Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Hypertension. Available online: https://www.chp.gov.hk/en/healthtopics/content/25/35390.html# (accessed on 6 June 2022).
- Carey, R.M.; Calhoun, D.A.; Bakris, G.L.; Brook, R.D.; Daugherty, S.L.; Dennison-Himmelfarb, C.R.; Egan, B.M.; Flack, J.M.; Gidding, S.S.; Judd, E.; et al. Resistant hypertension: Detection, evaluation, and management: A scientific statement from the American Heart Association. Hypertension 2018, 72, e53–e90. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Whalen, K.L.; Stewart, R.D. Pharmacologic management of hypertension in patients with diabetes. Am. Fam. Physician 2008, 78, 1277–1282. [Google Scholar]
- Kung, K.; Chow, K.M.; Hui, E.M.; Leung, M.; Leung, S.Y.; Szeto, C.C.; Lam, A.; Li, P.K. Prevalence of complications among Chinese diabetic patients in urban primary care clinics: A cross-sectional study. BMC Fam. Pract. 2014, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; McAlister, F.A.; Walker, R.L.; Hemmelgarn, B.R.; Campbell, N.R. Cardiovascular outcomes in Framingham participants with diabetes: The importance of blood pressure. Hypertension 2011, 57, 891–897. [Google Scholar] [CrossRef]
- Weir, M.R. Albuminuria predicting outcome in diabetes: Incidence of microalbuminuria in Asia-Pacific rim. Kidney Int. Suppl. 2004, 92, S38–S39. [Google Scholar] [CrossRef]
- Hypertension: Practice Essentials, Background, Pathophysiology. Available online: https://emedicine.medscape.com/article/241381-overview (accessed on 6 June 2022).
- Al-Makki, A.; DiPette, D.; Whelton, P.K.; Murad, M.H.; Mustafa, R.A.; Acharya, S.; Beheiry, H.M.; Champagne, B.; Connell, K.; Cooney, M.T.; et al. Hypertension pharmacological treatment in adults: A World Health Organization guideline executive summary. Hypertension 2022, 79, 293–301. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.D.; Gardner, S.F.; White, C.M. The renal protective effects of angiotensin II receptor blockers in type 2 diabetes mellitus. Ann. Pharmacother. 2004, 38, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Prevention of type 2 diabetes mellitus through inhibition of the renin-angiotensin system. Drugs 2004, 64, 2537–2565. [Google Scholar] [CrossRef]
- Chen, R.; Suchard, M.A.; Krumholz, H.M.; Schuemie, M.J.; Shea, S.; Duke, J.; Pratt, N.; Reich, C.G.; Madigan, D.; You, S.C.; et al. Comparative first-line effectiveness and safety of ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers: A multinational cohort study. Hypertension 2021, 78, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Atkins, E.; Lv, J.; Bennett, A.; Neal, B.; Ninomiya, T.; Woodward, M.; MacMahon, S.; Turnbull, F.; Hillis, G.S.; et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: Updated systematic review and meta-analysis. Lancet 2016, 387, 435–443. [Google Scholar] [CrossRef]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels—Overview and meta-analyses of randomized trials. J. Hypertens. 2014, 32, 2296–2304. [Google Scholar] [CrossRef]
- Cushman, W.C.; Evans, G.W.; Byington, R.P.; Goff, D.C., Jr.; Grimm, R.H., Jr.; Cutler, J.A.; Simons-Morton, D.G.; Basile, J.N.; Corson, M.A.; Probstfield, J.L.; et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1575–1585. [Google Scholar]
- Pinto, E. Blood pressure and ageing. Postgrad. Med. J. 2007, 83, 109–114. [Google Scholar] [CrossRef]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley: Boston, MA, USA, 2002. [Google Scholar]
- Bliziotis, I.A.; Destounis, A.; Stergiou, G.S. Home versus ambulatory and office blood pressure in predicting target organ damage in hypertension: A systematic review and meta-analysis. J. Hypertens. 2012, 30, 1289–1299. [Google Scholar] [CrossRef]
