Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Analyses
2.2. Ambulatory Blood Pressure Measurements
2.3. CVD Risk Calculation
2.4. Vascular Function Assessments
- a.
- Macrovascular function
- b.
- Microvascular function
2.5. Power Calculation and Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vita, J.A. Endothelial Function; Lippincott Williams & Wilkins: Hagerstown, MD, USA, 2011; Volume 124. [Google Scholar]
- Khazaei, M.; Moien-Afshari, F.; Laher, I. Vascular Endothelial Function in Health and Diseases. Pathophysiology 2008, 15, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Vita, J.A.; Keaney, J.F. Endothelial Function: A Barometer for Cardiovascular Risk? Circulation 2002, 106, 640–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghitescu, L.; Robert, M. Diversity in Unity: The Biochemical Composition of the Endothelial Cell Surface Varies between the Vascular Beds. Microsc. Res. Technol. 2002, 57, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Sandoo, A.; Carroll, D.; Metsios, G.S.; Kitas, G.D.; Veldhuijzen van Zanten, J.J.C.S. The Association between Microvascular and Macrovascular Endothelial Function in Patients with Rheumatoid Arthritis: A Cross-Sectional Study. Arthritis Res. Ther. 2011, 13, R99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-Mediated Dilation and Cardiovascular Risk Prediction: A Systematic Review with Meta-Analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Black, M.A.; Pyke, K.E.; Padilla, J.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of Flow-Mediated Dilation in Humans: A Methodological and Physiological Guideline; American Physiological Society: Bethesda, MD, USA, 2011; Volume 300, pp. 2–12. [Google Scholar]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Naka, K. Endothelial Dysfunction and Heart Failure: A Review of the Existing Bibliography with Emphasis on Flow Mediated Dilation. JRSM Cardiovasc. Dis. 2019, 8, 2048004019843047. [Google Scholar] [CrossRef] [PubMed]
- Heitmar, R.; Cubbidge, R.P.; Lip, G.Y.H.; Gherghel, D.; Blann, A.D. Altered Blood Vessel Responses in the Eye and Finger in Coronary Artery Disease. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6199–6205. [Google Scholar] [CrossRef] [Green Version]
- Liew, G.; Wang, J.J.; Mitchell, P.; Wong, T.Y. Retinal Vascular Imaging: A New Tool in Microvascular Disease Research; Lippincott Williams & Wilkins: Hagerstown, MD, USA, 2008; Volume 1, pp. 156–161. [Google Scholar]
- Masi, S.; Rizzoni, D.; Taddei, S.; Widmer, R.J.; Montezano, A.C.; Lüscher, T.F.; Schiffrin, E.L.; Touyz, R.M.; Paneni, F.; Lerman, A.; et al. Assessment and Pathophysiology of Microvascular Disease: Recent Progress and Clinical Implications. Eur. Heart J. 2021, 42, 2590–2604. [Google Scholar] [CrossRef]
- Seshadri, S.; Karimzad, S.E.; Shokr, H.; Gherghel, D. Retinal Vascular Function in Asymptomatic Individuals with a Positive Family History of Cardiovascular Disease. Acta Ophthalmol. 2018, 96, e956–e962. [Google Scholar] [CrossRef] [Green Version]
