (n = 123) |
---|---|
Age [years] mean ± SD | 65.5 ± 10.3 |
Male (%) | 93 (75.6%) |
Diabetes mellitus (%) | 39 (31.7%) |
EuroSCORE II [%] mean ± SD | 2.3 (4.9) |
Anti platelet (%) | 60 (48.8%) |
Beta-blockers (%) | 55 (44.7%) |
ACEI-ARB (%) | 66 (53.7%) |
Mineralocorticoid receptor antagonist (%) | 14 (11.4%) |
Statin (%) | 87 (70.7%) |
Ischemic heart disease (%) | 40 (32.5%) |
Previous heart failure admission (%) | 18 (14.6%) |
Hemoglobin [g/dL] mean ± SD | 13.7 ± 1.8 |
Creatinine [mg/dL] mean ± SD | 1.17 ± 1.3 |
NTproBNP [pg/mL] mean ± SD | 2022.1 ± 4096.2 |
LVEF [%] mean ± SD | 56.1 ± 13.0 |
Left atrial size [cm2] mean ± SD | 22.2 ± 5.7 |
TAPSE [mm] mean ± SD | 21.7 ± 3.9 |
CPB time [min] mean ± SD | 86.2 ± 81.3 |
Type of surgery (%) | Coronary bypass: 56 (45.5%) |
Aortic valve replacement: 46 (37.4%) | |
Mitral valve replacement: 6 (4.9%) | |
Other: 15 (12.2%) |
Complications during Peri-Operative Course | Cohort (n = 123) |
---|---|
Post operative atrial fibrillation | 43 (34.9%) |
Cardiac tamponade | 2 (1.6%) |
Bleeding requiring surgical re-exploration | 2 (1.6%) |
Renal replacement therapy | 3 (2.4%) |
Reintubation | 3 (2.4%) |
Death | 2 (1.6%) |
No POAF (n = 80) | POAF (n = 43) | p-Value | |
---|---|---|---|
Age [years] mean ± SD | 63.2 ± 11.0 | 68.77 ± 8.2 | 0.007 |
Male % | 79.7 | 69.2 | 0.213 |
Diabetes mellitus % | 36.5 | 17.9 | 0.041 |
Ischemic heart disease % | 36.5 | 28.2 | 0.376 |
Previous heart failure admission % | 12.2 | 23.1 | 0.132 |
CHADS2-VASc mean ± SD | 3.17 ± 1.4 | 3.14 ± 1.3 | 0.915 |
EuroSCORE II [%] median (interquartile range) | 1.1 (0.8–1.9) | 1.77 (1.19–2.39) | 0.004 |
LVEF [%] median (interquartile range) | 60 (45–66) | 60 (47–66) | 0.631 |
Left atrial size [cm2] median (interquartile range) | 21 (16–24) | 24 (19–27) | 0.014 |
TAPSE [mm] mean ± SD | 21.7 ± 4.2 | 22.1 ± 3.4 | 0.631 |
Anti platelet % | 35.4 | 14.2 | 0.188 |
Beta-blockers % | 33.6 | 13.3 | 0.134 |
ACEI-ARB % | 52.7 | 59.0 | 0.524 |
Mineralocorticoid receptor antagonist % | 10.8 | 12.8 | 0.750 |
Statin % | 77.0 | 59.0 | 0.053 |
Hematocrit [%] mean ± SD | 41.2 ± 5.3 | 40.6 ± 5.1 | 0.601 |
Creatinine [mg/dL] mean ± SD | 1.29 ± 1.7 | 0.96 ± 0.27 | 0.241 |
NTproBNP [pg/mL] median (interquartile range) | 580 (178–2423) | 766 (245–1684) | 0.277 |
CPB time [min] median (interquartile range) | 66 (0–118) | 121 (72–166) | 0.001 |
Adiposity markers on subcutaneous adipose tissue [a.u.] | |||
FABP4_SAT mean ± SD | 2.24 ± 0.095 | 2.25 ± 0.089 | 0.626 |
CD36_SAT mean ± SD | 2.02 ± 0.065 | 2.02 ± 0.041 | 0.561 |
Inflammatory cell markers on subcutaneous adipose tissue [a.u.] | |||
CD11b_SAT mean ± SD | 1.67 ± 0.472 | 1.69 ± 0.0.58 | 0.261 |
CD16_SAT mean ± SD | 1.69 ± 0.966 | 1.69 ± 0.096 | 0.649 |
DEFA3_SAT mean ± SD | 1.80 ± 0.153 | 1.75 ± 0.134 | 0.321 |