- Ward, A.M.; Takahashi, O.; Stevens, R.; Heneghan, C. Home measurement of blood pressure and cardiovascular disease: Systematic review and meta-analysis of prospective studies. J. Hypertens. 2012, 30, 449–456. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, H.; Liu, X.; Mai, W.; Huang, Y. Clinical applications for out-of-office blood pressure monitoring. Ther. Adv. Chronic Dis. 2020, 11, 2040622320901660. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liang, X.; Pan, X.F.; Huang, C.; Kuang, J.; Lv, W.; Zeng, Q.; Mai, W.; Huang, Y. A prospective cohort study of home blood pressure monitoring based on an intelligent cloud platform (the HBPM-iCloud study): Rationale and design. Ther. Adv. Chronic Dis. 2020, 11, 2040622320933108. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.Y.F.; Yu, E.Y.T.; Fung, C.S.C.; Chin, W.Y.; Fong, D.Y.T.; Chan, A.K.C.; Lam, C.L.K. Do we need a patient-centered target for systolic blood pressure in hypertensive patients with type 2 diabetes mellitus? Hypertension 2017, 70, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Brunström, M.; Carlberg, B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: Systematic review and meta-analyses. BMJ 2016, 352, i717. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Joint Committee for Guideline Revision. 2018 Chinese guidelines for prevention and treatment of hypertension—A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 2019, 16, 182–241. [Google Scholar]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Xu, W.; Lu, N.; Cao, J.; Yu, S. Effects of intensive blood pressure lowering on mortality and cardiovascular and renal outcomes in type 2 diabetic patients: A meta-analysis. PLoS ONE 2019, 14, e0215362. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Deng, Y.; Wu, S.; Ren, J.; Sun, G.; Yang, J.; Jiang, Y.; Xu, X.; Wang, T.D.; et al. Trial of intensive blood-pressure control in older patients with hypertension. N. Engl. J. Med. 2021, 385, 1268–1279. [Google Scholar] [CrossRef]
- Chan, K.K.; Szeto, C.C.; Lum, C.C.M.; Ng, P.W.; Kong, A.P.S.; Lau, K.P.; Leung, J.Y.Y.; Lui, S.L.; Mo, K.L.; Mok, F.C.K.; et al. Hong Kong College of Physicians position statement and recommendations on the 2017 American College of Cardiology/American Heart Association and 2018 European Society of Cardiology/European Society of Hypertension guidelines for the management of arterial hypertension. Hong Kong Med. J. 2020, 26, 432–437. [Google Scholar]
- Cai, X.; Liu, X.; Sun, L.; He, Y.; Zheng, S.; Zhang, Y.; Huang, Y. Prediabetes and the risk of heart failure: A meta-analysis. Diabetes Obes. Metab. 2021, 23, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; Wen, W.; Qiu, M.; Liu, X.; Sun, L.; Zheng, H.; Cai, X.; Huang, Y. Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes. Metab. 2021, 23, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, B.; Rocco, M.; Lewis, C.E.; Oparil, S.; Lovato, L.C.; Cushman, W.C.; Bates, J.T.; Bello, N.A.; Aurigemma, G.; Fine, L.J.; et al. Effect of intensive blood pressure treatment on heart failure events in the systolic blood pressure reduction intervention trial. Circ. Heart Fail. 2017, 10, e003613. [Google Scholar] [CrossRef]
- Oh, G.C.; Cho, H.J. Blood pressure and heart failure. Clin. Hypertens. 2020, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Tsimploulis, A.; Lam, P.H.; Arundel, C.; Singh, S.N.; Morgan, C.J.; Faselis, C.; Deedwania, P.; Butler, J.; Aronow, W.S.; Yancy, C.W.; et al. Systolic blood pressure and outcomes in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2018, 3, 288–297. [Google Scholar] [CrossRef]
