External Validation of the American College of Surgeons Surgical Risk Calculator in Elderly Patients Undergoing General Surgery Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Perioperative Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearce, L.; Bunni, J.; McCarthy, K.; Hewitt, J. Surgery in the older person: Training needs for the provision of multidisciplinary care. Ann. R. Coll. Surg. Engl. 2016, 98, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Rangel, E.L.; Rios-Diaz, A.J.; Uyeda, J.W.; Castillo-Angeles, M.; Cooper, Z.; Olufajo, O.A.; Salim, A.; Sodickson, A.D. Sarcopenia increases risk of long-term mortality in elderly patients undergoing emergency abdominal surgery. J. Trauma Acute Care Surg. 2017, 83, 1179–1186. [Google Scholar] [CrossRef]
- Ko, F.C. Preoperative Frailty Evaluation: A Promising Risk-stratification Tool in Older Adults Undergoing General Surgery. Clin. Ther. 2019, 41, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Portelli Tremont, J.N.; Sloane, P.D. Applying Evidence-based Principles to Guide Emergency Surgery in Older Adults. J. Am. Med. Dir. Assoc. 2022, 23, 537–546. [Google Scholar] [CrossRef]
- Mohanty, S.; Rosenthal, R.A.; Russell, M.M.; Neuman, M.D.; Ko, C.Y.; Esnaola, N.F. Optimal Perioperative Management of the Geriatric Patient: A Best Practices Guideline from the American College of Surgeons NSQIP and the American Geriatrics Society. J. Am. Coll. Surg. 2016, 222, 930–947. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.J.B.; Bailey, J.G.; Molinari, M.; Hayden, J.; Johnson, P.M. The Impact of Nonelective Abdominal Surgery on the Residential Status of Older Adult Patients. Ann. Surg. 2016, 263, 274–279. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and Evaluation of the Universal ACS NSQIP Surgical Risk Calculator: A Decision Aid and Informed Consent Tool for Patients and Surgeons. J. Am. Coll. Surg. 2013, 217, 833–842e3. [Google Scholar] [CrossRef] [Green Version]
- Hornor, M.A.; Ma, M.; Zhou, L.; Cohen, M.E.; Rosenthal, R.A.; Russell, M.M.; Ko, C.Y. Enhancing the American College of Surgeons NSQIP Surgical Risk Calculator to Predict Geriatric Outcomes. J. Am. Coll. Surg. 2020, 230, 88–100e1. [Google Scholar] [CrossRef] [Green Version]
- Kongwibulwut, M.; Chiang, K.; Lee, J.M.; Eid, A.I.; Kongkaewpaisan, N.; Han, K.; Nordestgaard, A.T.; King, D.; Saillant, N.; Mendoza, A.E.; et al. Life after 90: Predictors of mortality and performance of the ACS-NSQIP risk calculator in 4,724 nonagenarian patients undergoing emergency general surgery. J. Trauma Acute Care Surg. 2019, 86, 853–857. [Google Scholar] [CrossRef]
- Van der Hulst, H.C.; Dekker, J.W.T.; Bastiaannet, E.; van der Bol, J.M.; van den Bos, F.; Hamaker, M.E.; Schiphorst, A.; Sonneveld, D.J.A.; Schuijtemaker, J.S.; de Jong, R.J.; et al. Validation of the ACS NSQIP surgical risk calculator in older patients with colorectal cancer undergoing elective surgery. J. Geriatr. Oncol. 2022, 13, 788–795. [Google Scholar] [CrossRef]
- D’Acapito, F.; Cucchetti, A.; Di Pietrantonio, D.; Tauceri, F.; Mirarchi, M.T.; Framarini, M.; Bova, R.; Fappiano, F.; Ercolani, G. Forecasting outcomes after cholecystectomy in octogenarian patients. Surg. Endosc. 2022, 36, 4479–4485. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 1980, 9, 1043–1069. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hu, Y.; Zhao, B.; Su, Y. Predictive validity of the ACS-NSQIP surgical risk calculator in geriatric patients undergoing lumbar surgery. Medicine 2017, 96, e8416. [Google Scholar] [CrossRef]
