Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Respiratory Sounds Analysis
2.5. Statistical Analysis
3. Results
3.1. Crackles
3.1.1. Within-Day Reliability
3.1.2. Between-Day Reliability
3.1.3. Construct Validity
3.2. Wheezes
3.2.1. Within-Day Reliability
3.2.2. Between-Day Reliability
3.2.3. Construct Validity
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, A.E. Bronchiectasis—A Clinical Review. N. Engl. J. Med. 2022, 387, 533–545. [Google Scholar] [CrossRef]
- Aliberti, S.; Masefield, S.; Polverino, E.; De Soyza, A.; Loebinger, M.R.; Menendez, R.; Ringshausen, F.C.; Vendrell, M.; Powell, P.; Chalmers, J.D. Research priorities in bronchiectasis: A consensus statement from the EMBARC Clinical Research Collaboration. Eur. Respir. J. 2016, 48, 632–647. [Google Scholar] [CrossRef]
- Sami, R.; Zohal, M.; Khanali, F.; Esmailzadehha, N. Quality of life and its determinants in patients with noncystic fibrosis bronchiectasis. J. Res. Med. Sci. 2021, 26, 27. [Google Scholar]
- Goeminne, P.C.; Hernandez, F.; Diel, R.; Filonenko, A.; Hughes, R.; Juelich, F.; Solomon, G.M.; Upton, A.; Wichmann, K.; Xu, W.; et al. The economic burden of bronchiectasis—known and unknown: A systematic review. BMC Pulm. Med. 2019, 19, 54. [Google Scholar] [CrossRef]
- Congrete, S.; Metersky, M.L. Telemedicine and Remote Monitoring as an Adjunct to Medical Management of Bronchiectasis. Life 2021, 11, 1196. [Google Scholar] [CrossRef]
- Brill, S.E.; Patel, A.R.; Singh, R.; Mackay, A.J.; Brown, J.S.; Hurst, J.R. Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: A prospective observational cohort study. Respir. Res. 2015, 16, 16. [Google Scholar] [CrossRef]
- Bohadana, A.; Izbicki, G.; Kraman, S.S. Fundamentals of lung auscultation. N. Engl. J. Med. 2014, 370, 2053. [Google Scholar] [CrossRef]
- Marques, A.; Oliveira, A.; Jácome, C. Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: A systematic review. Respir. Care 2014, 59, 765–776. [Google Scholar] [CrossRef]
- Key, A.L.; Holt, K.; Warburton, C.J.; Walker, P.P.; Earis, J.E. Use of zonal distribution of lung crackles during inspiration and expiration to assess disease severity in idiopathic pulmonary fibrosis. Postgrad. Med. J. 2018, 94, 381–385. [Google Scholar] [CrossRef]
- Melbye, H.; Aviles Solis, J.C.; Jacome, C.; Pasterkamp, H. Inspiratory crackles-early and late-revisited: Identifying COPD by crackle characteristics. BMJ Open Respir. Res. 2021, 8, e000852. [Google Scholar] [CrossRef]
- Jacome, C.; Marques, A. Computerized respiratory sounds in patients with COPD: A systematic review. COPD 2015, 12, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Granero, M.A.; Sanchez-Morillo, D.; Leon-Jimenez, A. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD. Sensors 2015, 15, 26978–26996. [Google Scholar] [CrossRef] [PubMed]
- Jacome, C.; Oliveira, A.; Marques, A. Computerized respiratory sounds: A comparison between patients with stable and exacerbated COPD. Clin. Respir. J 2017, 11, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Jácome, C.; Marques, A. Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD. Respir. Care 2017, 62, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Cortina, B.; Oliveira, A.; Polverino, E.; Gómez-Trullén, E.M.; Torres, A.; Marques, A. Feasibility of computerized adventitious respiratory sounds to assess the effects of airway clearance techniques in patients with bronchiectasis. Physiother. Theory Pract. 2019, 36, 1–11. [Google Scholar] [CrossRef]