CD14_SAT mean ± SD | 1.79 ± 0.663 | 1.81 ± 0.098 | 0.827 |
CD3_SAT mean ± SD | 1.69 ± 0.095 | 1.89 ± 0.043 | 0.960 |
CD68_SAT mean ± SD | 1.75 ± 0.060 | 1.73 ± 0.023 | 0.159 |
Fibroblast cell markers on subcutaneous adipose tissue [a.u.] | |||
PREF1_SAT mean ± SD | 1.61 ± 0.084 | 1.62 ± 0.096 | 0.970 |
COL1A2_SAT mean ± SD | 1.92 ± 0.058 | 1.89 ± 0.043 | 0.224 |
Adiposity markers on epicardial adipose tissue [a.u.] | |||
FABP4_EAT mean ± SD | 2.15 ± 0.140 | 2.17 ± 0.108 | 0.045 |
CD36_EAT mean ± SD | 1.96 ± 0.076 | 1.96 ± 0.040 | 0.535 |
Inflammatory cell markers on epicardial adipose tissue [a.u.] | |||
CD11b_EAT mean ± SD | 1.67 ± 0.416 | 1.67 ± 0.030 | 0.624 |
CD16_EAT median (interquartile range) | 1.69 (1.62–1.81) | 1.66 (1.64–1.73) | 0.375 |
DEFA3_EAT mean ± SD | 1.82 ± 0.136 | 1.77 ± 0.148 | 0.292 |
CD14_EAT mean ± SD | 1.80 ± 0.062 | 1.80 ± 0.056 | 0.621 |
CD3_EAT mean ± SD | 1.66 ± 0.076 | 1.67 ± 0.062 | 0.782 |
CD68_EAT mean ± SD | 1.72 ± 0.072 | 1.71 ± 0.047 | 0.378 |
Fibroblast cell markers on epicardial adipose tissue [a.u.] | |||
PREF1_EAT mean ± SD | 1.63 ± 0.072 | 1.63 ± 0.078 | 0.802 |
COL1A2_EAT mean ± SD | 1.92 ± 0.050 | 1.90 ± 0.029 | 0.132 |
Plasma adiposity or metabolic markers [ng/mL] | |||
FABP4_plasma median (interquartile range) | 27 (16–51) | 34 (22–55) | 0.205 |
Leptin_plasma median (interquartile range) | 6 (3–13) | 7.5 (3.3–16) | 0.445 |
Insulin_plasma median (interquartile range) | 0.3 (0.1–0.5) | 0.33 (0.2–0.8) | 0.098 |
Plasma inflammatory markers | |||
ORM_plasma [mg/mL] median (interquartile range) | 1.04 (0.8–1.5) | 1.48 (0.9–1.99) | 0.015 |
c5a_plasma [ng/mL] median (interquartile range) | 3.4 (2.0–4.9) | 3.3 (2.1–5.1) | 0.949 |
Plasma fibrosis markers [ng/mL] | |||
GDF15_plasma median (interquartile range) | 1.2 (0.8–1.8) | 1.4 (0.9–2.1) | 0.294 |
Thrombospondin-2_plasma median (interquartile range) | 13.2 (8–20) | 15 (9.1–23.3) | 0.375 |
Plasma atrial stretching [ng/mL] | |||
ANP_plasma median (interquartile range) | 1.04 (0.8–1.5) | 9.5 (5.5–14) | 0.242 |
Circulating Neutrophils migratory activity and phenotype [a.u.] | |||
%CONTROL median (interquartile range) | 27 (22–43) | 24 (19–40) | 0.270 |
%C5a median (interquartile range) | 26 (17–39) | 29 (12–49) | 0.957 |
MPO_N median (interquartile range) | 1.62 (1.59–1.65) | 1.61 (1.57–1.71) | 0.801 |
CD16_N median (interquartile range) | 1.81 (1.72–1.85) | 1.86 (1.79–1.91) | 0.006 |
OLFM4_N median (interquartile range) | 1.62 (1.58–1.66) | 1.61 (1.53–1.82) | 1.000 |
CXCR2_N median (interquartile range) | 1.85 (1.80–1.89) | 1.88 (1.83–1.92) | 0.057 |
NGAL_N median (interquartile range) | 1.65 (1.58–1.71) | 1.69 (1.61–1.82) | 0.063 |
ICAM_N median (interquartile range) | 1.71 (1.67–1.75) | 1.68 (1.66–1.77) | 0.593 |
MMP9_N median (interquartile range) | 1.79 (1.75–1.83) | 1.79 (1.76–1.87) | 0.315 |
