Does Posterior Tibial Slope Influence Knee Kinematics in Medial Stabilized TKA?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens and Implantation
2.2. Biomechanical Setup
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calliess, T.; Ettinger, C.M. Kinematic alignment in total knee arthroplasty: Concept, evidence base and limitations. Orthopade 2015, 44, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Genin, P.; Weill, G.; Julliard, R. The tibial slope. Proposal for a measurement method. J. Radiol. 1993, 74, 27–33. [Google Scholar] [PubMed]
- Kim, K.-H.; Bin, S.-I.; Kim, J.-M. The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg. Relat. Res. 2012, 24, 158. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Norouzian, M.; Birjandinejad, A.; Zandi, R.; Makhmalbaf, H. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging. Arch. Bone Jt. Surg. 2017, 5, 435–439. [Google Scholar] [PubMed]
- Utzschneider, S.; Goettinger, M.; Weber, P.; Horng, A.; Glaser, C.; Jansson, V.; Müller, P.E. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1643–1648. [Google Scholar] [CrossRef]
- Wittenberg, S.; Sentuerk, U.; Renner, L.; Weynandt, C.; Perka, C.F.; Gwinner, C. Importance of the tibial slope in knee arthroplasty. Orthopade 2020, 49, 10–17. [Google Scholar] [CrossRef]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Kwon, O.-R.; Lee, J.-S.; Kwon, S.-K. Influence of Increased Posterior Tibial Slope in Total Knee Arthroplasty on Knee Joint Biomechanics: A Computational Simulation Study. J. Arthroplast. 2018, 33, 572–579. [Google Scholar] [CrossRef]
- Bai, B.; Baez, J.; Testa, N.; Kummer, F.J. Effect of posterior cut angle on tibial component loading. J. Arthroplast. 2000, 15, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Dorr, L.D.; Boiardo, R.A. Technical considerations in total knee arthroplasty. Clin. Orthop. Relat. Res. 1986, 205, 5–11. [Google Scholar] [CrossRef]
- Ewald, F.C.; Jacobs, M.A.; Miegel, R.E.; Walker, P.S.; Poss, R.; Sledge, C.B. Kinematic total knee replacement. J. Bone Jt. Surg. Am. 1984, 66, 1032–1040. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Blom, A.; Boulton, C.; Brittain, R.; Clark, E.; Craig, R.; Dawson-Bowling, S.; Deere, K.; Esler, C.; Espinoza, O. The National Joint Registry 18th Annual Report 2021; National Joint Registry: London, UK, 2021. [Google Scholar]
- Grimberg, A.; Jansson, V.; Lützner, J.; Melsheimer, O.; Morlock, M.; Steinbrück, A. EPRD Jahresbericht 2021. EPRD Endoprothesenregister Deutschland, 2021.
- Robertsson, O.; Lidgren, L.; Sundberg, M.; W-Dahl, A. Annual Report 2020. The Swedish Knee Arthroplasty Register, 2020.
- Plachel, F.; Kirschbaum, S.; Perka, C.F.; Gwinner, C. Stellenwert des tibialen Slopes in der primären Knietotalendoprothetik. Arthroskopie 2021, 34, 54–58. [Google Scholar] [CrossRef]
- Singh, G.; Tan, J.H.; Sng, B.Y.; Awiszus, F.; Lohmann, C.; Nathan, S.S. Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Jt. J. 2013, 95, 1354–1358. [Google Scholar] [CrossRef]
- Shi, X.; Shen, B.; Kang, P.; Yang, J.; Zhou, Z.; Pei, F. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2696–2703. [Google Scholar] [CrossRef]
- Banks, S.A.; Harman, M.K.; Hodge, W.A. Mechanism of anterior impingement damage in total knee arthroplasty. J. Bone Jt. Surg. Am. 2002, 84 (Suppl. S2), 37–42. [Google Scholar] [CrossRef]
- Chakravarty, R.; Elmallah, R.D.K.; Cherian, J.J.; Kurtz, S.M.; Mont, M.A. Polyethylene Wear in Knee Arthroplasty. J. Knee Surg. 2015, 28, 370–375. [Google Scholar] [CrossRef]
- Fujito, T.; Tomita, T.; Yamazaki, T.; Oda, K.; Yoshikawa, H.; Sugamoto, K. Influence of Posterior Tibial Slope on Kinematics After Cruciate-Retaining Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 3778–3782.e1. [Google Scholar] [CrossRef]
