Predictive and Prognostic Value of Serum Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury and Long-Term Clinical Outcomes after Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. PCI Procedure and Medical Treatments
2.3. Laboratory Measurements
2.4. Study Endpoints and Definitions
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Serum NGAL Levels and Contrast-Induced Acute Kidney Injury
3.3. Serum NGAL Levels and Cardiac and Cerebrovascular Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Messenger, J.C.; Rumsfeld, J.S.; et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI registry. JACC Cardiovasc. Interv. 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomew, B.A.; Harjai, K.J.; Dukkipati, S.; Boura, J.A.; Yerkey, M.W.; Glazier, S.; Grines, C.L.; O’Neill, W.W. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am. J. Cardiol. 2004, 93, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.K.; Ng, P.Y.; Ip, A.; Lam, L.T.; Ling, I.W.; Wong, A.S.; Yap, D.Y.; Siu, C.W. Impact of contrast-induced acute kidney injury on long-term major adverse cardiovascular events and kidney function after percutaneous coronary intervention: Insights from a territory-wide cohort study in Hong Kong. Clin. Kidney J. 2022, 15, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Bucaloiu, I.D.; Kirchner, H.L.; Norfolk, E.R.; Hartle, J.E., 2nd; Perkins, R.M. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012, 81, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Haase-Fielitz, A.; Haase, M.; Devarajan, P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: A critical evaluation of current status. Ann. Clin. Biochem. 2014, 51, 335–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, B.; Nian, W.; Xi, A.; Zheng, M. Evaluation of a Diagnostic Test of Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Urine KIM-1 in Contrast-Induced Nephropathy (CIN). Med. Sci. Monit. 2019, 25, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Miglionico, M.; Proscia, C.; Ragni, L.; Carassiti, M.; Lassandro Pepe, F.; Di Sciascio, G. Early prediction of contrast-induced acute kidney injury by a “bedside” assessment of Neutrophil Gelatinase-Associated Lipocalin during elective percutaneous coronary interventions. PLoS ONE 2018, 13, e0197833. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yu, Z.; Gan, L.; Peng, L.; Zhou, Q. Serum NGAL and FGF23 may have certain value in early diagnosis of CIN. Ren. Fail. 2018, 40, 547–553. [Google Scholar] [CrossRef]
- Quintavalle, C.; Anselmi, C.V.; De Micco, F.; Roscigno, G.; Visconti, G.; Golia, B.; Focaccio, A.; Ricciardelli, B.; Perna, E.; Papa, L.; et al. Neutrophil Gelatinase-Associated Lipocalin and Contrast-Induced Acute Kidney Injury. Circ. Cardiovasc. Interv. 2015, 8, e002673. [Google Scholar] [CrossRef]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M.; et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011, 124, e574–e651. [Google Scholar]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Devarajan, P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury. Nephrol. Dial. Transplant. 2008, 23, 3737–3743. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Ott, K.M.; Mori, K.; Li, J.Y.; Kalandadze, A.; Cohen, D.J.; Devarajan, P.; Barasch, J. Dual action of neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 2007, 18, 407–413. [Google Scholar] [CrossRef]
- Cruz, D.N.; Gaiao, S.; Maisel, A.; Ronco, C.; Devarajan, P. Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: A systematic review. Clin. Chem. Lab. Med. 2012, 50, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Zahler, D.; Merdler, I.; Banai, A.; Shusterman, E.; Feder, O.; Itach, T.; Robb, L.; Banai, S.; Shacham, Y. Predictive Value of Elevated Neutrophil Gelatinase-Associated Lipocalin (NGAL) Levels for Assessment of Cardio-Renal Interactions among ST-Segment Elevation Myocardial Infarction Patients. J. Clin. Med. 2022, 11, 2162. [Google Scholar] [CrossRef]