S100A9_N median (interquartile range) | 2.16 (2.07–2.24) | 2.16 (2.05–2.23) | 0.947 |
SELL_N median (interquartile range) | 1.92 (1.89–1.95) | 1.94 (1.90–1.97) | 0.297 |
CXCR4_N median (interquartile range) | 1.91 (1.86–1.97) | 1.89 (1.83–1.94) | 0.218 |
LF_N median (interquartile range) | 1.68 (1.62–1.72) | 1.65 (1.61–1.73) | 0.751 |
DFA3_N median (interquartile range) | 1.87 (1.80–1.96) | 1.83 (1.79–1.91) | 0.293 |
CD11b_N median (interquartile range) | 1.71 (1.70–1.76) | 1.72 (1.69–1.77) | 0.450 |
CD88_N median (interquartile range) | 1.77 (1.70–1.85) | 1.76 (1.71–1.83) | 0.867 |
Circulating monocytes phenotype [a.u.] | |||
MPO_M median (interquartile range) | 1.61 (1.58–1.70) | 1.61 (1.57–1.64) | 0.505 |
CD16_M median (interquartile range) | 1.81 (1.73–1.89) | 1.76 (1.71–1.85) | 0.320 |
OLFM4_M median (interquartile range) | 1.65 (1.58–1.75) | 1.58 (1.57–1.66) | 0.115 |
CXCR2_M median (interquartile range) | 1.81 (1.71–1.87) | 1.78 (1.71–1.87) | 0.682 |
NGAL_M median (interquartile range) | 1.68 (1.60–1.77) | 1.63 (1.61–1.65) | 0.179 |
ICAM_M median (interquartile range) | 1.65 (1.62–1.70) | 1.67 (1.62–1.71) | 0.740 |
MMP9_M median (interquartile range) | 1.76 (1.71–1.82) | 1.74 (1.69–1.81) | 0.360 |
S100A9_M median (interquartile range) | 2.1 (2.033–2.19) | 2.17 (2.08–2.21) | 0.090 |
SELL_M median (interquartile range) | 1.89 (1.86–1.94) | 1.89 (1.85–1.96) | 0.711 |
CXCR4_M median (interquartile range) | 1.86 (1.79–1.89) | 1.86 (1.80–1.94) | 0.711 |
LF_M median (interquartile range) | 1.71 (1.66–1.74) | 1.69 (1.64–1.71) | 0.129 |
DFA3_M median (interquartile range) | 1.88 (1.81–1.94) | 1.86 (1.82–1.89) | 0.407 |
CD11b_M median (interquartile range) | 1.70 (1.68–1.74) | 1.71 (1.68–1.72) | 0.711 |
CD88_M median (interquartile range) | 1.76 (1.70–1.85) | 1.72 (1.67–1.82) | 0.333 |
Female Sex (n = 30) | Male Sex (n= 93) | |||||
---|---|---|---|---|---|---|
No POAF (n = 16) | POAF (n = 14) | p-Value | No POAF (n = 64) | POAF (n = 29) | p-Value | |
Age [years] mean ± SD | 66 ± 13 | 72 ± 6 | 0.276 | 64 ± 10 | 65± 10 | 0.252 |
Diabetes mellitus (%) | 5 (33) | 0 (0) | 0.082 | 22 (37) | 7 (26) | 0.273 |
Ischemic heart disease (%) | 5 (33) | 1 (8) | 0.179 | 22 (37) | 10 (37) | 0.901 |
Previous heart failure admission (%) | 0 (0) | 4 (33) | 0.031 | 9 (15) | 5 (19) | 0.473 |
CHADS2-VASc mean ± SD | 3.5 ± 1.6 | 3.2 ± 1.1 | 0.666 | 4.1 ± 1.4 | 3.1 ± 1.4 | 0.354 |
EuroSCORE II [%] median (interquartile range) | 0.9 (0.8–1.4) | 1.8 (1.2–2.7) | 0.064 | 1.2 (0.8–1.8) | 1.7 (1.2–2.2) | 0.025 |
LVEF [%] median (interquartile range) | 60 (47–67) | 65 (62–71) | 0.120 | 59 (45–65) | 57 (43–65) | 0.533 |
Left atrial size [cm2] median (interquartile range) | 19 (16–24) | 24 (22–25) | 0.083 | 21 (16–24) | 23 (18–31) | 0.065 |
TAPSE [mm] mean ± SD | 21 ± 3.4 | 21 ± 3.7 | 0.928 | 22 ± 4 | 23 ± 3 | 0.187 |
Anti platelet (%) | 6 (67) | 3 (25) | 0.343 | 45 (76) | 18 (67) | 0.709 |
Beta-blockers (%) | 7 (47) | 3 (25) | 0.079 | 31 (52) | 12 (44) | 0.124 |
ACEI-ARB (%) | 6 (40) | 7 (58) | 0.177 | 33 (56) | 16 (59) | 0.959 |
Mineralocorticoid receptor antagonist (%) | 1 (7) | 1 (8) | 0.361 | 7 (12) | 4 (15) | 0.557 |
Statin (%) | 12 (80) | 5 (42) | 0.079 | 45 (76) | 18 (67) | 0.492 |
Hematocrit (%) mean ± SD | 38 ± 3.8 | 41 ± 3.7 | 0.063 | 42 ± 5.3 | 41.60 ± 5.6 | 0.223 |
Creatinine [mg/dL] ± SD | 1.2 ± 1.9 | 0.8 ± 0.1 | 0.783 | 1.3 ± 1.7 | 1.2 ± 1.4 | 0.628 |
NTproBNP [pg/mL] median (interquartile range) | 2923 (2503–3474) | 745 (477–2122) | 0.010 | 401 (145–1262) | 829 (197–1600) | 0.285 |
CPB time [min] median (interquartile range) | 68 (0–93) | 143 (96–163) | 0.007 | 63 (0–133) | 103 (0–168) | 0.053 |
Adiposity markers on epicardial adipose tissue [a.u.] | ||||||
FABP4_EAT mean ± SD | 2.22 ± 0.09 | 2.23 ± 0.04 | 0.770 | 2.13 ± 0.14 | 2.13 ± 0.11 | 0.238 |
CD36_EAT mean ± SD | 1.97 ± 0.03 | 1.98 ± 0.02 | 0.464 | 1.97 ± 0.08 | 1.94 ± 0.04 | 0.855 |
Inflammatory cell markers on epicardial adipose tissue [a.u.] | ||||||
CD11b_EAT mean ± SD | 1.69 ± 0.03 | 1.67 ± 0.03 | 0.464 | 1.67 ± 0.04 | 1.67 ± 0.03 | 0.765 |
CD16_EAT median (interquartile range) | 1.8 (1.7–1.8) | 1.6 (1.6–1.7) | 0.008 | 1.7 (1.6–1.8) | 1.7 (1.6–1.8) | 0.551 |
DEFA3_EAT mean ± SD | 1.94 ± 0.07 | 1.74 ± 0.13 | 0.013 | 1.80 ± 0.13 | 1.79 ± 0.16 | 0.976 |
CD3_EAT mean ± SD | 1.70 ± 0.03 | 1.68 ± 0.08 | 0.380 | 1.65 ± 0.08 | 1.66 ± 0.04 | 0.626 |
CD14_EAT mean ± SD | 1.86 ± 0.03 | 1.78 ± 0.05 | 0.019 | 1.79 ± 0.06 | 1.81 ± 0.05 | 0.417 |
CD68_EAT mean ± SD | 1.69 ± 0.05 | 1.71 ± 0.04 | 0.464 | 1.73 ± 0.07 | 1.70 ± 0.05 | 0.175 |
Fibroblast cell markers on epicardial adipose tissue [a.u.] | ||||||
PREF1_EAT mean ± SD | 1.67 ± 0.06 | 1.67 ± 0.08 | 0.884 | 1.61 ± 0.07 | 1.60 ± 0.06 | 0.683 |
COL1A2_EAT mean ± SD | 1.96 ± 0.04 | 1.89 ± 0.03 | 0.013 | 1.91 ± 0.05 | 1.90 ± 0.03 | 0.791 |
Plasma adiposity or metabolic markers [ng/mL] | ||||||
FABP4_plasma median (interquartile range) | 50 (11–69) | 47 (33–75) | 0.626 | 26 (16–47) | 31 (16–50) | 0.645 |
Leptin_plasma median (interquartile range) | 6 (4–18) | 14 (7–26) | 0.071 | 6 (3–12) | 4 (2–9) | 0.534 |
Insulin_plasma mean ± SD | 0.51 ± 0.87 | 0.45 (0.17–0.89) | 0.207 | 0.31 (0.1–0.5) | 0.32 (0.18–0.82) | 0.233 |
Plasma inflammatory markers | ||||||
ORM_plasma [mg/mL] median (interquartile range) | 1.0 (0.7–1.2) | 1.9 (1.4–2.1) | 0.001 | 1.0 (0.8–1.5) | 1.25 (0.8–1.7) | 0.445 |
c5a_plasma [ng/mL] median (interquartile range) | 3 (1.6–4.5) | 4 (2.5–4.9) | 0.435 | 3.4 (2.2–5.1) | 3.0 (1.6–1.7) | 0.856 |
Plasma fibrosis markers (ng/mL) | ||||||
GDF15_plasma median (interquartile range) | 1.2 (0.8–1.6) | 1.3 (1.0–2.1) | 0.440 | 1.2 (0.7–1.8) | 1.5 (0.9–2.1) | 0.486 |
