Planned Combo Strategy for LVAD Implantation in ECMO Patients: A Proof of Concept to Face Right Ventricular Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Protocol
2.3. Surgical Technique
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeed, D.; Potapov, E.; Loforte, A.; Morshuis, M.; Schibilsky, D.; Zimpfer, D.; Riebandt, J.; Pappalardo, F.; Attisani, M.; Rinaldi, M.; et al. Transition From Temporary to Durable Circulatory Support Systems. J. Am. Coll. Cardiol. 2020, 76, 2956–2964. [Google Scholar] [CrossRef]
- Kirklin, J.K.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B.; Naftel, D.C. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J. Heart Lung Transplant OFF. Publ. Int. Soc. Heart Transplant 2017, 36, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Reid, G.; Mork, C.; Gahl, B.; Appenzeller-Herzog, C.; von Segesser, L.K.; Eckstein, F.; Berdajs, D.A. Outcome of right ventricular assist device implantation following left ventricular assist device implantation: Systematic review and meta-analysis. Perfusion 2021, 37, 773–784. [Google Scholar] [CrossRef]
- Yoshioka, D.; Takayama, H.; Garan, R.A.; Topkara, V.K.; Han, J.; Kurlansky, P.; Yuzefpolskaya, M.; Colombo, P.C.; Naka, Y.; Takeda, K. Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous-flow left ventricular assist device insertion. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Kapelios, C.J.; Lund, L.H.; Wever-Pinzon, O.; Selzman, C.H.; Myers, S.L.; Cantor, R.S.; Stehlik, J.; Chamogeorgakis, T.; McKellar, S.H.; Koliopoulou, A.; et al. Right Heart Failure Following Left Ventricular Device Implantation: Natural History, Risk Factors, and Outcomes: An Analysis of the STS INTERMACS Database. Circ. Heart Fail. 2022, 15, e008706. [Google Scholar] [CrossRef] [PubMed]
- Sert, D.E.; Karahan, M.; Aygun, E.; Kocabeyoglu, S.S.; Akdi, M.; Kervan, U. Prediction of right ventricular failure after continuous flow left ventricular assist device implantation. J. Card. Surg. 2020, 35, 2965–2973. [Google Scholar] [CrossRef]
- Rame, J.E.; Pagani, F.D.; Kiernan, M.S.; Oliveira, G.H.; Birati, E.Y.; Atluri, P.; Gaffey, A.; Grandin, E.W.; Myers, S.L.; Collum, C.; et al. Evolution of Late Right Heart Failure with Left Ventricular Assist Devices and Association with Outcomes. J. Am. Coll. Cardiol. 2021, 78, 2294–2308. [Google Scholar] [CrossRef]
- Shah, P.; Yuzefpolskaya, M.; Hickey, G.W.; Breathett, K.; Wever-Pinzon, O.; Ton, V.-K.; Hiesinger, W.; Koehl, D.; Kirklin, J.K.; Cantor, R.S.; et al. Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: Readmissions After Left Ventricular Assist Device. Ann. Thorac. Surg. 2022, 113, 722–737. [Google Scholar] [CrossRef]
- Kim, D.; Park, Y.; Choi, K.H.; Park, T.K.; Lee, J.M.; Cho, Y.H.; Choi, J.-O.; Jeon, E.-S.; Yang, J.H. Prognostic Implication of RV Coupling to Pulmonary Circulation for Successful Weaning from Extracorporeal Membrane Oxygenation. JACC Cardiovasc. Imaging 2021, 14, 1523–1531. [Google Scholar] [CrossRef]
- Soliman, O.I.; Akin, S.; Muslem, R.; Boersma, E.; Manintveld, O.C.; Krabatsch, T.; Gummert, J.F.; De By, T.M.; Bogers, A.J.; Zijlstra, F.; et al. Derivation and Validation of a Novel Right-Sided Heart Failure Model After Implantation of Continuous Flow Left Ventricular Assist Devices: The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) Right-Sided Heart Failure Risk Score. Circulation 2018, 137, 891–906. [Google Scholar]
- Salna, M.; Garan, A.R.; Kirtane, A.J.; Karmpaliotis, D.; Green, P.; Takayama, H.; Sanchez, J.; Kurlansky, P.; Yuzefpolskaya, M.; Colombo, P.C.; et al. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 499–506. [Google Scholar] [CrossRef]
- Vijayakumar, N.; Badheka, A.; Chegondi, M.; Mclennan, D. Successful use of Protek Duo cannula to provide veno-venous extra-corporeal membrane oxygenation and right ventricular support for acute respiratory distress syndrome in an adolescent with complex congenital heart disease. Perfusion 2021, 36, 200–203. [Google Scholar] [CrossRef]
- Ravichandran, A.K.; Baran, D.A.; Stelling, K.; Cowger, J.; Salerno, C.T. Outcomes with the Tandem Protek Duo Dual-Lumen Percutaneous Right Ventricular Assist Device. ASAIO J. 2018, 64, 570–572. [Google Scholar] [CrossRef]
- Loforte, A.; Bottio, T.; Attisani, M.; Suarez, S.M.; Tarzia, V.; Pocar, M.; Botta, L.; Gerosa, G.; Rinaldi, M.; Pacini, D. Conventional and alternative sites for left ventricular assist device inflow and outflow cannula placement. Ann. Cardiothorac. Surg. 2021, 10, 281–288. [Google Scholar] [CrossRef]
- Ruffatti, A.; Tarzia, V.; Fedrigo, M.; Calligaro, A.; Favaro, M.; Macor, P.; Tison, T.; Cucchini, U.; Cosmi, E.; Tedesco, F.; et al. Evidence of complement activation in the thrombotic small vessels of a patient with catastrophic antiphospholipid syndrome treated with eculizumab. Autoimmun. Rev. 2019, 18, 561–563. [Google Scholar] [CrossRef]
- Tarzia, V.; Bortolussi, G.; Bianco, R.; Buratto, E.; Bejko, J.; Carrozzini, M.; De Franceschi, M.; Gregori, D.; Fichera, D.; Zanella, F.; et al. Extracorporeal life support in cardiogenic shock: Impact of acute versus chronic etiology on outcome. J. Thorac. Cardiovasc. Surg. 2015, 150, 333–340. [Google Scholar] [CrossRef] [Green Version]
- De Silva, R.J.; Soto, C.; Spratt, P. Extra Corporeal Membrane Oxygenation as Right Heart Support Following Left Ventricular Assist Device Placement: A New Cannulation Technique. Heart Lung Circ. 2012, 21, 218–220. [Google Scholar] [CrossRef]
- Carrozzini, M.; Merlanti, B.; Olivieri, G.M.; Lanfranconi, M.; Bruschi, G.; Mondino, M.; Russo, C.F. Percutaneous RVAD with the Protek Duo for severe right ventricular primary graft dysfunction after heart transplant. J. Heart Lung Transplant. 2021, 40, 580–583. [Google Scholar] [CrossRef]
- Ruhparwar, A.; Zubarevich, A.; Osswald, A.; Raake, P.W.; Kreusser, M.M.; Grossekettler, L.; Karck, M.; Schmack, B. ECPELLA 2.0-Minimally invasive biventricular groin-free full mechanical circulatory support with Impella 5.0/5.5 pump and ProtekDuo cannula as a bridge-to-bridge concept: A first-in-man method description. J. Card. Surg. 2020, 35, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Schmack, B.; Farag, M.; Kremer, J.; Grossekettler, L.; Brcic, A.; Raake, P.W.; Kreusser, M.M.; Goldwasser, R.; Popov, A.-F.; Mansur, A.; et al. Results of concomitant groin-free percutaneous temporary RVAD support using a centrifugal pump with a double-lumen jugular venous cannula in LVAD patients. J. Thorac. Dis. 2019, 11, S913–S920. [Google Scholar] [CrossRef]
- Loforte, A.; Montalto, A.; Ranocchi, F.; Della Monica, P.L.; Casali, G.; Lappa, A.; Contento, C.; Musumeci, F. Levitronix CentriMag Third-Generation Magnetically Levitated Continuous Flow Pump as Bridge to Solution. ASAIO J. 2011, 57, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Potapov, E.; Loforte, A.; Morshuis, M.; Schibilsky, D.; Zimpfer, D.; Riebandt, J.; Etz, C.; Attisani, M.; Rinaldi, M.; et al. Left ventricular assist device implants in patients on extracorporeal membrane oxygenation: Do we need cardiopulmonary bypass? Interact. Cardiovasc. Thorac. Surg. 2022, 34, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Tarzia, V.; Bagozzi, L.; Ponzoni, M.; Bortolussi, G.; Folino, G.; Bianco, R.; Zanella, F.; Bottio, T.; Gerosa, G. How to Optimize ECLS Results beyond Ventricular Unloading: From ECMO to CentriMag® eVAD. J. Clin. Med. 2022, 11, 4605. [Google Scholar] [CrossRef]