- Kim, J.H. Effect of posterior femoral condylar offset and posterior tibial slope on maximal flexion angle of the knee in posterior cruciate ligament sacrificing total knee arthroplasty. Knee Surg. Relat. Res. 2013, 25, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, K.; Tashiro, Y.; Mizu-Uchi, H.; Hamai, S.; Doi, T.; Iwamoto, Y. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty. Knee 2014, 21, 806–809. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, Y.; Zhao, X.; Zhang, H.; Wang, Y.; Li, T. The influence of posterior tibial slope on the mid-term clinical effect of medial-pivot knee prosthesis. J. Orthop. Surg. Res. 2021, 16, 563. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Müller, P.E.; Jansson, V. The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: An in vitro study. Arch. Orthop. Trauma Surg. 2014, 134, 867–872. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Pinskerova, V.; Müller, P.E.; Jansson, V. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin. Biomech. 2016, 33, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Glogaza, A.; Müller, P.E.; Jansson, V.; Fottner, A. A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: An in vitro study. Arch. Orthop. Trauma Surg. 2018, 138, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Müller, T.; Müller, P.E.; Jansson, V.; Fottner, A. Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: An in vitro study. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2395–2401. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.; Woiczinski, M.; Thorwächter, C.; Melsheimer, O.; Weber, P.; Grupp, T.; Jansson, V.; Steinbrück, A. Secondary Patellar Resurfacing in TKA: A Combined Analysis of Registry Data and Biomechanical Testing. J. Clin. Med. 2021, 10, 1227. [Google Scholar] [CrossRef] [PubMed]
- Steinbrück, A.; Fottner, A.; Schröder, C.; Woiczinski, M.; Schmitt-Sody, M.; Müller, T.; Müller, P.E.; Jansson, V. Influence of mediolateral tibial baseplate position in TKA on knee kinematics and retropatellar pressure. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2602–2608. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Müller, P.E.; Jansson, V. Patellofemoral contact patterns before and after total knee arthroplasty: An in vitro measurement. BioMed. Eng. OnLine 2013, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Schmidutz, F.; Müller, P.E.; Jansson, V.; Fottner, A. Mediolateral femoral component position in TKA significantly alters patella shift and femoral roll-back. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3561–3568. [Google Scholar] [CrossRef]
- Bull, A.M.J.; Katchburian, M.V.; Shih, Y.-F.; Amis, A.A. Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg. Sports Traumatol. Arthrosc. 2002, 10, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Grood, E.S.; Suntay, W.J. A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar]
- Freeman, M.; Pinskerova, V. The movement of the normal tibio-femoral joint. J. Biomech. 2005, 38, 197–208. [Google Scholar] [CrossRef]
- Pinskerova, V.; Johal, P.; Nakagawa, S.; Sosna, A.; Williams, A.; Gedroyc, W.; Freeman, M.A.R. Does the femur roll-back with flexion? J. Bone Jt. Surg. 2004, 86, 925–931. [Google Scholar] [CrossRef]
- Pinskerova, V.; Vavrik, P. Knee anatomy and biomechanics and its relevance to knee replacement. In Personalized Hip and Knee Joint Replacement; Rivière, C., Vendittoli, P.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 159–168. [Google Scholar]
- Schütz, P.; Taylor, W.R.; Postolka, B.; Fucentese, S.F.; Koch, P.P.; Freeman, M.A.; Pinskerova, V.; List, R. Kinematic evaluation of the GMK sphere implant during gait activities: A dynamic videofluoroscopy study. J. Orthop. Res. 2019, 37, 2337–2347. [Google Scholar] [CrossRef] [Green Version]
- Scott, G.; Imam, M.A.; Eifert, A.; Freeman, M.A.R.; Pinskerova, V.; Field, R.E.; Skinner, J.; Banks, S.A. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Jt. Res. 2016, 5, 80–86. [Google Scholar] [CrossRef]
- Alesi, D.; Muccioli, G.M.M.; di Sarsina, T.R.; Bontempi, M.; Pizza, N.; Zinno, R.; Di Paolo, S.; Zaffagnini, S.; Bragonzoni, L. In vivo femorotibial kinematics of medial-stabilized total knee arthroplasty correlates to post-operative clinical outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 491–497. [Google Scholar] [CrossRef]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Kwon, O.-R.; Lee, J.-S.; Kwon, S.K. Biomechanical Effects of Posterior Condylar Offset and Posterior Tibial Slope on Quadriceps Force and Joint Contact Forces in Posterior-Stabilized Total Knee Arthroplasty. Biomed. Res. Int. 2017, 2017, 4908639. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Lo, J.; Wünschel, M.; Obloh, C.; Wülker, N. Simulation of force loaded knee movement in a newly developed in vitro knee simulator/Simulation von belastungsabhängigen Kniebewegungen in einem neuartigen Knie-Simulator für In-vitro-Studien. Biomed. Eng. Biomed. Tech. 2009, 54, 142–149. [Google Scholar] [CrossRef]
Native Situation | 0° PTS | 3° PTS | 6° PTS | |
---|---|---|---|---|
AP lateral (−Tibia anterior/+Tibia posterior) [mm] | ||||
30° flexion | −6.88 (±8.17) | 2.26 (±10.01) | −1.87 (±8.47) | −1.24 (±8.97) |
p = 0.021 | ||||
60° flexion | −13.66 (±7.76) | 0.98 (±9.65) | −5.19 (±7.88) | −3.25 (±9.24) |
p = 0.039 | ||||
p = 0.038 | ||||
p = 0.012 | ||||
90° flexion | −17.29 (± 8.28) | −2.52 (± 8.79) | −4.75 (± 7.07) | −4.79 (± 8.31) |
120° flexion | −18.56 (±8.30) | −9.09 (±9.19) | −11.03 (±6.72) | 11.86 (±9.35) |
AP medial (−Tibia anterior/+Tibia posterior) [mm] | ||||
30° flexion | 0.69 (±9.27) | −3.51 (±9.85) | −5.47 (±8.42) | −3.79 (±10.30) |
60° flexion | −0.18 (±9.10) | 0.64 (±9.93) | −3.16 (±9.94) | −0.84 (±10.86) |
90° flexion | −1.59 (±7.62) | 1.89 (±8.95) | 0.15 (±9.69) | 1.01 (±9.79) |
120° flexion | −4.98 (±6.57) | −1.88 (±6.06) | −3.60 (±7.86) | −3.28 (±7.61) |
Tibial rotation (−Tibia internal rotation/+Tibia external rotation) [°] | ||||
30° flexion | −0.72 (±0.67) | −1.06 (±0.49) | −1.39 (±0.62) | −1.24 (±0.51) |
60° flexion | −4.96 (±2.75) | −4.86 (±3.16) | −5.34 (±3.41) | −4.70 (±3.09) |
90° flexion | −6.61 (±5.09) | −8.24 (±4.59) | −7.40 (±4.48) | −7.13 (±3.73) |
120° flexion | −5.07 (±6.86) | −10.35 (±4.70) | −9.29 (±5.63) | −9.21 (±4.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, L.; Thorwächter, C.; Steinbrück, A.; Jansson, V.; Traxler, H.; Alic, Z.; Holzapfel, B.M.; Woiczinski, M. Does Posterior Tibial Slope Influence Knee Kinematics in Medial Stabilized TKA? J. Clin. Med. 2022, 11, 6875. https://doi.org/10.3390/jcm11226875
Bauer L, Thorwächter C, Steinbrück A, Jansson V, Traxler H, Alic Z, Holzapfel BM, Woiczinski M. Does Posterior Tibial Slope Influence Knee Kinematics in Medial Stabilized TKA? Journal of Clinical Medicine. 2022; 11(22):6875. https://doi.org/10.3390/jcm11226875
Chicago/Turabian StyleBauer, Leandra, Christoph Thorwächter, Arnd Steinbrück, Volkmar Jansson, Hannes Traxler, Zumreta Alic, Boris Michael Holzapfel, and Matthias Woiczinski. 2022. "Does Posterior Tibial Slope Influence Knee Kinematics in Medial Stabilized TKA?" Journal of Clinical Medicine 11, no. 22: 6875. https://doi.org/10.3390/jcm11226875