- Jácome, C.; Marques, A. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD. Respir. Care 2015, 60, 1264–1275. [Google Scholar] [CrossRef]
- Oliveira, A.; Lage, S.; Rodrigues, J.; Marques, A. Reliability, validity and minimal detectable change of computerized respiratory sounds in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2018, 12, 1838–1848. [Google Scholar] [CrossRef]
- Marques, A.; Bruton, A.; Barney, A. The reliability of lung crackle characteristics in cystic fibrosis and bronchiectasis patients in a clinical setting. Physiol. Meas. 2009, 30, 903–912. [Google Scholar] [CrossRef]
- Terwee, C.B.; Mokkink, L.B.; Knol, D.L.; Ostelo, R.W.; Bouter, L.M.; de Vet, H.C. Rating the methodological quality in systematic reviews of studies on measurement properties: A scoring system for the COSMIN checklist. Qual. Life Res. 2012, 21, 651–657. [Google Scholar] [CrossRef]
- Kottner, J.; Audige, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hrobjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Int. J. Nurs. Stud. 2011, 48, 661–671. [Google Scholar] [CrossRef]
- Martínez-García, M.; Máiz, L.; Olveira, C.; Girón, R.M.; de la Rosa, D.; Blanco, M.; Canton, R.; Vendrell, M.; Polverino, E.; de Gracia, J.; et al. Spanish Guidelines on the Evaluation and Diagnosis of Bronchiectasis in Adults. Arch. Bronconeumol. 2018, 54, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, S.J.; Floto, A.R.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019, 74 (Suppl. S1), 1–69. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Haworth, C.S.; Aliberti, S.; Barker, A.; Blasi, F.; Boersma, W.; Chalmers, J.D.; De Soyza, A.; Dimakou, K.; Elborn, J.S.; et al. Pulmonary exacerbation in adults with bronchiectasis: A consensus definition for clinical research. Eur. Respir. J. 2017, 49, 1700051. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Cortina, B.; Alcaraz-Serrano, V.; Torres, A.; Polverino, E. Reliability and Minimum Important Difference of Sputum Weight in Bronchiectasis. Respir. Care 2020, 65, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, G.; Buxó, M.; de Gracia, J.; Olveira, C.; Martinez-Garcia, M.A.; Giron, R.; Polverino, E.; Alvarez, A.; Birring, S.S.; Vendrell, M. Validation of a Spanish version of the Leicester Cough Questionnaire in non-cystic fibrosis bronchiectasis. Chron. Respir. Dis. 2016, 13, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Olveira, C.; Olveira, G.; Espildora, F.; Giron, R.M.; Muñoz, G.; Quittner, A.L.; Martinez-Garcia, M.-A. Validation of a Quality of Life Questionnaire for Bronchiectasis: Psychometric analyses of the Spanish QOL-B-V3.0. Qual. Life Res. 2014, 23, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vergara, A.; Giron-Moreno, R.M.; Martinez-Garcia, M.A. Dyspnea in bronchiectasis: A complex symptom of a complex disease. J. Bras. Pneumol. 2020, 46, e20200281. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Rossi, M.; Sovijärvi, A.R.; Piirilä, P.; Vannuccini, L.; Dalmasso, F.J.V. Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur. Respir. Rev. 2000, 10, 611–615. [Google Scholar]