- Tarzia, V.; Ponzoni, M.; Di Giammarco, G.; Maccherini, M.; Maiani, M.; Agostoni, P.; Bagozzi, L.; Marinelli, D.; Apostolo, A.; Bernazzali, S.; et al. Technology and Technique for left ventricular assist device optimization: A Bi-Tech solution. Artif. Organs 2022, 46, 2486–2492. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, G.; Gallo, M.; Tarzia, V.; Di Gregorio, G.; Zanella, F.; Bottio, T. Less Invasive Surgical and Perfusion Technique for Implantation of the Jarvik 2000 Left Ventricular Assist Device. Ann. Thorac. Surg. 2013, 96, 712–714. [Google Scholar] [CrossRef]
- Coromilas, E.J.; Takeda, K.; Ando, M.; Cevasco, M.; Green, P.; Karmpaliotis, D.; Kirtane, A.; Topkara, V.K.; Yuzefpolskaya, M.; Takayama, H.; et al. Comparison of Percutaneous and Surgical Right Ventricular Assist Device Support After Durable Left Ventricular Assist Device Insertion. J. Card. Fail. 2019, 25, 105–113. [Google Scholar] [CrossRef]
- Molina, E.J.; Shah, P.; Kiernan, M.S.; Cornwell, W.K.; Copeland, H.; Takeda, K.; Fernandez, F.G.; Badhwar, V.; Habib, R.H.; Jacobs, J.P.; et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thorac. Surg. 2021, 111, 778–792. [Google Scholar] [CrossRef]
- Mehta, V.; Venkateswaran, R.V. Outcome of CentriMag™ extracorporeal mechanical circulatory support use in critical cardiogenic shock (INTERMACS 1) patients. Indian J. Thorac. Cardiovasc. Surg. 2020, 36, 265–274. [Google Scholar] [CrossRef]
- Tarzia, V.; Di Giammarco, G.; Di Mauro, M.; Bortolussi, G.; Maccherini, M.; Tursi, V.; Maiani, M.; Bernazzali, S.; Marinelli, D.; Foschi, M.; et al. From bench to bedside: Can the improvements in left ventricular assist device design mitigate adverse events and increase survival? J. Thorac. Cardiovasc. Surg. 2016, 151, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Siddique, A.; Moulton, M.M.; Castleberry, A.W.; Merritt-Genore, H.; Ryan, T.; Lowes, B.; Um, J.Y. Can we expect improvements in outcomes with centrifugal vs axial flow left ventricular assist devices in patients transitioned from extracorporeal life support? J. Card. Surg. 2019, 34, 1228–1234. [Google Scholar] [CrossRef]
Mean (SD) | Median (IQR) | |
---|---|---|
Age (years) | 56 (13) | 61 (42–66) |
Body surface area (m2) | 1.8 (0.2) | 1.8 (1.6–2.1) |
EUROMACS score for RHF | 4.2 (0.6) | 4.3 (3.6–4.7) |
Cardiac Index (L/min/m2) | 2.1 (0.2) | 2.2 (2–2.3) |
Left ventricular ejection fraction (%) | 20 (5) | 18 (17–26) |
Right ventricular fractional area change (%) | 20 (11) | 21 (11–29) |
Left ventricular end-diastolic volume (mL/m2) | 175 (31) | 186 (150–195) |
Right ventricular end-diastolic area (cm2/m2) | 18 (3) | 18 (15–21) |
Systolic pulmonary artery pressure (mmHg) | 45 (15) | 45 (30–59) |
Number of inotropes | 2.5 (0.5) | 2.5 (2–3) |
Creatinine (mg/dL) | 1.8 (0.3) | 1.7 (1.5–1.9) |
Hemoglobin (g/L) | 10.5 (1.7) | 11 (9.1–12.3) |
Platelet count (103/μL) | 205 (15) | 210 (190–225) |
N | % | |
Male | 6 | 100 |
Left heart failure etiology | ||
Ischemic dilated cardiomyopathy | 3 | 50 |
Primitive dilated cardiomyopathy | 3 | 50 |
Preoperative ECMO | 6 | 100 |
Previous cardiac surgery | 2 | 33 |
Previous percutaneous coronary interventions | 3 | 50 |
Mechanical invasive ventilation | 2 | 33 |
Renal replacement therapy | 2 | 33 |
INTERMACS class | ||
Class I | 6 | 100 |
Mitral valve regurgitation grade | ||
Mild | 2 | 33 |
Moderate | 2 | 33 |
Severe | 2 | 33 |
Tricuspid valve regurgitation grade | ||
Absent | 1 | 17 |
Mild | 2 | 33 |
Moderate | 3 | 50 |
Flattening of intraventricular septum at echocardiography | 3 | 50 |
Qualitative right ventricular performance | ||
Mildly impaired | 1 | 17 |
Severely impaired | 5 | 83 |
Mean (SD) | Median (IQR) | |
---|---|---|
RVAD support period (days) | 10 (8) | 8 (4–16) |
RVAD maximal flow (L/min) | 4.2 (0.6) | 4.3 (3.6–4.7) |
Mechanical ventilatory support (days) | 10 (8) | 7 (4–20) |
Intensive care unit stay (days) | 31 (30) | 23 (12–41) |
Right ventricular fractional area change (%) after RVAD removal | 28 (3) | 30 (25–31) |
