Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Procedures
2.4. Biomarker Assessment
2.5. Muscle Stregth
2.6. Body Composition
2.7. Dependent Variable—Appendicular Muscle Mass
2.8. Independent Variables
2.9. Analyses
3. Results
Characteristics of Subjects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, L.F.; Fontanela, L.C.; Gonçalves, C.; Mendrano, A.L.; Freitas, M.A.; Danielewicz, A.L.; de Avelar, N.C.P. Cognitive and behavioral factors associated to probable sarcopenia in community-dwelling older adults. Exp. Aging Res. 2021, 48, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in sarcopenia: A multifactorial approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef] [PubMed]
- Arrieiro, A.N.; Soares, L.A.; Prates, A.C.N.; Figueiredo, P.H.S.; Costa, H.S.; Simão, A.P.; Neves, C.D.C.; dos Santos, J.M.; Santos, L.M.D.M.; Avelar, N.C.P.; et al. Inflammation Biomarkers Are Independent Contributors to Functional Performance in Chronic Conditions: An Exploratory Study. Int. J. Med. Sci. Health Res. 2021, 5, 30–37. [Google Scholar] [CrossRef]
- Argilés, J.M.; Campos, N.; Lopez-Pedrosa, J.M.; Rueda, R.; Rodriguez-Mañas, L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J. Am. Med. Dir. Assoc. 2016, 17, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Komici, K.; Iacono, A.D.; De Luca, A.; Perrotta, F.; Bencivenga, L.; Rengo, G.; Rocca, A.; Guerra, G. Adiponectin and Sarcopenia: A Systematic Review with Meta-Analysis. Front. Endocrinol. 2021, 12, 576619. [Google Scholar] [CrossRef]
- Fiaschi, T.; Tedesco, F.S.; Giannoni, E.; Diaz-Manera, J.; Parri, M.; Cossu, G.; Chiarugi, P. Globular Adiponectin as a Complete Mesoangioblast Regulator: Role in Proliferation, Survival, Motility, and Skeletal Muscle Differentiation. Mol. Biol. Cell 2010, 21, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Wang, T. Searching for the link between inflammaging and sarcopenia. Ageing Res. Rev. 2022, 77, 101611. [Google Scholar] [CrossRef]
- Neves, C.D.; Lage, V.K.; Lima, L.P.; Matos, M.A.; Vieira, L.; Teixeira, A.L.; Figueiredo, P.H.; Costa, H.S.; Lacerda, A.C.R.; Mendonça, V.A. Inflammatory and oxidative biomarkers as determinants of functional capacity in patients with COPD assessed by 6-min walk test-derived outcomes. Exp. Gerontol. 2021, 152, 111456. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.A.; Ovando, A.C.; Külkamp, W.; Junior, N.G.B. Hand grip strength: Evaluation methods and factors influencing this measure. Rev. Bras. De Cineantropometria E Desempenho Hum. 2010, 12, 209–216. [Google Scholar]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Can, B.; Kara, O.; Kizilarslanoglu, M.C.; Arik, G.; Aycicek, G.S.; Sumer, F.; Civelek, R.; Demirtas, C.; Ulger, Z. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin. Exp. Res. 2016, 29, 745–752. [Google Scholar] [CrossRef]
- Rossi, F.E.; Lira, F.S.; Silva, B.S.A.; Freire, A.P.C.F.; Ramos, E.M.C.; Gobbo, L.A. Influence of skeletal muscle mass and fat mass on the metabolic and inflammatory profile in sarcopenic and non-sarcopenic overfat elderly. Aging 2018, 31, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Parentoni, A.N.; Lustosa, L.P.; Dos Santos, K.D.; Sá, L.F.; Ferreira, F.O.; Mendonça, V.A. Comparação da força muscular respiratória entre os subgrupos de fragilidade em idosas da comunidade. Fisioter. E Pesqui. 2013, 20, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Fischer, C. Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 265–271. [Google Scholar] [CrossRef]