- Pinho, C.; Oliveira, A.; Jácome, C.; Rodrigues, J.A.M. Integrated approach for automatic crackle detection based on fractal dimension and box filtering. Int. J. Reliab. Qual. E-Healthc. 2016, 5, 34–50. [Google Scholar] [CrossRef]
- Taplidou, S.A.; Hadjileontiadis, L.J. Wheeze detection based on time-frequency analysis of breath sounds. Comput. Biol. Med. 2007, 37, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J. Reliability of measurement. In Design and Analysis of Clinical Experiments; Fleiss, J., Ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 1–32. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Domholdt, E. Physical Therapy Research: Principles and Applications; Saunders: Phyladelphia, PA, USA, 2000. [Google Scholar]
- Chalmers, J.D.; Elborn, J.S. Reclaiming the name ‘bronchiectasis’. Thorax 2015, 70, 399–400. [Google Scholar] [CrossRef]
- Horimasu, Y.; Ohshimo, S.; Yamaguchi, K.; Sakamoto, S.; Masuda, T.; Nakashima, T.; Shintaro, M.; Hiroshi, I.; Kazunori, F.; Hironobu, H.; et al. A machine-learning based approach to quantify fine crackles in the diagnosis of interstitial pneumonia: A proof-of-concept study. Medicine 2021, 100, e24738. [Google Scholar] [CrossRef]
- Piirilä, P.; Sovijärvi, A. Crackles: Recording, analysis and clinical significance. Eur. Respir. J. 1995, 8, 2139–2148. [Google Scholar] [CrossRef]
- Flume, P.A.; Chalmers, J.D.; Olivier, K.N. Advances in bronchiectasis: Endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018, 392, 880–890. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Aksamit, T.R.; Agusti, A. Clinical Fingerprinting: A Way to Address the Complexity and Heterogeneity of Bronchiectasis in Practice. Am. J. Respir. Crit. Care Med. 2020, 201, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Meslier, N.; Charbonneau, G.; Racineux, J.L. Wheezes. Eur. Respir. J. 1995, 8, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Fiz, J.A.; Jané, R.; Homs, A.; Izquierdo, J.; García, M.A.; Morera, J. Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 2002, 122, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Rodrigues, J.; Marques, A. Enhancing our understanding of computerised adventitious respiratory sounds in different COPD phases and healthy people. Respir. Med. 2018, 138, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.D.; Latzin, P.; Verbanck, S.; Hall, G.L.; Horsley, A.; Gappa, M.; Thamrin, C.; Arets, H.G.M.; Aurora, P.; Fuchs, S.I.; et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur. Respir. J. 2013, 41, 507–522. [Google Scholar] [CrossRef]
- Geerinck, A.; Alekna, V.; Beaudart, C.; Bautmans, I.; Cooper, C.; De Souza Orlandi, F.; Konstantynowicz, J.; Montero-Errasquín, B.; Topinková, E.; Tsekoura, M.; et al. Standard error of measurement and smallest detectable change of the Sarcopenia Quality of Life (SarQoL) questionnaire: An analysis of subjects from 9 validation studies. PLoS ONE 2019, 14, e0216065. [Google Scholar] [CrossRef]
Within-Day Analysis (n = 28) | Between-Day and Validity Analysis (n = 25) | |
---|---|---|
Age, years, mean (SD) | 62 (12) | 61 (12) |