Right ventricular end-diastolic area (cm2/m2) after RVAD removal | 13.3 (2) | 12.8 (11.7–15.3) |
N | % | |
ECMO circuit to perform cardiopulmonary bypass | 2 | 33 |
Durable LVAD type | ||
Heartmate III | 4 | 66 |
HVAD | 2 | 33 |
LVAD implantation technique | ||
Bi-thoracotomy | 4 | 66 |
Left thoracotomy + mini-sternotomy | 1 | 17 |
Full sternotomy | 1 | 17 |
Oxygenator in RVAD circuit | 1 | 17 |
ProtekDuo cannula positioning success | 6 | 100 |
Major bleeding during RVAD support | 1 | 17 |
Thrombosis during RVAD support | 0 | |
Postoperative complications during hospitalization | ||
Tracheostomy | 3 | 50 |
New-onset acute kidney injury | 2 | 33 |
New-onset renal replacement therapy | 2 | 33 |
Sepsis | 1 | 17 |
Ventricular arrhythmias | 1 | 17 |
Mitral valve regurgitation grade after RVAD removal | ||
Absent | 4 | 66 |
Mild | 2 | 33 |
Tricuspid valve regurgitation grade after RVAD removal | ||
Absent | 1 | 17 |
Mild | 3 | 50 |
Moderate | 2 | 33 |
Flattening of intraventricular septum after RVAD removal | 1 | 17 |
Qualitative right ventricular performance after RVAD removal | ||
Mildly impaired | 3 | 50 |
Moderately impaired | 2 | 33 |
Severely impaired | 1 | 17 |
30-day mortality | 0 | |
90-day mortality | 1 | 17 |
Author | Patients | Treatment of Left Ventricular Failure | Timing of Implantation of ProtekDuo | RVAD Support Duration | Outcomes |
---|---|---|---|---|---|
Salna et al. [11] | 27 | Durable intracorporeal LVAD | After LVAD implantation | Median: 11 (7–16) days | Weaning rate from RVAD: 86%. Need for durable RVAD: 11%. In-hospital mortality: 15%. Complications rate: 57%. |
Vijayakumar et al. [12] | 1 | Heartware HVAD | After LVAD implantation | 36 days | The patient was weaned from RVAD without complications during support. |
Ravichandran et al. [13] | 17 | Durable LVAD (12 pts), heart transplantation (2 pts), and TandemHeart (1 pt) | After LVAD implantation or heart transplantation | Mean: 10.5 ± 6.5 days | Weaning rate from RVAD: 23%. Need for durable RVAD: 35%. Mortality on RVAD: 41%. Complications rate: 35%. |
Carrozzini et al. [18] | 3 | Heart transplantation | After heart transplantation | 4, 9, and 12 days | All patients were weaned from RVAD and discharged home. Internal jugular vein thrombosis occurred in 1 patient. |
Ruhparwar et al. [19] | 2 | Impella 5.0/5.5 | Concomitant to Impella implantation | 20 and 31 days | Both patients were bridged to durable LVAD implantation without RVAD-related complications. |
Schmack et al. [20] | 11 | Heartware HVAD (6 pts) and HeartMate III (5 pts) | Concomitant to LVAD implantation | Mean: 16.8 ± 9.5 days | 30-day survival: 72.7%. Weaning rate from RVAD: 90.9%. No severe RVAD-related complications. |
Present Study | 6 | Heartware HVAD (2 pts) and HeartMate III (4 pts) | Concomitant to LVAD implantation | Median: 8 (4–16) days | Weaning rate from RVAD: 100%. 30-day survival: 100%. 90-day survival: 83%. RVAD-related complications rate: 17%. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarzia, V.; Ponzoni, M.; Pittarello, D.; Gerosa, G. Planned Combo Strategy for LVAD Implantation in ECMO Patients: A Proof of Concept to Face Right Ventricular Failure. J. Clin. Med. 2022, 11, 7062. https://doi.org/10.3390/jcm11237062
Tarzia V, Ponzoni M, Pittarello D, Gerosa G. Planned Combo Strategy for LVAD Implantation in ECMO Patients: A Proof of Concept to Face Right Ventricular Failure. Journal of Clinical Medicine. 2022; 11(23):7062. https://doi.org/10.3390/jcm11237062
Chicago/Turabian StyleTarzia, Vincenzo, Matteo Ponzoni, Demetrio Pittarello, and Gino Gerosa. 2022. "Planned Combo Strategy for LVAD Implantation in ECMO Patients: A Proof of Concept to Face Right Ventricular Failure" Journal of Clinical Medicine 11, no. 23: 7062. https://doi.org/10.3390/jcm11237062