- Shokr, H.; Dias, I.H.K.; Gherghel, D. Oxysterols and Retinal Microvascular Dysfunction as Early Risk Markers for Cardiovascular Disease in Normal, Ageing Individuals. Antioxidants 2021, 10, 1756. [Google Scholar] [CrossRef]
- Shokr, H.; Wolffsohn, J.S.; Trave Huarte, S.; Scarpello, E.; Gherghel, D.; Ophthalmol, A. Dry Eye Disease Is Associated with Retinal Microvascular Dysfunction and Possible Risk for Cardiovascular Disease. Acta Ophthalmol. 2021, 99, e1236–e1242. [Google Scholar] [CrossRef] [PubMed]
- Shokr, H.; Dias, I.H.K.; Gherghel, D. Microvascular Function and Oxidative Stress in Adult Individuals with Early Onset of Cardiovascular Disease. Sci. Rep. 2020, 10, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokr, H.; Gherghel, D. European Society of Cardiology/European Society of Hypertension versus the American College of Cardiology/American Heart Association Guidelines on the Cut-off Values for Early Hypertension: A Microvascular Perspective. Sci. Rep. 2021, 11, 3473. [Google Scholar] [CrossRef] [PubMed]
- Shokr, H.; Lush, V.; Dias, I.H.; Ekárt, A.; De Moraes, G.; Gherghel, D. The Use of Retinal Microvascular Function and Telomere Length in Age and Blood Pressure Prediction in Individuals with Low Cardiovascular Risk. Cells 2022, 11, 3037. [Google Scholar] [CrossRef]
- Karimzad, S.E.; Shokr, H.; Gherghel, D. Retinal and Peripheral Vascular Function in Healthy Individuals with Low Cardiovascular Risk. Microvasc. Res. 2019, 126, 103908. [Google Scholar] [CrossRef]
- Seshadri, S.; Ekart, A.; Gherghel, D. Ageing Effect on Flicker-Induced Diameter Changes in Retinal Microvessels of Healthy Individuals. Acta Ophthalmol. 2016, 94, e35–e42. [Google Scholar] [CrossRef]
- Seshadri, S.; Shokr, H.; Gherghel, D. Retinal Microvascular Abnormalities and Systemic Arterial Stiffness Are the First Manifestation of Cardiovascular Abnormalities in Patients with Untreated Moderate to Severe Obstructive Sleep Apnoea and with Low to Intermediate Cardiovascular Risk—A Pilot Study. Biomedicines 2022, 10, 2669. [Google Scholar] [CrossRef]
- Goff, D.C.; Donald Lloyd-Jones, C.-C.M.; Glen Bennett, C.-C.; Coady, S.; D’agostino, R.B.; Raymond Gibbons, F.; Philip Greenland, F.; Daniel Lackland, F.T.; Daniel Levy, F.; O’donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [Green Version]
- Chandalia, M.; Abate, N.; Garg, A.; Stray-Gundersen, J.; Grundy, S.M. Relationship between Generalized and Upper Body Obesity to Insulin Resistance in Asian Indian Men*. J. Clin. Endocrinol. Metab. 1999, 84, 2329–2335. [Google Scholar] [CrossRef]
- Seshadri, S.; Mroczkowska, S.; Qin, L.; Patel, S.; Ekart, A.; Gherghel, D. Systemic Circulatory Influences on Retinal Microvascular Function in Middle-Age Individuals with Low to Moderate Cardiovascular Risk. Acta Ophthalmol. 2015, 93, e266–e274. [Google Scholar] [CrossRef]