- Pinho-Gomes, A.C.; Rahimi, K. Management of blood pressure in heart failure. Heart 2019, 105, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Rahman, M.; Reboussin, D.M.; Craven, T.E.; Greene, T.; Kimmel, P.L.; Cushman, W.C.; Hawfield, A.T.; Johnson, K.C.; Lewis, C.E.; et al. Effects of intensive BP control in CKD. J. Am. Soc. Nephrol. 2017, 28, 2812–2823. [Google Scholar] [CrossRef]
- Dasgupta, I.; Zoccali, C. Is the KDIGO systolic blood pressure target <120 mm hg for chronic kidney disease appropriate in routine clinical practice? Hypertension 2022, 79, 4–11. [Google Scholar]
- Blood Pressure Lowering Treatment Trialists’ Collaboration. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: An individual participant-level data meta-analysis. Lancet 2021, 398, 1053–1064. [Google Scholar] [CrossRef]
- Byrne, C.; Pareek, M.; Vaduganathan, M.; Biering-Sørensen, T.; Qamar, A.; Pandey, A.; Olesen, T.B.; Olsen, M.H.; Bhatt, D.L. Intensive blood pressure lowering in different age categories: Insights from the Systolic Blood Pressure Intervention Trial. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 356–363. [Google Scholar] [CrossRef]
- Flint, A.C.; Conell, C.; Ren, X.; Banki, N.M.; Chan, S.L.; Rao, V.A.; Melles, R.B.; Bhatt, D.L. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N. Engl. J. Med. 2019, 381, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yano, Y.; Cho, S.M.J.; Park, J.H.; Park, S.; Lloyd-Jones, D.M.; Kim, H.C. Cardiovascular risk of isolated systolic or diastolic hypertension in young adults. Circulation 2020, 141, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Long, L.; Tan, L.; Shen, A.; Deng, M.; Peng, Y.; Yang, W.; Li, H.; Wei, Y.; Li, M.; et al. Isolated diastolic hypertension and risk of cardiovascular events: A systematic review and meta-analysis of cohort studies with 489,814 participants. Front. Cardiovasc. Med. 2021, 8, 810105. [Google Scholar] [CrossRef] [PubMed]
- Arima, H.; Anderson, C.; Omae, T.; Woodward, M.; Hata, J.; Murakami, Y.; Macmahon, S.; Neal, B.; Chalmers, J. Effects of blood pressure lowering on major vascular events among patients with isolated diastolic hypertension: The perindopril protection against recurrent stroke study (PROGRESS) trial. Stroke 2011, 42, 2339–2341. [Google Scholar] [CrossRef] [PubMed]
- Akioyamen, L.; Levine, M.; Sherifali, D.; O’Reilly, D.; Frankfurter, C.; Pullenayegum, E.; Goeree, R.; Tsoi, B. Cardiovascular and cerebrovascular outcomes of long-term angiotensin receptor blockade: Meta-analyses of trials in essential hypertension. J. Am. Soc. Hypertens. 2016, 10, 55–69.e51. [Google Scholar] [CrossRef]
- Heran, B.S.; Wong, M.M.; Heran, I.K.; Wright, J.M. Blood pressure lowering efficacy of angiotensin receptor blockers for primary hypertension. Cochrane Database Syst. Rev. 2008, 2008, CD003822. [Google Scholar] [CrossRef]
- Petrella, R.; Michailidis, P. Retrospective analysis of real-world efficacy of angiotensin receptor blockers versus other classes of antihypertensive agents in blood pressure management. Clin. Ther. 2011, 33, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Sun, S.; Huo, Y.; Yun, L.; Huang, S.; Li, G.; Yan, S. Effects of ACEIs versus ARBs on proteinuria or albuminuria in primary hypertension: A meta-analysis of randomized trials. Medicine 2015, 94, e1560. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, J.; Luo, T.; Wang, Y.; Yang, S.; Qing, H.; Cheng, Q.; Li, Q. Effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality and renal outcomes in patients with diabetes and albuminuria: A systematic review and meta-analysis. Kidney Blood Press. Res. 2018, 43, 768–779. [Google Scholar] [CrossRef]