Thrombospondin-2_plasma median (interquartile range) | 18 (9–22) | 15 (7–22) | 0.845 | 13 (7–19) | 14 (9–25) | 0.304 |
Plasma atrial stretching (ng/mL) | ||||||
ANP_plasma median (interquartile range) | 7 (5–10) | 11 (615) | 0.123 | 7 (7–13) | 8 (5–14) | 0.661 |
(a) | |||
Variable | Odds Ratio | 95% Confidence Interval (Lower-Upper) | p Value |
EuroScoreII (%) | 1.007 | (0.932–1.087) | 0.869 |
CPB TIME (min) | 1.007 | (1.002–1.013) | 0.006 |
PLASMA ORM (mg/mL) | 2.207 | (1.102–4.422) | 0.026 |
(b) | |||
Variable | Odds Ratio | 95% Confidence Interval (Lower-Upper) | p Value |
EuroScoreII (%) | 0.953 | (0.872–1.041) | 0.289 |
CPB TIME (min) | 1.008 | (1.002–1.013) | 0.005 |
PLASMA ORM (mg/mL) | 2.636 | (1.206–5.761) | 0.015 |
(c) | |||
Variable | Odds Ratio | 95% Confidence interval (lower-upper) | p Value |
EuroScoreII (%) | 0.749 | (0.303–1.851) | 0.531 |
CPB TIME (min) | 1.023 | (1.000–1.047) | 0.05 |
PLASMA ORM (mg/mL) | 2.639 | (1.455–4.788) | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Álvarez, D.; Fu, X.; Martínez-Cereijo, J.M.; Agra-Bermejo, R.M.; Veiras-Del Río, S.; Selas-Cobos, S.; Rial-Munin, M.V.; Eiras-Mariño, M.; Martínez-Salgado, A.; Taboada-Muñiz, M.; et al. Clinical Profiling and Biomarkers for Post-Operative Atrial Fibrillation Prediction in Patients Undergoing Cardiac Surgery. J. Clin. Med. 2023, 12, 3565. https://doi.org/10.3390/jcm12103565
Iglesias-Álvarez D, Fu X, Martínez-Cereijo JM, Agra-Bermejo RM, Veiras-Del Río S, Selas-Cobos S, Rial-Munin MV, Eiras-Mariño M, Martínez-Salgado A, Taboada-Muñiz M, et al. Clinical Profiling and Biomarkers for Post-Operative Atrial Fibrillation Prediction in Patients Undergoing Cardiac Surgery. Journal of Clinical Medicine. 2023; 12(10):3565. https://doi.org/10.3390/jcm12103565
Chicago/Turabian StyleIglesias-Álvarez, Diego, Xiaoran Fu, José Manuel Martínez-Cereijo, Rosa María Agra-Bermejo, Sonia Veiras-Del Río, Salomé Selas-Cobos, María Victoria Rial-Munin, María Eiras-Mariño, Adrián Martínez-Salgado, Manuel Taboada-Muñiz, and et al. 2023. "Clinical Profiling and Biomarkers for Post-Operative Atrial Fibrillation Prediction in Patients Undergoing Cardiac Surgery" Journal of Clinical Medicine 12, no. 10: 3565. https://doi.org/10.3390/jcm12103565
APA StyleIglesias-Álvarez, D., Fu, X., Martínez-Cereijo, J. M., Agra-Bermejo, R. M., Veiras-Del Río, S., Selas-Cobos, S., Rial-Munin, M. V., Eiras-Mariño, M., Martínez-Salgado, A., Taboada-Muñiz, M., Reija-López, L., Souaf, S., García-Carro, J., Fernández-González, Á. L., Adrio-Nazar, B., González-Juanatey, J. R., Eiras, S., & Rodríguez-Mañero, M. (2023). Clinical Profiling and Biomarkers for Post-Operative Atrial Fibrillation Prediction in Patients Undergoing Cardiac Surgery. Journal of Clinical Medicine, 12(10), 3565. https://doi.org/10.3390/jcm12103565