- Barbarash, O.L.; Bykova, I.S.; Kashtalap, V.V.; Zykov, M.V.; Hryachkova, O.N.; Kalaeva, V.V.; Shafranskaya, K.S.; Karetnikova, V.N.; Kutikhin, A.G. Serum neutrophil gelatinase-associated lipocalin has an advantage over serum cystatin C and glomerular filtration rate in prediction of adverse cardiovascular outcome in patients with ST-segment elevation myocardial infarction. BMC Cardiovasc. Disord. 2017, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Rihal, C.S.; Textor, S.C.; Grill, D.E.; Berger, P.B.; Ting, H.H.; Best, P.J.; Singh, M.; Bell, M.R.; Barsness, G.W.; Mathew, V.; et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 2002, 105, 2259–2264. [Google Scholar] [CrossRef] [Green Version]
- Weisbord, S.D.; Gallagher, M.; Jneid, H.; Garcia, S.; Cass, A.; Thwin, S.S.; Conner, T.A.; Chertow, G.M.; Bhatt, D.L.; Shunk, K.; et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N. Engl. J. Med. 2018, 378, 603–614. [Google Scholar] [CrossRef]
- Chen, Y.L.; Fu, N.K.; Xu, J.; Yang, S.C.; Li, S.; Liu, Y.Y.; Cong, H.L. A simple preprocedural score for risk of contrast-induced acute kidney injury after percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2014, 83, E8–E16. [Google Scholar] [CrossRef]
- Sadat, U. N-acetylcysteine in contrast-induced acute kidney injury: Clinical use against principles of evidence-based clinical medicine! Expert Rev. Cardiovasc. Ther. 2014, 12, 1–3. [Google Scholar] [CrossRef] [Green Version]
- NICE. National Institute for Health and Care Excellence: Guidelines. In Acute Kidney Injury: Prevention, Detection and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2019. [Google Scholar]
- Herget-Rosenthal, S.; Marggraf, G.; Hüsing, J.; Göring, F.; Pietruck, F.; Janssen, O.; Philipp, T.; Kribben, A. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004, 66, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rudolf, H.; Rohn, B.; Bauer, F.; Timmesfeld, N.; Trappe, H.J.; Babel, N.; Westhoff, T.H. Biomarkers in the prediction of contrast media induced nephropathy—The BITCOIN study. PLoS ONE 2020, 15, e0234921. [Google Scholar] [CrossRef]
- Banda, J.; Duarte, R.; Dix-Peek, T.; Dickens, C.; Manga, P.; Naicker, S. Biomarkers for Diagnosis and Prediction of Outcomes in Contrast-Induced Nephropathy. Int. J. Nephrol. 2020, 2020, 8568139. [Google Scholar] [CrossRef]
- Wang, K.; Duan, C.Y.; Wu, J.; Liu, Y.; Bei, W.J.; Chen, J.Y.; He, P.C.; Liu, Y.H.; Tan, N. Predictive Value of Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury After Cardiac Catheterization: A Meta-analysis. Can. J. Cardiol. 2016, 32, e19–e29. [Google Scholar] [CrossRef]
- Tsai, T.T.; Messenger, J.C.; Brennan, J.M.; Patel, U.D.; Dai, D.; Piana, R.N.; Anstrom, K.J.; Eisenstein, E.L.; Dokholyan, R.S.; Peterson, E.D.; et al. Safety and efficacy of drug-eluting stents in older patients with chronic kidney disease: A report from the linked CathPCI Registry-CMS claims database. J. Am. Coll. Cardiol. 2011, 58, 1859–1869. [Google Scholar] [CrossRef] [Green Version]
- Dehmer, G.J.; Weaver, D.; Roe, M.T.; Milford-Beland, S.; Fitzgerald, S.; Hermann, A.; Messenger, J.; Moussa, I.; Garratt, K.; Rumsfeld, J.; et al. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: A report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J. Am. Coll. Cardiol. 2012, 60, 2017–2031. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e18–e114. [Google Scholar] [CrossRef]
- Bulluck, H.; Maiti, R.; Chakraborty, B.; Candilio, L.; Clayton, T.; Evans, R.; Jenkins, D.P.; Kolvekar, S.; Kunst, G.; