A Retrospective Assessment of Laboratory Findings and Cytokine Markers in Severe SARS-CoV-2 Infection among Patients of Roma Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Inclusion Criteria and Variables
2.3. Statistical Analysis
3. Results
Patients’ Background Characteristics
4. Discussion
4.1. Literature Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gueye, K.; Padane, A.; Diédhiou, C.K.; Ndiour, S.; Diagne, N.D.; Mboup, A.; Mbow, M.; Lo, C.I.; Leye, N.; Ndoye, A.S.; et al. Evolution of SARS-CoV-2 Strains in Senegal: From a Wild Wuhan Strain to the Omicron Variant. COVID 2022, 2, 1116–1124. [Google Scholar] [CrossRef]
- Stoicescu, E.R.; Manolescu, D.L.; Iacob, R.; Cerbu, S.; Dima, M.; Iacob, E.R.; Ciuca, I.M.; Oancea, C.; Iacob, D. The Assessment of COVID-19 Pneumonia in Neonates: Observed by Lung Ultrasound Technique and Correlated with Biomarkers and Symptoms. J. Clin. Med. 2022, 11, 3555. [Google Scholar] [CrossRef] [PubMed]
- Marincu, I.; Bratosin, F.; Vidican, I.; Bostanaru, A.-C.; Frent, S.; Cerbu, B.; Turaiche, M.; Tirnea, L.; Timircan, M. Predictive Value of Comorbid Conditions for COVID-19 Mortality. J. Clin. Med. 2021, 10, 2652. [Google Scholar] [CrossRef] [PubMed]
- Manolescu, D.; Timar, B.; Bratosin, F.; Rosca, O.; Citu, C.; Oancea, C. Predictors for COVID-19 Complete Remission with HRCT Pattern Evolution: A Monocentric, Prospective Study. Diagnostics 2022, 12, 1397. [Google Scholar] [CrossRef] [PubMed]
- Pilut, C.N.; Citu, C.; Gorun, F.; Bratosin, F.; Gorun, O.M.; Burlea, B.; Citu, I.M.; Grigoras, M.L.; Manolescu, D.; Gluhovschi, A. The Utility of Laboratory Parameters for Cardiac Inflammation in Heart Failure Patients Hospitalized with SARS-CoV-2 Infection. Diagnostics 2022, 12, 824. [Google Scholar] [CrossRef]
- Basheer, M.; Saad, E.; Assy, N. The Cytokine Storm in COVID-19: The Strongest Link to Morbidity and Mortality in the Current Epidemic. COVID 2022, 2, 540–552. [Google Scholar] [CrossRef]
- Cappanera, S.; Palumbo, M.; Kwan, S.H.; Priante, G.; Martella, L.A.; Saraca, L.M.; Sicari, F.; Vernelli, C.; Di Giuli, C.; Andreani, P.; et al. When Does the Cytokine Storm Begin in COVID-19 Patients? A Quick Score to Recognize It. J. Clin. Med. 2021, 10, 297. [Google Scholar] [CrossRef]
- Niedźwiedzka-Rystwej, P.; Majchrzak, A.; Kurkowska, S.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Parczewski, M. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int. J. Mol. Sci. 2022, 23, 4545. [Google Scholar] [CrossRef]
- Marc, F.; Moldovan, C.M.; Hoza, A.; Magheru, S.; Ciavoi, G.; Farcas, D.M.; Sachelarie, L.; Calin, G.; Romila, L.; Damir, D.; et al. Comparative Study of Cytokine Storm Treatment in Patients with COVID-19 Pneumonia Using Immunomodulators. J. Clin. Med. 2022, 11, 2945. [Google Scholar] [CrossRef]
- Farooqi, F.; Dhawan, N.; Morgan, R.; Dinh, J.; Nedd, K.; Yatzkan, G. Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation during Acute Respiratory Distress: A Case Report and Literature Review. Trop. Med. Infect. Dis. 2020, 5, 112. [Google Scholar] [CrossRef]
- Citu, I.M.; Citu, C.; Gorun, F.; Neamtu, R.; Motoc, A.; Burlea, B.; Rosca, O.; Bratosin, F.; Hosin, S.; Manolescu, D.; et al. Using the NYHA Classification as Forecasting Tool for Hospital Readmission and Mortality in Heart Failure Patients with COVID-19. J. Clin. Med. 2022, 11, 1382. [Google Scholar] [CrossRef]
- Timircan, M.; Bratosin, F.; Vidican, I.; Suciu, O.; Tirnea, L.; Avram, V.; Marincu, I. Exploring Pregnancy Outcomes Associated with SARS-CoV-2 Infection. Medicina 2021, 57, 796. [Google Scholar] [CrossRef]
- Mocanu, A.; Noja, G.G.; Istodor, A.V.; Moise, G.; Leretter, M.; Rusu, L.-C.; Marza, A.M.; Mederle, A.O. Individual Characteristics as Prognostic Factors of the Evolution of Hospitalized COVID-19 Romanian Patients: A Comparative Observational Study between the First and Second Waves Based on Gaussian Graphical Models and Structural Equation Modeling. J. Clin. Med. 2021, 10, 1958. [Google Scholar] [CrossRef]
- Voda, M.; Murgu, A.; Sarpe, C.A.; Graves, S.M.; Avram, C. The Țigani Community Adaptability to Changes in Rural Romania and the COVID-19 Impact. Int. J. Environ. Res. Public Health 2021, 18, 10622. [Google Scholar] [CrossRef]
- Orton, L.; de Cuevas, R.A.; Stojanovski, K.; Gamella, J.F.; Greenfields, M.; La Parra, D.; Marcu, O.; Matras, Y.; Donert, C.; Frost, D.; et al. Roma populations and health inequalities: A new perspective. Int. J. Hum. Rights Healthc. 2019, 12, 319–327. [Google Scholar] [CrossRef]
- Tombat, K.; van Dijk, J.P. Roma Health: An Overview of Communicable Diseases in Eastern and Central Europe. Int. J. Environ. Res. Public Health 2020, 17, 7632. [Google Scholar] [CrossRef]
- Koureas, M.; Speletas, M.; Bogogiannidou, Z.; Babalis, D.; Pinakas, V.; Pinaka, O.; Komnos, A.; Tsoutsa, S.; Papadamou, G.; Kyritsi, M.A.; et al. Transmission Dynamics of SARS-CoV-2 during an Outbreak in a Roma Community in Thessaly, Greece-Control Measures and Lessons Learned. Int. J. Environ. Res. Public Health 2021, 18, 2878. [Google Scholar] [CrossRef]
- Turaiche, M.; Feciche, B.; Gluhovschi, A.; Bratosin, F.; Bogdan, I.; Bota, A.V.; Grigoras, M.L.; Gurban, C.V.; Cerbu, B.; Toma, A.-O.; et al. Biological Profile and Clinical Features as Determinants for Prolonged Hospitalization in Adult Patients with Measles: A Monocentric Study in Western Romania. Pathogens 2022, 11, 1018. [Google Scholar] [CrossRef]
- Citu, I.M.; Citu, C.; Gorun, F.; Sas, I.; Tomescu, L.; Neamtu, R.; Motoc, A.; Gorun, O.M.; Burlea, B.; Bratosin, F.; et al. Immunogenicity Following Administration of BNT162b2 and Ad26.COV2.S COVID-19 Vaccines in the Pregnant Population during the Third Trimester. Viruses 2022, 14, 307. [Google Scholar] [CrossRef]
- Tirnea, L.; Bratosin, F.; Vidican, I.; Cerbu, B.; Turaiche, M.; Timircan, M.; Margan, M.-M.; Marincu, I. The Efficacy of Convalescent Plasma Use in Critically Ill COVID-19 Patients. Medicina 2021, 57, 257. [Google Scholar] [CrossRef]
- Cerbu, B.; Pantea, S.; Bratosin, F.; Vidican, I.; Turaiche, M.; Frent, S.; Borsi, E.; Marincu, I. Liver Impairment and Hematological Changes in Patients with Chronic Hepatitis C and COVID-19: A Retrospective Study after One Year of Pandemic. Medicina 2021, 57, 597. [Google Scholar] [CrossRef] [PubMed]
- Broască, L.; Trușculescu, A.A.; Ancușa, V.M.; Ciocârlie, H.; Oancea, C.-I.; Stoicescu, E.-R.; Manolescu, D.L. A Novel Method for Lung Image Processing Using Complex Networks. Tomography 2022, 8, 1928–1946. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, Y. The Clinical Characteristics and Risk Factors of Severe COVID-19. Gerontology 2021, 67, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, I.; Citu, C.; Bratosin, F.; Malita, D.; Romosan, I.; Gurban, C.V.; Bota, A.V.; Turaiche, M.; Bratu, M.L.; Pilut, C.N.; et al. The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics 2022, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Enache, G.; Rusu, E.; Ilinca, A.; Rusu, F.; Costache, A.; Jinga, M.; Pănuş, C.; Radulian, G. Prevalence of Overweight and Obesity in a Roma Population from Southern Romania—Calarasi County. Acta Endocrinol. 2018, 14, 122–130. [Google Scholar] [CrossRef]
- Negrut, N.; Codrean, A.; Hodisan, I.; Bungau, S.; Tit, D.M.; Marin, R.; Behl, T.; Banica, F.; Diaconu, C.C.; Nistor-Cseppento, D.C. Efficiency of antiviral treatment in COVID-19. Exp. Ther. Med. 2021, 21, 648. [Google Scholar] [CrossRef]
- Ministry Of Health. Documents of specialized bodies of Central Public Administration. The official gazette of Romania, part I, no. 1167/3.XII.2020. [Romanian]. Available online: http://www.casan.ro/casil//theme/cnas/js/ckeditor/filemanager/userfiles/ProtocolSarsCov2.pdf (accessed on 23 October 2022).
- Armitage, R.; Nellums, L.B. COVID-19 and the Gypsy, Roma and Traveller population. Public Health 2020, 185, 48. [Google Scholar] [CrossRef]
- Al-Hadidi, S.H.; Alhussain, H.; Abdel Hadi, H.; Johar, A.; Yassine, H.M.; Al Thani, A.A.; Eltai, N.O. The Spectrum of Antibiotic Prescribing During COVID-19 Pandemic: A Systematic Literature Review. Microb. Drug Resist. 2021, 27, 1705–1725. [Google Scholar] [CrossRef]
- Citu, C.; Gorun, O.M.; Motoc, A.; Citu, I.M.; Gorun, F.; Malita, D. Correlation of Lung Damage on CT scan with Laboratory Inflammatory Markers in COVID-19 Patients: A Single-Center Study from Romania. J. Clin. Med. 2022, 11, 4299. [Google Scholar] [CrossRef]
- Santa Cruz, A.; Mendes-Frias, A.; Oliveira, A.I.; Dias, L.; Matos, A.R.; Carvalho, A.; Capela, C.; Pedrosa, J.; Castro, A.G.; Silvestre, R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol. 2021, 12, 613422. [Google Scholar] [CrossRef]
- Liao, B.; Liu, Z.; Tang, L.; Li, L.; Gan, Q.; Shi, H.; Jiao, Q.; Guan, Y.; Xie, M.; He, X.; et al. Longitudinal clinical and radiographic evaluation reveals interleukin-6 as an indicator of persistent pulmonary injury in COVID-19. Int. J. Med. Sci. 2021, 18, 29–41. [Google Scholar] [CrossRef]
- Lian, Y.; Xie, L.; Liu, Y.; Tang, F. Metabolic-related markers and inflammatory factors as predictors of dyslipidemia among urban Han Chinese adults. Lipids Health Dis. 2019, 18, 167. [Google Scholar] [CrossRef] [Green Version]
- Waheed, P.; Naveed, A.K.; Farooq, F. Levels of inflammatory markers and their correlation with dyslipidemia in diabetics. J. Coll. Physicians Surg. Pak. 2009, 19, 207–210. [Google Scholar]
- Papapanagiotou, A.; Siasos, G.; Kassi, E.; Gargalionis, A.N.; Papavassiliou, A.G. Novel Inflammatory Markers in Hyperlipidemia: Clinical Implications. Curr. Med. Chem. 2015, 22, 2727–2743. [Google Scholar] [CrossRef]
- Pu, S.L.; Zhang, X.Y.; Liu, D.S.; Ye, B.N.; Li, J.Q. Unexplained elevation of erythrocyte sedimentation rate in a patient recovering from COVID-19: A case report. World J. Clin. Cases 2021, 9, 1394–1401. [Google Scholar] [CrossRef]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 2020, 92, 2409–2411. [Google Scholar] [CrossRef]
- Ikeagwulonu, R.C.; Ugwu, N.I.; Ezeonu, C.T.; Ikeagwulonu, Z.C.; Uro-Chukwu, H.C.; Asiegbu, U.V.; Obu, D.C.; Briggs, D.C. C-Reactive Protein and Covid-19 Severity: A Systematic Review. West Afr. J. Med. 2021, 38, 1011–1023. [Google Scholar]
- Llanaj, E.; Vincze, F.; Kósa, Z.; Sándor, J.; Diószegi, J.; Ádány, R. Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary. Nutrients 2020, 12, 2836. [Google Scholar] [CrossRef]
- McFadden, A.; Siebelt, L.; Gavine, A.; Atkin, K.; Bell, K.; Innes, N. Gypsy, Roma and Traveller access to and engagement with health services: A systematic review. Eur. J. Publ. Health 2018, 28, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Macejova, Z.; Kristian, P.; Janicko, M.; Halanova, M.; Drazilova, S.; Antolova, D.; Marekova, M.; Pella, D.; Madarasova-Geckova, A.; Jarcuska, P.; et al. The Roma Population Living in Segregated Settlements in Eastern Slovakia Has a Higher Prevalence of Metabolic Syndrome, Kidney Disease, Viral Hepatitis B and E, and Some Parasitic Diseases Compared to the Majority Population. Int. J. Environ. Res. Public Health 2020, 17, 3112. [Google Scholar] [CrossRef]
- Langellier, B.A. Policy recommendations to address high risk of COVID-19 among immigrants. Am. J. Public Health 2020, 110, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
Variables * | Roma (n = 83) | Romanian (n = 236) | p-Value |
---|---|---|---|
Background data | |||
Age | 0.019 | ||
18–40 years | 14 (16.9%) | 16 (6.8%) | |
40–65 years | 37 (44.6%) | 106 (44.9%) | |
>65 years | 32 (38.6%) | 114 (48.3%) | |
Sex | 0.185 | ||
Men | 53 (63.9%) | 131 (55.5%) | |
Women | 30 (36.1%) | 105 (44.5%) | |
BMI | 0.023 | ||
Underweight (<18.5 kg/m2) | 4 (4.8%) | 12 (5.1%) | |
Normal weight (18.5–25.0 kg/m2) | 31 (37.3%) | 128 (54.2%) | |
Overweight (>25.0 kg/m2) | 48 (57.8%) | 96 (40.7%) | |
Other characteristics | |||
Area of residence (urban) | 37 (44.6%) | 144 (61.0%) | 0.009 |
Occupation (unemployed) | 33 (39.8%) | 52 (22.0%) | 0.001 |
Relationship status (married) | 80 (96.4%) | 211 (89.4%) | 0.053 |
Substance use behavior | |||
Chronic smoking | 26 (31.3%) | 63 (26.7%) | 0.418 |
Chronic alcohol use | 5 (6.0%) | 12 (5.1%) | 0.743 |
Chronic comorbidities | |||
High blood pressure | 37 (44.6%) | 76 (32.2%) | 0.042 |
Lung | 15 (18.1%) | 29 (12.3%) | 0.188 |
Diabetes mellitus | 32 (38.6%) | 54 (22.9%) | 0.005 |
Cerebrovascular | 20 (24.1%) | 36 (15.3%) | 0.068 |
Digestive & liver | 11 (13.3%) | 19 (8.1%) | 0.162 |
Kidney | 14 (16.9%) | 29 (12.3%) | 0.293 |
Depression | 2 (2.4%) | 16 (6.8%) | 0.137 |
Malignancy | 4 (4.8%) | 17 (7.2%) | 0.451 |
Other | 6 (7.2%) | 20 (8.5%) | 0.721 |
COVID-19 transmission source | 0.537 | ||
Community | 9 (10.8%) | 26 (11.0%) | |
Family | 29 (34.9%) | 98 (41.5%) | |
Unknown source | 45 (54.2%) | 112 (47.5%) |
Variables * | Roma (n = 83) | Romanian (n = 236) | p-Value |
---|---|---|---|
Signs and Symptoms | |||
Cough | 52 (62.7%) | 160 (67.8%) | 0.393 |
Fever | 59 (71.1%) | 173 (73.3%) | 0.695 |
Dyspnea | 43 (51.8%) | 127 (53.8%) | 0.752 |
Headache | 10 (12.0%) | 38 (16.1%) | 0.374 |
Digestive symptoms | 21 (25.3%) | 43 (18.2%) | 0.165 |
Anosmia/ageusia | 24 (28.9%) | 71 (30.1%) | 0.841 |
Fatigue | 72 (86.7%) | 194 (82.2%) | 0.338 |
Myalgia/arthralgia | 22 (26.5%) | 61 (25.8%) | 0.906 |
Dysphagia | 4 (4.8%) | 13 (5.5%) | 0.809 |
COVID-19 treatment | |||
Antivirals | 69 (83.1%) | 201 (85.2%) | 0.657 |
Corticosteroids | 65 (78.3%) | 19 (83.5%) | 0.291 |
Antibiotics | 70 (84.3%) | 209 (88.6%) | 0.317 |
Anticoagulant | 61 (73.5%) | 175 (74.2%) | 0.906 |
Immune modulators | 23 (27.7%) | 62 (26.3%) | 0.798 |
COVID-19 Outcomes | |||
Mean duration of hospital stay | 18.1 ± 5.3 | 16.3 ± 6.0 | 0.016 |
Median duration from symptom onset until hospital admission | 4 [1–6] | 5 [1–7] | 0.590 |
Viral clearance | 16.5 ± 6.6 | 14.9 ± 6.8 | 0.064 |
ICU admission | 37 (44.6%) | 75 (31.8%) | 0.035 |
Median duration of ICU stays | 8 [2–14] | 5 [1–9] | <0.001 |
Severe in-hospital complications | 16 (19.3%) | 34 (14.4%) | 0.293 |
Oxygen supplementation | 63 (75.9%) | 151 (64.0%) | 0.046 |
Mortality | 20 (24.1%) | 38 (16.1%) | 0.104 |
Variables * | Normal Range | Roma (n = 83) | Romanian (n = 236) | p-Value |
---|---|---|---|---|
Complete blood count | ||||
RBC (millions/mm3) | 4.35–5.65 | 5.8 (3.1) | 5.7 (3.3) | 0.798 |
PLT (thousands/mm3) | 150–450 | 336 (129) | 319 (107) | 0.188 |
WBC (thousands/mm3) | 4.5–11.0 | 12.4 (4.6) | 12.6 (4.7) | 0.906 |
Neutrophils (thousands/mm3) | 1.5–8.0 | 9.0 (3.8) | 8.8 (3.5) | 0.289 |
Lymphocytes (thousands/mm3) | 1.0–4.8 | 6.2 (2.2) | 6.6 (2.9) | 0.296 |
Hemoglobin (g/dL) | 13.0–17.0 | 14.1 (5.0) | 14.5 (5.2) | 0.687 |
Hematocrit (%) | 36–48 | 39 (9) | 40 (11) | 0.267 |
Liver function | ||||
Fasting glucose (mmol/L) ^ | 60–125 | 122 (51) | 97 (43) | 0.014 |
ALT (U/L) | 7–35 | 37 (12) | 34 (11) | 0.354 |
AST (U/L) | 10–40 | 38 (8) | 33 (8) | 0.422 |
LDH (U/L) | 140–280 | 240 (44) | 246 (47) | 0.791 |
PT (seconds) | 11.0–13.5 | 12.6 (4.0) | 12.9 (4.1) | 0.673 |
Renal function | ||||
Creatinine (µmol/L) ^ | 0.74–1.35 | 1.49 (0.72) | 1.22 (0.66) | 0.031 |
BUN (mmol/L) | 2.1–8.5 | 8.5 (3.1) | 7.8 (3.2) | 0.140 |
eGFR | >60 | 64 (25) | 60 (22) | 0.128 |
Lipid profile | ||||
Total cholesterol (mg/dL) ^ | 100–200 | 247 (103) | 214 (96) | 0.023 |
Triglycerides | 50–150 | 152 (39) | 148 (40) | 0.105 |
LDL-C (mg/dL) | <100 | 94 (50) | 91 (47) | 0.464 |
HDL-C (mg/dL) | 40–60 | 38 (26) | 40 (29) | 0.251 |
Variables * | Normal Range | Roma (n = 83) | Romanian (n = 236) | p-Value |
---|---|---|---|---|
Procalcitonin (ug/L) | 0–0.25 | 0.94 (0.69) | 0.81 (0.53) | 0.635 |
D-dimers (ng/mL) | <250 | 308 (166) | 311 (169) | 0.853 |
IL-6 (pg/mL) ^ | 0.8–6.4 | 9.2 (3.7) | 6.9 (4.8) | 0.012 |
TNF-α (pg/mL) | 7.8–12.2 | 14.0 (6.4) | 14.9 (6.8) | 0.233 |
Ferritin (ng/mL) | 20–250 | 272 (92) | 247 (62) | 0.417 |
ESR (mm/h) | 0–22 | 34 (24) | 28 (13) | 0.057 |
CRP (mg/dL) ^ | 0–10 | 25 (16) | 19 (9) | 0.029 |
Fibrinogen (g/L) | 2–4 | 6.1 (3.3) | 5.8 (3.0) | 0.276 |
Variables * | Normal Range | Roma (n = 83) | Romanian (n = 236) | p-Value |
---|---|---|---|---|
Procalcitonin (ug/L) | 0–0.25 | 0.66 (0.38) | 0.57 (0.33) | 0.216 |
D-dimers (ng/mL) | <250 | 240 (93) | 246 (98) | 0.833 |
IL-6 (pg/mL) | 0.8–6.4 | 7.4 (3.9) | 7.6 (3.7) | 0.744 |
TNF-α (pg/mL) | 7.8–12.2 | 12.5 (4.0) | 12.6 (4.2) | 0.882 |
Ferritin (ng/mL) | 20–250 | 228 (72) | 214 (66) | 0.491 |
ESR (mm/h) ^ | 0–22 | 26 (16) | 20 (11) | 0.034 |
CRP (mg/dL) ^ | 0–10 | 27 (9) | 15 (14) | 0.033 |
Fibrinogen (g/L) | 2–4 | 4.1 (2.7) | 4.8 (3.0) | 0.350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, A.; Lazureanu, V.E.; Marinescu, A.R.; Cut, T.G.; Laza, R.; Rusu, L.-C.; Marza, A.M.; Nelson-Twakor, A.; Negrean, R.A.; Popescu, I.-M.; et al. A Retrospective Assessment of Laboratory Findings and Cytokine Markers in Severe SARS-CoV-2 Infection among Patients of Roma Population. J. Clin. Med. 2022, 11, 6777. https://doi.org/10.3390/jcm11226777
Mocanu A, Lazureanu VE, Marinescu AR, Cut TG, Laza R, Rusu L-C, Marza AM, Nelson-Twakor A, Negrean RA, Popescu I-M, et al. A Retrospective Assessment of Laboratory Findings and Cytokine Markers in Severe SARS-CoV-2 Infection among Patients of Roma Population. Journal of Clinical Medicine. 2022; 11(22):6777. https://doi.org/10.3390/jcm11226777
Chicago/Turabian StyleMocanu, Alexandra, Voichita Elena Lazureanu, Adelina Raluca Marinescu, Talida Georgiana Cut, Ruxandra Laza, Laura-Cristina Rusu, Adina Maria Marza, Andreea Nelson-Twakor, Rodica Anamaria Negrean, Irina-Maria Popescu, and et al. 2022. "A Retrospective Assessment of Laboratory Findings and Cytokine Markers in Severe SARS-CoV-2 Infection among Patients of Roma Population" Journal of Clinical Medicine 11, no. 22: 6777. https://doi.org/10.3390/jcm11226777
APA StyleMocanu, A., Lazureanu, V. E., Marinescu, A. R., Cut, T. G., Laza, R., Rusu, L.-C., Marza, A. M., Nelson-Twakor, A., Negrean, R. A., Popescu, I.-M., & Mederle, A. O. (2022). A Retrospective Assessment of Laboratory Findings and Cytokine Markers in Severe SARS-CoV-2 Infection among Patients of Roma Population. Journal of Clinical Medicine, 11(22), 6777. https://doi.org/10.3390/jcm11226777