- Hofmann, S.; Rösen-Wolff, A.; Tsokos, G.; Hedrich, C. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin. Immunol. 2012, 143, 116–127. [Google Scholar] [CrossRef]
- Heredia, J.E.; Mukundan, L.; Chen, F.M.; Mueller, A.A.; Deo, R.C.; Locksley, R.M.; Rando, T.A.; Chawla, A. Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration. Cell 2013, 153, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Wilson, D.; Jackson, T.; Sapey, E.; Lord, J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Westbury, L.D.; Fuggle, N.R.; Syddall, H.E.; Duggal, N.A.; Shaw, S.C.; Maslin, K.; Dennison, E.M.; Lord, J.M.; Cooper, C. Relationships Between Markers of Inflammation and Muscle Mass, Strength and Function: Findings from the Hertfordshire Cohort Study. Calcif. Tissue Res. 2017, 102, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Newman, A.B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Harris, T.B.; Kritchevsky, S.; Newman, A.B.; Colbert, L.H.; Pahor, M.; Rubin, S.M.; Tylavsky, F.A.; et al. Higher Inflammatory Marker Levels in Older Persons: Associations With 5-Year Change in Muscle Mass and Muscle Strength. J. Gerontol. Ser. A 2009, 64, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Lustosa, L.P.; Batista, P.P.; Pereira, D.S.; Pereira, L.S.M.; Scianni, A.; Ribeiro-Samora, G.A. Comparison between parameters of muscle performance and inflammatory biomarkers of non-sarcopenic and sarcopenic elderly women. Clin. Interv. Aging 2017, 12, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 2017, 13, 100–109. [Google Scholar] [CrossRef]
- Li, C.-W.; Yu, K.; Shyh-Chang, N.; Li, G.-X.; Jiang, L.-J.; Yu, S.-L.; Xu, L.-Y.; Liu, R.-J.; Guo, Z.-J.; Xie, H.-Y.; et al. Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention. J. Cachexia-Sarcopenia Muscle 2019, 10, 586–600. [Google Scholar] [CrossRef] [Green Version]
- Kohara, K.; Ochi, M.; Tabara, Y.; Nagai, T.; Igase, M.; Miki, T. Leptin in Sarcopenic Visceral Obesity: Possible Link between Adipocytes and Myocytes. PLoS ONE 2011, 6, e24633. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, T.; Cirelli, D.; Comito, G.; Gelmini, S.; Ramponi, G.; Serio, M.; Chiarugi, P. Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res. 2009, 19, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Belizário, J.E.; Fontes-Oliveira, C.C.; Borges, J.P.; Kashiabara, J.A.; Vannier, E. Skeletal muscle wasting and renewal: A pivotal role of myokine IL-6. SpringerPlus 2016, 5, 619. [Google Scholar] [CrossRef] [Green Version]
- Guenther, M.; James, R.; Marks, J.; Zhao, S.; Szabo, A.; Kidambi, S. Adiposity distribution influences circulating adiponectin levels. Transl. Res. 2014, 164, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sell, H.; Habich, C.; Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 2012, 8, 709–716. [Google Scholar] [CrossRef] [PubMed]
Mean (± SD) | |
---|---|
Age (years) | 75 (7) |
Appendicular lean mass (kg) | 14.38 (2.63) |
Trunk fat mass (kg) | 12.44 (4.29) |
Total fat mass (kg) | 23.01 (6.82) |
HGS (kgf) | 19.9 (6.38) |
Adiponectin (µg/mL) | 49.34 (6.94) |
BDNF (µg/mL) | 2.51 (0.93) |
IFN (ng/mL) | 1.56 (1.52) |
IL 2 (ng/mL) | 5.13 (8.51) |
IL 4 (ng/mL) | 2.39 (3.10) |
IL 5 (ng/mL) | 1.05 (1.21) |