- Zacharis, G.; Seretis, C. Letter to the Editor: The Hellenic Emergency Laparotomy Study (HELAS): A Prospective Multicentre Study on the Outcomes of Emergency Laparotomy in Greece. World J. Surg. 2022. [Google Scholar] [CrossRef]
- Souwer, E.T.D.; Bastiaannet, E.; Steyerberg, E.W.; Dekker, J.W.T.; Steup, W.H.; Hamaker, M.M.; Sonneveld, D.J.A.; Burghgraef, T.A.; van den Bos, F.; Portielje, J.E.A. A Prediction Model for Severe Complications after Elective Colorectal Cancer Surgery in Patients of 70 Years and Older. Cancers 2021, 13, 3110. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, T.; Chen, G.; Wang, Y.; Hao, X. A multicenter prospective study on postoperative pulmonary complications prediction in geriatric patients with deep neural network model. Front. Surg. 2022, 9, 976536. [Google Scholar] [CrossRef]
- Hussain, M.M.; Bibi, F.; Shah, S.; Mitha, R.; Shamim, M.S.; Ziauddin, A.; Zafar, H. First American College of Surgeons National Surgical Quality Improvement Program Report from a Low-Middle-Income Country: A 1-Year Outcome Analysis of Neurosurgical Cases. World Neurosurg. 2021, 155, e156–e167. [Google Scholar] [CrossRef]
- Mehaffey, J.H.; Hawkins, R.B.; Charles, E.J.; Turrentine, F.E.; Hallowell, P.T.; Friel, C.; Jones, R.S.; Tracci, M.C. Socioeconomic “Distressed Communities Index” Improves Surgical Risk-adjustment. Ann. Surg. 2020, 271, 470–474. [Google Scholar] [CrossRef]
- Adogwa, O.; Elsamadicy, A.A.; Vuong, V.D.; Moreno, J.; Cheng, J.; Karikari, I.O.; Bagley, C.A. Geriatric comanagement reduces perioperative complications and shortens duration of hospital stay after lumbar spine surgery: A prospective single-institution experience. J. Neurosurg. Spine 2017, 27, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Bobet, A.S.; Brouessard, C.; Le Tourneau, T.; Manigold, T.; de Decker, L.; Boureau, A.S. Length of Stay in Older Patients Undergoing Transcatheter Aortic Valve Replacement: Value of a Geriatric Approach. Gerontology 2022, 68, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, Å.; Berggren, M.; Gustafson, Y.; Olofsson, B.; Lindelöf, N.; Stenvall, M. Effects of Geriatric Interdisciplinary Home Rehabilitation on Walking Ability and Length of Hospital Stay after Hip Fracture: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2016, 17, 464.e9–464.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, T.; Rosenthal, R. The ACS NSQIP Geriatric Surgery Pilot Project: Improving care for older surgical patients. Bull. Am. Coll. Surg. 2014, 99, 21–23. [Google Scholar] [PubMed]
- Sokas, C.M.; Hu, F.Y.; Dalton, M.K.; Jarman, M.P.; Bernacki, R.E.; Bader, A.; Rosenthal, R.A.; Cooper, Z. Understanding the role of informal caregivers in postoperative care transitions for older patients. J. Am. Geriatr. Soc. 2022, 70, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, A.L.; Owodunni, O.P.; Mostales, J.C.; Qin, C.X.; Hadvani, P.J.; Sirisegaram, L.; Bettick, D.; Gearhart, S.L. Early Outcomes following Implementation of a Multispecialty Geriatric Surgery Pathway. Ann. Surg. 2022. [Google Scholar] [CrossRef]
Characteristic | n (%) |