Male, n (%) | 9 (32) | 7 (28) |
BMI (kg/m2), median [P25–P75] | 24.9 [22.0–26.4] | 24.9 [21.2–26.4] |
Aetiology of bronchiectasis, n (%) | ||
Post-infection | 11 (39) | 9 (36) |
Idiopathic | 7 (25) | 6 (24) |
Associated other respiratory disease | 6 (21) | 6 (24) |
Others | 4 (15) | 4 (16) |
FEV1 (% predicted), mean (SD) | 77 (26) | 78 (24) |
Exacerbations in the last year, median [P25–P75] | 4 [2,3,4,5] | 4 [2,3,4,5] |
Radiological extension *, n (%) | ||
≥3 lobes affected | 20 (71) | 17 (68) |
BSI score (0–26), median [P25–P75] | 7.5 [5.0–12.0] | 7.0 [5.0–12.0] |
BSI Classification, n (%) | ||
Mild (0–4) | 5 (18) | 5 (20) |
Moderate (5–8) | 13 (46) | 12 (48) |
Severe (≥9) | 10 (36) | 8 (32) |
Long-term inhaled steroid treatment, n (%) | 14 (50) | 12 (48) |
Long-term nebulised muco-active treatment, n (%) | 4 (14) | 3 (12) |
Long-term antibiotic treatment, n (%) | ||
Oral | 11 (39) | 10 (40) |
Nebulised | 9 (32) | 8 (32) |
24 h sputum volume (mL), median [P25–P75] | 11.0 [4.7–25.0] | 11.2 [4.8–25.7] |
QoL-B-Respiratory symptoms (0–100), mean (SD) | 64.8 (17.7) | 64.7 (18.4) |
Within-Day Crackles Reliability (n = 28) | |||||||||
All Chest Locations | Anterior Chest Locations | Posterior Chest Locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of crackles | |||||||||
Inspiratory phase | 0.66 (0.39–0.83) | 0.58 | 2.12 | 0.79 (0.60–0.90) | 0.60 | 2.14 | 0.42 (0.05–0.68) | 0.99 | 2.76 |
Expiratory phase | 0.79 (0.60–0.90) | 1.24 | 3.08 | 0.55 (0.24–0.76) | 2.48 | 4.37 | 0.89 (0.79–0.95) | 0.80 | 2.47 |
Complete respiratory cycle | 0.87 (0.74–0.94) | 1.26 | 3.11 | 0.74 (0.51–0.87) | 2.19 | 4.10 | 0.77 (0.55–0.88) | 1.58 | 3.49 |
Between-day crackles reliability (n = 25) | |||||||||
All chest locations | Anterior chest locations | Posterior chest locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of crackles | |||||||||
Inspiratory phase | 0.85 (0.69–0.92) | 0.46 | 1.89 | 0.73 (0.49–0.87) | 0.68 | 2.28 | 0.76 (0.53–0.88) | 0.73 | 2.38 |
Expiratory phase | 0.55 (0.22–0.77) | 1.48 | 3.37 | 0.43 (0.05–0.70) | 2.04 | 3.96 | 0.67 (0.39–0.84) | 1.44 | 3.32 |
Complete respiratory cycle | 0.70 (0.43–0.86) | 1.81 | 3.73 | 0.64 (0.35–0.82) | 2.10 | 4.02 | 0.74 (0.50–0.88) | 1.84 | 3.76 |
FEV1% Pred. | Sputum (mL) | LCQ | QoL-B Resp. | Radiological Severity # | BSI | |
---|---|---|---|---|---|---|
Total number of crackles | ||||||
Inspiratory phase | 0.13 | 0.41 * | −0.14 | 0.27 | 0.04 | 0.27 |
Expiratory phase | 0.08 | 0.26 | 0.09 | 0.35 | −0.04 | −0.31 |
Complete respiratory cycle | 0.11 | 0.41 * | −0.0 | 0.31 | −0.01 | −0.33 |
Total number of wheezes | ||||||
Inspiratory phase | −0.05 | 0.53 * | 0.00 | 0.04 | −0.02 | −0.36 |
Expiratory phase | −0.00 | 0.46 * | −0.02 | 0.12 | −0.11 | −0.34 |
Complete respiratory cycle | 0.00 | 0.46 * | −0.0 | 0.11 | −0.10 | −0.35 |
Occupation rate (%) | ||||||
Inspiratory phase | 0.04 | 0.48 * | −0.02 | −0.02 | −0.05 | −0.32 |
Expiratory phase | −0.02 | 0.42 * | −0.05 | 0.03 | −0.10 | −0.27 |
Complete respiratory cycle | −0.01 | 0.44 * | −0.04 | 0.03 | −0.03 | −0.35 |
Within-Day Wheezes Reliability (n = 28) | |||||||||
All Chest Locations | Anterior Chest Locations | Posterior Chest Locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of wheezes | |||||||||