- Patel, S.R.; Bellary, S.; Qin, L.; Balanos, G.M.; McIntyre, D.; Gherghel, D. Abnormal Retinal Vascular Reactivity in Individuals with Impaired Glucose Tolerance: A Preliminary Study. Investig. Ophthalmol. Vis. Sci. 2012, 54, 4759–4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery: A Report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, E.; Vilser, W. Flicker Observation Light Induces Diameter Response in Retinal Arterioles: A Clinical Methodological Study. Br. J. Ophthalmol. 2004, 88, 54–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, E.; Vilser, W.; Lanzl, I. Comparison of Diameter Response of Retinal Arteries and Veins to Flickering Light. A Clinical Study with Healthy People. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2005, 102, 787–793. [Google Scholar] [CrossRef]
- Kotliar, K.E.; Vilser, W.; Nagel, E.; Lanzl, I.M. Retinal Vessel Reaction in Response to Chromatic Flickering Light. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 377–392. [Google Scholar] [CrossRef]
- Sorensen, K.E.; Celermajer, D.S.; Spiegelhalter, D.J.; Georgakopoulos, D.; Robinson, J.; Thomas, O.; Deanfield, J.E.; Celermajer, D.S.; Georgakopoulos, D.; Robinson, J.; et al. Non-Invasive Measurement of Human Endothelium Dependent Arterial Responses: Accuracy and Reproducibility. Heart 1995, 74, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Celermajer, D.S.; Adams, M.R.; Clarkson, P.; Robinson, J.; McCredie, R.; Donald, A.; Deanfield, J.E. Passive Smoking and Impaired Endothelium-Dependent Arterial Dilatation in Healthy Young Adults. N. Engl. J. Med. 2009, 334, 150–155. [Google Scholar] [CrossRef]
- Moens, A.L.; Goovaerts, I.; Claeys, M.J.; Vrints, C.J. Flow-Mediated Vasodilation: A Diagnostic Instrument, or an Experimental Tool? Chest 2005, 127, 2254–2263. [Google Scholar] [CrossRef]
- Polak, K.; Dorner, G.; Kiss, B.; Polska, E.; Findl, O.; Rainer, G.; Eichler, H.G.; Schmetterer, L. Evaluation of the Zeiss Retinal Vessel Analyser. Br. J. Ophthalmol. 2000, 84, 1285–1290. [Google Scholar] [CrossRef]
- Climie, R.E.; Van Sloten, T.T.; Bruno, R.M.; Taddei, S.; Empana, J.P.; Stehouwer, C.D.A.; Sharman, J.E.; Boutouyrie, P.; Laurent, S. Macrovasculature and Microvasculature at the Crossroads Between Type 2 Diabetes Mellitus and Hypertension. Hypertension 2019, 73, 1138–1149. [Google Scholar] [CrossRef]
- Schear, M.J.; Beatty, B.L. A Histological Investigation into the Correlation of Central Retinal Artery Atherosclerosis with the Systemic Circulation. Anat. Rec. 2014, 297, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Pemp, B.; Weigert, G.G.; Karl, K.; Petzl, U.; Wolzt, M.; Schmetterer, L.; Garhofer, G. Correlation of Flicker-Induced and Flow-Mediated Vasodilatation in Patients With Endothelial Dysfunction and Healthy Volunteers. Diabetes Care 2009, 32, 1536–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorner, G.T.; Garhofer, G.; Kiss, B.; Polska, E.; Polak, K.; Riva, C.E.; Schmetterer, L. Nitric Oxide Regulates Retinal Vascular Tone in Humans. Am. J. Physiol.—Heart Circ. Physiol. 2003, 285, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Karimzad, S.; Bilkhu, P.S.; Wolffsohn, J.S.; Bellary, S.; Shokr, H.; Singhal, R.; Gherghel, D. Impact of Bariatric Surgery-Induced Weight Loss on Anterior Eye Health in Patients with Obesity. Nutrients 2022, 14, 2462. [Google Scholar] [CrossRef] [PubMed]
↓ FMD [n = 53] | Controls [n = 47] | p-Value | |