- Uzu, T.; Araki, S.I.; Kashiwagi, A.; Haneda, M.; Koya, D.; Yokoyama, H.; Kida, Y.; Ikebuchi, M.; Nakamura, T.; Nishimura, M.; et al. Comparative effects of direct renin inhibitor and angiotensin receptor blocker on albuminuria in hypertensive patients with type 2 diabetes. A randomized controlled trial. PLoS ONE 2016, 11, e0164936. [Google Scholar] [CrossRef]
- Woo, K.S.; Nicholls, M.G. High prevalence of persistent cough with angiotensin converting enzyme inhibitors in Chinese. Br. J. Clin. Pharmacol. 1995, 40, 141–144. [Google Scholar] [PubMed]
- Raebel, M.A. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc. Ther. 2012, 30, e156–e166. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Mansfield, K.E.; Bhaskaran, K.; Nitsch, D.; Sørensen, H.T.; Smeeth, L.; Tomlinson, L.A. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: Cohort study. BMJ 2017, 356, j791. [Google Scholar] [CrossRef] [PubMed]
- Jamerson, K.; Weber, M.A.; Bakris, G.L.; Dahlöf, B.; Pitt, B.; Shi, V.; Hester, A.; Gupte, J.; Gatlin, M.; Velazquez, E.J. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N. Engl. J. Med. 2008, 359, 2417–2428. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Mann, J.F.; Yi, Q.; Zinman, B.; Dinneen, S.F.; Hoogwerf, B.; Hallé, J.P.; Young, J.; Rashkow, A.; Joyce, C.; et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001, 286, 421–426. [Google Scholar] [CrossRef]
- Perkovic, V.; Verdon, C.; Ninomiya, T.; Barzi, F.; Cass, A.; Patel, A.; Jardine, M.; Gallagher, M.; Turnbull, F.; Chalmers, J.; et al. The relationship between proteinuria and coronary risk: A systematic review and meta-analysis. PLoS Med. 2008, 5, e207. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Liu, S.; Zhou, M.; Zhang, L.; Zhao, M. Reduced kidney function, albuminuria, and risks for all-cause and cardiovascular mortality in China: A population-based cohort study. BMC Nephrol. 2017, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liang, Y.; Zhu, J.; Yang, Y.; Ma, W.; Zhang, G. Albumin-to-creatinine ratio as a predictor of all-cause mortality and hospitalization of congestive heart failure in Chinese elder hypertensive patients with high cardiovascular risks. Clin Hypertens 2018, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Li, Y.Y.; Lu, Y.H.; Dou, J.T.; Wang, S.Y.; Lu, J.M. Albuminuria independently predicts cardiovascular and all-cause mortality in a middle-aged and elderly Chinese population. Scand. J. Clin. Lab. Investig. 2012, 72, 281–286. [Google Scholar] [CrossRef]
- Fung, C.S.; Wan, E.Y.; Chan, A.K.; Lam, C.L. Association of estimated glomerular filtration rate and urine albumin-to-creatinine ratio with incidence of cardiovascular diseases and mortality in Chinese patients with type 2 diabetes mellitus—A population-based retrospective cohort study. BMC Nephrol. 2017, 18, 47. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–163. [Google Scholar]
- Carrero, J.J.; Grams, M.E.; Sang, Y.; Ärnlöv, J.; Gasparini, A.; Matsushita, K.; Qureshi, A.R.; Evans, M.; Barany, P.; Lindholm, B.; et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 2017, 91, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Toyama, T.; Hara, A.; Shimizu, M.; Kitajima, S.; Iwata, Y.; Sakai, N.; Furuichi, K.; Haneda, M.; Babazono, T.; et al. Combined changes in albuminuria and kidney function and subsequent risk for kidney failure in type 2 diabetes. BMJ Open Diabetes Res. Care 2021, 9, e002311. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; So, W.Y.; Kong, A.P.; Clarke, P.; Ho, C.S.; Lam, C.W.; Ng, M.H.; Lyu, R.R.; Yin, D.D.; Chow, C.C.; et al. End-stage renal disease risk equations for Hong Kong Chinese patients with type 2 diabetes: Hong Kong Diabetes Registry. Diabetologia 2006, 49, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Perkovic, V.; de Galan, B.E.; Zoungas, S.; Pillai, A.; Jardine, M.; Patel, A.; Cass, A.; Neal, B.; Poulter, N.; et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. 2009, 20, 1813–1821. [Google Scholar] [CrossRef]
- De Jong, P.E.; Gansevoort, R.T.; Bakker, S.J. Macroalbuminuria and microalbuminuria: Do both predict renal and cardiovascular events with similar strength? J. Nephrol. 2007, 20, 375–380. [Google Scholar] [PubMed]
- Hsieh, Y.T.; Tsai, M.J.; Tu, S.T.; Hsieh, M.C. Association of abnormal renal profiles and proliferative diabetic retinopathy and diabetic macular edema in an Asian population with type 2 diabetes. JAMA Ophthalmol. 2018, 136, 68–74. [Google Scholar] [CrossRef]
- Ye, H.; Huo, Z.; Ye, P.; Xiao, G.; Zhang, Z.; Xie, C.; Kong, Y. Comparative proteinuria management of different angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for normotensive patients with CKD: A Bayesian network meta-analysis. PeerJ 2020, 8, e8575. [Google Scholar] [CrossRef]
- He, D.; Zhang, Y.; Zhang, W.; Xing, Y.; Guo, Y.; Wang, F.; Jia, J.; Yan, T.; Liu, Y.; Lin, S. Effects of ACE inhibitors and angiotensin receptor blockers in normotensive patients with diabetic kidney disease. Horm. Metab. Res. 2020, 52, 289–297. [Google Scholar] [CrossRef]
- Mann, J.F.; Schmieder, R.E.; McQueen, M.; Dyal, L.; Schumacher, H.; Pogue, J.; Wang, X.; Maggioni, A.; Budaj, A.; Chaithiraphan, S.; et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): A multicentre, randomised, double-blind, controlled trial. Lancet 2008, 372, 547–553. [Google Scholar] [CrossRef]
- Parving, H.H.; Lehnert, H.; Bröchner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 2001, 345, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef]
- Viberti, G.; Wheeldon, N.M. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: A blood pressure-independent effect. Circulation 2002, 106, 672–678. [Google Scholar] [CrossRef]
- Abraham, H.M.; White, C.M.; White, W.B. The comparative efficacy and safety of the angiotensin receptor blockers in the management of hypertension and other cardiovascular diseases. Drug Saf. 2015, 38, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Zandbergen, A.A.; Vogt, L.; de Zeeuw, D.; Lamberts, S.W.; Ouwendijk, R.J.; Baggen, M.G.; Bootsma, A.H. Change in albuminuria is predictive of cardiovascular outcome in normotensive patients with type 2 diabetes and microalbuminuria. Diabetes Care 2007, 30, 3119–3121. [Google Scholar] [CrossRef] [PubMed]
- Eijkelkamp, W.B.; Zhang, Z.; Remuzzi, G.; Parving, H.H.; Cooper, M.E.; Keane, W.F.; Shahinfar, S.; Gleim, G.W.; Weir, M.R.; Brenner, B.M.; et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: Post hoc analysis from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. J. Am. Soc. Nephrol. 2007, 18, 1540–1546. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 11. Chronic kidney disease and risk management: Standards of medical care in diabetes-2022. Diabetes Care 2022, 45, S175–S184. [Google Scholar] [CrossRef]
- MacLeod, J.M.; Lutale, J.; Marshall, S.M. Albumin excretion and vascular deaths in NIDDM. Diabetologia 1995, 38, 610–616. [Google Scholar] [CrossRef]
- Atkins, R.C.; Briganti, E.M.; Lewis, J.B.; Hunsicker, L.G.; Braden, G.; Champion de Crespigny, P.J.; DeFerrari, G.; Drury, P.; Locatelli, F.; Wiegmann, T.G.; et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am. J. Kidney Dis. 2005, 45, 281–287. [Google Scholar] [CrossRef]