Inspiratory phase | 0.81 (0.64–0.91) | 0.61 | 2.17 | 0.79 (0.56–0.88) | 0.82 | 2.52 | 0.74 (0.51–0.87) | 0.56 | 2.08 |
Expiratory phase | 0.86 (0.71–0.93) | 0.90 | 2.63 | 0.85 (0.71–0.93) | 0.89 | 2.62 | 0.73 (0.49–0.86) | 1.51 | 3.40 |
Complete respiratory cycle | 0.87 (0.73–0.94) | 1.33 | 3.20 | 0.83 (0.67–0.92) | 1.61 | 3.51 | 0.81 (0.63–0.91) | 1.66 | 3.57 |
Occupation rate (%) | |||||||||
Inspiratory phase | 0.79 (0.60–0.90) | 6.97 | 7.32 | 0.85 (0.69–0.93) | 7.20 | 7.44 | 0.54 (0.22–0.76) | 9.97 | 8.75 |
Expiratory phase | 0.84 (0.69–0.92) | 8.88 | 8.26 | 0.77 (0.54–0.88) | 11.85 | 9.54 | 0.72 (0.48–0.86) | 13.28 | 10.10 |
Complete respiratory cycle | 0.86 (0.71–0.93) | 6.96 | 7.31 | 0.83 (0.63–0.92) | 8.58 | 8.12 | 0.73 (0.50–0.87) | 10.65 | 9.05 |
Between-day wheezes reliability (n = 25) | |||||||||
All chest locations | Anterior chest locations | Posterior chest locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of wheezes | |||||||||
Inspiratory phase | 0.59 (0.26–0.80) | 1.02 | 2.81 | 0.45 (0.09–0.71) | 1.63 | 3.54 | 0.48 (0.11–0.74) | 0.79 | 2.47 |
Expiratory phase | 0.77 (0.54–0.89) | 1.15 | 2.97 | 0.81 (0.61–0.91) | 1.22 | 3.06 | 0.52 (0.16–0.75) | 1.73 | 3.65 |
Complete respiratory cycle | 0.78 (0.56–0.90) | 1.83 | 3.75 | 0.74 (0.50–0.88) | 2.50 | 4.38 | 0.57 (0.23–0.78) | 2.30 | 4.20 |
Occupation rate (%) | |||||||||
Inspiratory phase | 0.58 (0.21–0.80) | 10.56 | 9.01 | 0.54 (0.20–0.76) | 14.51 | 10.56 | 0.41 (0.05–0.69) | 10.52 | 8.99 |
Expiratory phase | 0.74 (0.39–0.89) | 11.52 | 9.41 | 0.60 (0.29–0.80) | 15.94 | 11.07 | 0.71 (0.41–0.86) | 12.92 | 9.96 |
Complete respiratory cycle | 0.71 (0.33–0.87) | 10.61 | 9.03 | 0.59 (0.27–0.80) | 14.73 | 10.64 | 0.66 (0.34–0.84) | 11.43 | 9.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero-Cortina, B.; Francín-Gallego, M.; Sáez-Pérez, J.A.; San Miguel-Pagola, M.; Anoro-Abenoza, L.; Gómez-González, C.; Montero-Marco, J.; Charlo-Bernardos, M.; Altarribas-Bolsa, E.; Pérez-Trullén, A.; et al. Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. J. Clin. Med. 2022, 11, 7509. https://doi.org/10.3390/jcm11247509
Herrero-Cortina B, Francín-Gallego M, Sáez-Pérez JA, San Miguel-Pagola M, Anoro-Abenoza L, Gómez-González C, Montero-Marco J, Charlo-Bernardos M, Altarribas-Bolsa E, Pérez-Trullén A, et al. Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. Journal of Clinical Medicine. 2022; 11(24):7509. https://doi.org/10.3390/jcm11247509
Chicago/Turabian StyleHerrero-Cortina, Beatriz, Marina Francín-Gallego, Juan Antonio Sáez-Pérez, Marta San Miguel-Pagola, Laura Anoro-Abenoza, Cristina Gómez-González, Jesica Montero-Marco, Marta Charlo-Bernardos, Elena Altarribas-Bolsa, Alfonso Pérez-Trullén, and et al. 2022. "Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis" Journal of Clinical Medicine 11, no. 24: 7509. https://doi.org/10.3390/jcm11247509
APA StyleHerrero-Cortina, B., Francín-Gallego, M., Sáez-Pérez, J. A., San Miguel-Pagola, M., Anoro-Abenoza, L., Gómez-González, C., Montero-Marco, J., Charlo-Bernardos, M., Altarribas-Bolsa, E., Pérez-Trullén, A., & Jácome, C. (2022). Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. Journal of Clinical Medicine, 11(24), 7509. https://doi.org/10.3390/jcm11247509