---|---|---|---|
Brachial Artery | |||
AD (mm) | 4.16 (3.39–4.65) | 4.03 (3.41–4.64) | 0.328 |
BDF (mm) | 0.34 (0.17–0.42) | 0.36 (0.21–0.44) | 0.742 |
MD (mm) | 4.32 (3.56–4.67) | 4.53 (3.84–5.16) | 0.200 |
FMD (%) | 1.80 (0.39–4.27) | 10.28 (7.25–11.60) | - |
GTN | |||
GTN-MD (mm) | 5.04 (4.14–5.62) | 5.09 (4.62–5.60) | 0.800 |
GID (%) | 21.01 (14.19–28.34) | 24.66 (16.58–31.86) | 0.235 |
↓ FMD [n = 53] | Controls [n = 47] | p-Value | |
---|---|---|---|
Demographic Data | |||
Age (years) | 42.5 ± 11.6 | 40.1 ± 11.9 | 0.362 |
Weight (kg) | 79.2 ± 16.0 | 76.0 ± 15.4 | 0.245 |
BMI (kg/m2) | 27.5 ± 5.0 | 26.1 ± 4.5 | 0.084 |
WHR (AU) | 0.95 ± 0.07 | 0.94 ± 0.12 | 0.413 |
SBP (mmHg) | 122 ± 14 | 119 ± 14 | 0.321 |
DBP (mmHg) | 76 ± 10 | 76 ± 10 | 0.673 |
MAP (mmHg) | 92 ± 11 | 90 ± 11 | 0.486 |
IOP (mmHg) | 13 ± 3 | 14 ± 3 | 0.077 |
Metabolic Data | |||
Glucose (mmol/L) | 5.60 ± 0.47 | 5.51 ± 0.62 | 0.424 |
2-h GTT (mmol/L) | 7.21 ± 2.11 | 7.08 ± 2.18 | 0.764 |
TG (mmol/L) | 1.17 ± 0.47 | 1.39 ± 0.78 | 0.063 |
HDL Cholesterol (mmol/L) | 1.20 ± 0.35 | 1.15 ± 0.39 | 0.417 |
LDL Cholesterol (mmol/L) | 2.64 ± 0.99 | 2.63 ± 0.78 | 0.900 |
Total Cholesterol (mmol/L) | 4.38 ± 0.93 | 4.41 ± 0.84 | 0.858 |
↓ FMD [n = 53] | Controls [n = 47] | p-Value | |
---|---|---|---|
ARTERY | |||
AD (AU) | 122.28 (111.80–130.40) | 124.00 (112.40–135.05) | 0.581 |
BDF (AU) | 4.88 (3.38–5.24) | 5.60 (3.47–7.19) | 0.157 |
MD (%) | 4.46 (3.01–5.12) | 5.49 (3.40–7.18) | 0.034 * |
MDRT (secs) | 19.9 (15.8–23.1) | 17.5 (12.0–21.3) | 0.048 * |
MC (%) | 2.97 (1.34–3.66) | 3.26 (2.04–4.47) | 0.474 |
MCRT (secs) | 20.1 (18.0–22.5) | 20.3 (17.3–23.7) | 0.821 |
DA (%) | 7.43 (5.62–8.69) | 8.74 (5.90–10.96) | 0.042 * |
bFR (%) | 1.87 (0.35–3.69) | 3.21 (0.93–5.27) | 0.039 * |
VEIN | |||
AD (AU) | 152.12 (36.53–162.92) | 158.42 (142.46–173.78) | 0.140 |
BDF (AU) | 4.14 (2.57–5.25) | 4.12 (2.56–5.03) | 0.949 |
MD (%) | 5.95 (4.34–6.58) | 5.50 (4.09–6.44) | 0.322 |
MDRT (secs) | 19.9 (17.0–22.7) | 20.0 (18.0–22.3) | 0.892 |
MC (%) | 1.37 (0.38–1.72) | 1.64 (0.39–1.99) | 0.409 |
MCRT (secs) | 21.4 (19.7–24.5) | 21.5 (18.7–25.3) | 0.907 |
DA (%) | 7.32 (5.10–8.04) | 7.09 (4.92–9.25) | 0.685 |
bFR (%) | 3.11 (1.26–4.74) | 3.02 (1.41–4.19) | 0.850 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.; Shokr, H.; Greenstein, A.; Gherghel, D. Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk. J. Clin. Med. 2022, 11, 6962. https://doi.org/10.3390/jcm11236962
Patel S, Shokr H, Greenstein A, Gherghel D. Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk. Journal of Clinical Medicine. 2022; 11(23):6962. https://doi.org/10.3390/jcm11236962
Chicago/Turabian StylePatel, Sunni, Hala Shokr, Adam Greenstein, and Doina Gherghel. 2022. "Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk" Journal of Clinical Medicine 11, no. 23: 6962. https://doi.org/10.3390/jcm11236962
APA StylePatel, S., Shokr, H., Greenstein, A., & Gherghel, D. (2022). Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk. Journal of Clinical Medicine, 11(23), 6962. https://doi.org/10.3390/jcm11236962