IL 6 (ng/mL) | 17.45 (4.23) |
IL 8 (ng/mL) | 23.73 (9.03) |
IL10 (ng/mL) | 2.13 (3.40) |
Leptin (µg/mL) | 1.84 (0.27) |
Resistin (µg/mL) | 1.62 (0.35) |
sTNFr1 (µg/mL) | 3.93 (3.29) |
sTNFr2 (µg/mL) | 2.11 (0.48) |
TNF (ng/mL) | 1.31 (1.87) |
Normal ALM (n = 22) | Low ALM (n = 49) | p-Value | |
---|---|---|---|
Age (years) | 73 (7) | 75 (7) | 0.19 |
ALM (kg) | 17.49 (1.41) | 12.98 (1.66) | <0.01 * |
Trunk fat mass (kg) | 16.73 (2.67) | 10.52 (3.40) | <0.01 * |
Total fat mass (kg) | 29.87 (5.08) | 19.92 (5.02) | <0.01 * |
HGS (kgf) | 25.38 (5.74) | 17.47 (5.02) | <0.01 * |
Adiponectin (µg/mL) | 46.11 (9.61) | 50.79 (4.78) | 0.01 * |
BDNF (µg/mL) | 2.27 (0.83) | 2.62 (0.97) | 0.12 |
IFN (ng/mL) | 1.46 (0.34) | 1.61 (1.82) | 0.25 |
IL-2 (ng/mL) | 4.12 (0.39) | 5.58 (10.25) | 0.89 |
IL-4 (ng/mL) | 1.98 (0.17) | 2.57 (3.73) | 0.21 |
IL-5 (ng/mL) | 0.74 (0.16) | 1.20 (1.44) | 0.17 |
IL-6 (ng/mL) | 16.58 (2.81) | 17.84 (4.70) | 0.32 |
IL-8 (ng/mL) | 20.71 (4.75) | 25.08 (10.15) | 0.01 * |
IL-10 (ng/mL) | 1.59 (0.30) | 2.37 (4.08) | 0.46 |
Leptin (µg/mL) | 1.90 (0.20) | 1.81 (0.29) | 0.47 |
Resistin (µg/mL) | 1.59 (0.34) | 1.64 (0.36) | 0.55 |
sTNFr1 (µg/mL) | 2.74 (2.62) | 4.46 (3.45) | 0.03 * |
sTNFr2 (µg/mL) | 1.98 (0.41) | 2.17 (0.51) | 0.23 |
TNF (ng/mL) | 1.06 (0.17) | 1.43 (2.25) | 0.14 |
Independent Variables | r | Univariate | Multivariate | p-Value | |||
---|---|---|---|---|---|---|---|
R2 Adjusted | β | p-Value | R2 Adjusted | β | |||
Trunk fat mass | 0.78 ± 0.01 | 0.58 | 0.76 | <0.01 * | 0.65 | 0.76 | 0.001 * |
Adiponectin | −0.26 ± 0.03 | 0.14 | −0.39 | 0.001 * | |||
IL-8 | −0.26 ± 0.03 | 0.03 | −0.22 | 0.06 | NS | ||
sTNFr-1 | −0.25 ± 0.04 | 0.05 | −0.26 | 0.03 * | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, L.A.C.; dos Santos, J.M.; Parentoni, A.N.; Lima, L.P.; Duarte, T.C.; Brant, F.P.; Neves, C.D.C.; Pereira, F.S.M.; Avelar, N.C.P.; Danielewicz, A.L.; et al. Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study. J. Clin. Med. 2022, 11, 7175. https://doi.org/10.3390/jcm11237175
Teixeira LAC, dos Santos JM, Parentoni AN, Lima LP, Duarte TC, Brant FP, Neves CDC, Pereira FSM, Avelar NCP, Danielewicz AL, et al. Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study. Journal of Clinical Medicine. 2022; 11(23):7175. https://doi.org/10.3390/jcm11237175
Chicago/Turabian StyleTeixeira, Leonardo Augusto Costa, Jousielle Marcia dos Santos, Adriana Netto Parentoni, Liliana Pereira Lima, Tamiris Campos Duarte, Franciane Pereira Brant, Camila Danielle Cunha Neves, Fabiana Souza Máximo Pereira, Núbia Carelli Pereira Avelar, Ana Lucia Danielewicz, and et al. 2022. "Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study" Journal of Clinical Medicine 11, no. 23: 7175. https://doi.org/10.3390/jcm11237175
APA StyleTeixeira, L. A. C., dos Santos, J. M., Parentoni, A. N., Lima, L. P., Duarte, T. C., Brant, F. P., Neves, C. D. C., Pereira, F. S. M., Avelar, N. C. P., Danielewicz, A. L., Leopoldino, A. A. O., Costa, S. P., Arrieiro, A. N., Soares, L. A., Prates, A. C. N., Nobre, J. N. P., de Carvalho Bastone, A., de Oliveira, V. C., Oliveira, M. X., ... Rodrigues Lacerda, A. C. (2022). Adiponectin Is a Contributing Factor of Low Appendicular Lean Mass in Older Community-Dwelling Women: A Cross-Sectional Study. Journal of Clinical Medicine, 11(23), 7175. https://doi.org/10.3390/jcm11237175