- Shin, J.I.; Chang, A.R.; Grams, M.E.; Coresh, J.; Ballew, S.H.; Surapaneni, A.; Matsushita, K.; Bilo, H.J.G.; Carrero, J.J.; Chodick, G.; et al. Albuminuria testing in hypertension and diabetes: An individual-participant data meta-analysis in a global consortium. Hypertension 2021, 78, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Chan, F.L.; Li, Y.C.; Chen, X.R.C. Therapeutic inertia in proteinuria management among type 2 diabetes (T2DM) patients in primary care settings: Prevalence and associated risk factors. BMC Fam. Pract. 2021, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Christofides, E.A.; Desai, N. Optimal early diagnosis and monitoring of diabetic kidney disease in type 2 diabetes mellitus: Addressing the barriers to albuminuria testing. J. Prim. Care Community Health 2021, 12, 21501327211003683. [Google Scholar] [CrossRef] [PubMed]
- Polkinghorne, K.R. Detection and measurement of urinary protein. Curr. Opin. Nephrol. Hypertens. 2006, 15, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P.; Newall, R.G.; Boyd, J.C. Use of protein:creatinine ratio measurements on random urine samples for prediction of significant proteinuria: A systematic review. Clin. Chem. 2005, 51, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Ewald, B.; Attia, J. Which test to detect microalbuminuria in diabetic patients? A systematic review. Aust. Fam. Physician 2004, 33, 565–567, 571. [Google Scholar] [PubMed]
- Chadban, S.; Howell, M.; Twigg, S.; Thomas, M.; Jerums, G.; Cass, A.; Campbell, D.; Nicholls, K.; Tong, A.; Mangos, G.; et al. The CARI guidelines. Assessment of kidney function in type 2 diabetes. Nephrology 2010, 15 (Suppl. S1), S146–S161. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Tummalapalli, S.L.; Boulware, L.E.; Grams, M.E.; Ix, J.H.; Jha, V.; Kengne, A.P.; Madero, M.; Mihaylova, B.; Tangri, N.; et al. The case for early identification and intervention of chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021, 99, 34–47. [Google Scholar] [CrossRef]
- Tang, S.C.; Wong, A.K.; Mak, S.K. Clinical practice guidelines for the provision of renal service in Hong Kong: General nephrology. Nephrology 2019, 24 (Suppl. S1), 9–26. [Google Scholar] [CrossRef]
- Lambers Heerspink, H.J.; Gansevoort, R.T.; Brenner, B.M.; Cooper, M.E.; Parving, H.H.; Shahinfar, S.; de Zeeuw, D. Comparison of different measures of urinary protein excretion for prediction of renal events. J. Am. Soc. Nephrol. 2010, 21, 1355–1360. [Google Scholar] [CrossRef]
- Cai, X.; Sun, L.; Liu, X.; Zhu, H.; Zhang, Y.; Zheng, S.; Huang, Y. Non-alcoholic fatty liver disease is associated with increased risk of chronic kidney disease. Ther. Adv. Chronic Dis. 2021, 12, 20406223211024361. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wen, W.; Xie, D.; Qiu, M.; Cai, X.; Zheng, S.; Huang, Y. Association between non-alcoholic fatty liver disease and risk of incident heart failure: A meta-analysis of observational studies. Ther. Adv. Chronic Dis. 2022, 13, 20406223221119626. [Google Scholar] [CrossRef]
- Ma, W.; Wu, W.; Wen, W.; Xu, F.; Han, D.; Lyu, J.; Huang, Y. Association of NAFLD with cardiovascular disease and all-cause mortality: A large-scale prospective cohort study based on UK biobank. Ther. Adv. Chronic Dis. 2022, 13, 20406223221122478. [Google Scholar] [CrossRef] [PubMed]
- Hong Kong Reference Framework for Diabetes Care for Adults in Primary Care Settings—Revised Edition 2021. Available online: https://www.healthbureau.gov.hk/pho/rfs/english/reference_framework/diabetes_care.html (accessed on 26 April 2023).