---|---|
Age (years) | 74 (10) |
Female gender | 209 (44.4) |
Body mass index (kg/m2) | 27.2 (6) |
Preoperative functional status (missing 0.8%) | |
Independent | 390 (82.8) |
Partially dependent | 40 (8.5) |
Totally dependent | 37 (7.9) |
ASA class (missing 2.1%) | |
I | 131 (27.8) |
II | 227 (48.2) |
III | 98 (20.8) |
IV | 4 (0.8) |
Steroid use for chronic condition | 6 (1.3) |
Ascites within 30 days prior to surgery | 0 |
Systemic sepsis within 48 h prior to surgery | 23 (4.9) |
Ventilator dependent | 0 |
Cancer (disseminated) | 25 (5.3) |
Diabetes | 106 (22.5) |
Hypertension requiring medication | 23 (4.9) |
Congestive heart failure in 30 days prior to surgery | 23 (4.9) |
Dyspnoea with moderate exertion | 23 (4.9) |
Current smoker | 55 (11.7) |
History of severe COPD | 45 (9.6) |
Dialysis | 3 (0.6) |
Acute renal failure | 12 (2.5) |
Emergency case (yes/no) * | |
Yes | 74 (15.7) |
No | 393 (83.4) |
Site of operation | |
Hernia | 102 (22.6) |
Upper GI | 17 (3.6) |
HPB | 39 (8.3) |
Cholecystectomy | 132 (28.2) |
Lower GI | 119 (25.5) |
Soft tissue/thyroid/other | 59 (11.8) |
Outcome | Events n (%) | Brier Score | Brier Score Cut-Off | C-Statistic (95% CI) | p-Value | Hosmer-Lemeshow Test |
---|---|---|---|---|---|---|
Any complication | 149 (31.6%) | 0.230 | 0.216 | 0.749 (0.702–0.796) | <0.001 | 0.063 |
Serious complications | 58 (12.3%) | 0.094 | 0.107 | 0.816 (0.762–0.869) | <0.001 | 0.225 |
Death | 15 (3.2%) | 0.027 | 0.031 | 0.824 (0.719–0.929) | <0.001 | 0.082 |
Return to OR | 7 (1.5%) | 0.015 | 0.015 | 0.639 (0.460–0.819) | <0.001 | 0.815 |
Surgical site infection | 30 (6.4%) | 0.056 | 0.059 | 0.763 (0.691–0.835) | <0.001 | 0.385 |
Renal failure | 7 (1.5%) | 0.013 | 0.014 | 0.778 (0.659–0.896) | 0.019 | 0.297 |
Pneumonia | 18 (3.8%) | 0.037 | 0.037 | 0.789 (0.722–0.856) | <0.001 | 0.815 |
Procedure Type | Observed LOS (Days) | Predicted LOS (Days) | p-Value * |
---|---|---|---|
All procedures | 8 (10) | 2 (5) | <0.001 |
All emergency | 9 (9) | 6 (7.5) | <0.001 |
All elective | 7 (10) | 1.5 (4.5) | <0.001 |
Hernia | 4 (4) | 0.5 (0.5) | <0.001 |
Upper GI | 18 (16) | 7 (2.5) | <0.001 |
HPB | 21 (17) | 6 (3) | <0.001 |
Cholecystectomy | 8 (10) | 2 (3) | <0.001 |
Lower GI | 13 (7) | 6 (2.8) | <0.001 |
Soft tissue/thyroid/other | 8 (10) | 2 (3) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinakis, S.; Andreou, A.; Venianaki, M.; Chatzinikolaou, C.; Chrysos, E.; Lasithiotakis, K. External Validation of the American College of Surgeons Surgical Risk Calculator in Elderly Patients Undergoing General Surgery Operations. J. Clin. Med. 2022, 11, 7083. https://doi.org/10.3390/jcm11237083
Kokkinakis S, Andreou A, Venianaki M, Chatzinikolaou C, Chrysos E, Lasithiotakis K. External Validation of the American College of Surgeons Surgical Risk Calculator in Elderly Patients Undergoing General Surgery Operations. Journal of Clinical Medicine. 2022; 11(23):7083. https://doi.org/10.3390/jcm11237083
Chicago/Turabian StyleKokkinakis, Stamatios, Alexandros Andreou, Maria Venianaki, Charito Chatzinikolaou, Emmanuel Chrysos, and Konstantinos Lasithiotakis. 2022. "External Validation of the American College of Surgeons Surgical Risk Calculator in Elderly Patients Undergoing General Surgery Operations" Journal of Clinical Medicine 11, no. 23: 7083. https://doi.org/10.3390/jcm11237083