- Gan, L.; Lyu, X.; Yang, X.; Zhao, Z.; Tang, Y.; Chen, Y.; Yao, Y.; Hong, F.; Xu, Z.; Chen, J.; et al. Application of angiotensin receptor-neprilysin inhibitor in chronic kidney disease patients: Chinese expert consensus. Front. Med. 2022, 9, 877237. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.K.; Szeto, C.C. Mineralocorticoid receptor antagonist for renal protection. Ren. Fail. 2012, 34, 810–817. [Google Scholar] [CrossRef] [PubMed]
Discussion Area | No. | Consensus Statement |
---|---|---|
Part I: Blood pressure (BP) targets based on cardiovascular (CV)/renal benefits | 1 | Home BP, in addition to office BP, should be considered for guiding treatment; home BP is generally considered 5 mmHg lower than office BP. |
2 | In patients with type 2 diabetes mellitus (T2DM), hypertension is diagnosed when office BP is ≥140/90 mmHg and home BP is ≥135/85. | |
3 | In patients with T2DM and hypertension on antihypertensive drug treatment, the targets should be <130/80 mmHg for office BP and <125/75 mmHg for home BP. | |
4 | In patients with myocardial infarction (MI), other acute coronary syndromes, or stroke, the targets should be <130/80 mmHg for office BP and <125/75 mmHg for home BP. | |
5 | In patients with heart failure or chronic kidney disease (CKD), the targets should be <130/80 mmHg for office BP and <125/75 mmHg for home BP. | |
6 | In patients aged ≥ 80 years, the targets may be <140/90 mmHg for office BP and <135/85 for home BP. | |
Part II: Management of isolated systolic (ISH)/diastolic (IDH) hypertension | 7 | Both ISH (defined as systolic BP ≥ 140 mmHg and diastolic BP < 90 mmHg) and IDH (defined as systolic BP < 140 mmHg and diastolic BP ≥ 90 mmHg) should be treated to reduce the risks of MI, stroke, heart failure, and CV mortality. |
Part III: Roles of angiotensin II receptor blockers (ARBs) | 8 | In patients with T2DM and hypertension, ARBs are the preferred antihypertensive drug regimens, considering their proven efficacy in reducing BP, as well as urine protein levels, the risk of end-stage renal disease (ESRD), and progression of nephropathy. |
9 | For the treatment of hypertension, ARBs are preferred over angiotensin-converting enzyme inhibitors (ACEIs), considering the frequent side effect of dry cough associated with ACEIs, and the lack of evident differences in the BP lowering efficacy between ARBs and ACEIs. | |
10 | Combination therapy with an ARB and a calcium channel blocker can be considered for patients with inadequate BP control. | |
Part IV: Implications of albuminuria for CV/renal events and treatment choices | 11 | Regardless of the presence or absence of T2DM or hypertension, albuminuria should be treated as early as possible, considering the significant and continuous association between the degree of albuminuria and the subsequent risks of major CV events, ESRD, and proliferative retinopathy; these risks are further elevated in hypertensive patients with T2DM and albuminuria. |
12 | ARBs are the favored regimens for the treatment of albuminuria in patients with T2DM and hypertension. | |
13 | For the treatment of albuminuria in patients with hypertension and T2DM, it is preferred to use the ARBs that are supported by most available evidence in reducing the risk of doubling of serum creatinine and renal impairment. | |
14 | Although the treatment of albuminuria in normotensive patients with T2DM remains uncertain, ARBs with proven renoprotective effects may be prescribed. | |
Part V: Roles and tools of screening for microalbuminuria | 15 | Regular screening for microalbuminuria in people with T2DM or hypertension is recommended for the monitoring of disease progression, assessment of treatment responses, and guidance in treatment decision-making. |
16 | Considering the balance between convenience and accuracy, a spot urine test for the measurement of urine albumin-to-creatinine ratio (UACR) is the favored screening tool for microalbuminuria; to confirm a diagnosis, two of three UACR tests performed within a 3- to 6-month period should be abnormal. | |
17 | In patients with T2DM or hypertension, UACR and estimated glomerular filtration rate should be assessed at least annually to monitor disease progression and treatment response. |
Study | Participant | ARB (n) | Comparator (n) | Primary Outcomes | Main Results |
---|---|---|---|---|---|
ONTARGET [73] | Patients aged ≥55 with established atherosclerotic vascular disease or with diabetes with end-organ damage | Telmisartan 80 mg/day (8541) | Telmisartan/Ramipril combination 80/10 mg/day (8502) Ramipril 10 mg/day (8576) | Composite of dialysis, doubling of serum creatinine, and death | Composite primary renal outcome was similar with telmisartan (HR, 1.00; 95% CI, 0.92–1.09), but increased with combination therapy (HR, 1.09; 95% CI, 1.01–1.18; p = 0.037) |
IRMA-2 [74] | Hypertensive patients with T2DM and microalbuminuria | Irbesartan 150 mg/day (195)/Irbesartan 300 mg/day (194) | Placebo (201) | Progression to diabetic nephropathy based on increases in proteinuria | Reduction of progression to diabetic nephropathy (irbesartan 300 mg HR, 0.30; p < 0.001; irbesartan 150 mg HR, 0.61; p = 0.08) |
IDNT [75] | Hypertensive patients with T2DM and nephropathy | Irbesartan 300 mg/day (579) | Amlodipine 10 mg/day (567) Placebo (569) | Doubling of serum creatinine, development of ESRD, or death from any cause | Irbesartan reduced the incidence of doubling of serum creatinine vs. amlodipine (37% RR; p < 0.001) and placebo (33% RR; p = 0.003) |
RENAAL [76] | Hypertensive patients with T2DM and nephropathy | Losartan 100 mg/day (751) | Placebo (762) | Doubling of baseline serum creatinine, development of ESRD, or death from any cause | Losartan reduced the incidence of doubling of serum creatinine (25% RR; p = 0.006) and incidence of ESRD (28% RR; p = 0.002) vs. placebo |
MARVAL [77] | Patients with T2DM and microalbuminuria, with or without hypertension | Valsartan 80 mg | Amlodipine 5 mg | % Change in UAER from baseline to 24 weeks | Valsartan lowered UAER more effectively than amlodipine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, P.C.-Y.; Chan, S.C.-P.; Chan, W.-B.; Ho, K.K.-L.; Leung, G.T.-C.; Lo, S.H.-K.; Mak, G.Y.-K.; Tse, T.-S. Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus. J. Clin. Med. 2023, 12, 3403. https://doi.org/10.3390/jcm12103403
Tong PC-Y, Chan SC-P, Chan W-B, Ho KK-L, Leung GT-C, Lo SH-K, Mak GY-K, Tse T-S. Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2023; 12(10):3403. https://doi.org/10.3390/jcm12103403
Chicago/Turabian StyleTong, Peter Chun-Yip, Susanna Chi-Pun Chan, Wing-Bun Chan, Kelvin Kai-Leung Ho, Godwin Tat-Chi Leung, Stanley Hok-King Lo, Gary Yiu-Kwong Mak, and Tak-Sun Tse. 2023. "Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus" Journal of Clinical Medicine 12, no. 10: 3403. https://doi.org/10.3390/jcm12103403
APA StyleTong, P. C.-Y., Chan, S. C.-P., Chan, W.-B., Ho, K. K.-L., Leung, G. T.-C., Lo, S. H.-K., Mak, G. Y.-K., & Tse, T.-S. (2023). Consensus Statements from the Diabetologists & Endocrinologists Alliance for the Management of People with Hypertension and Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 12(10), 3403. https://doi.org/10.3390/jcm12103403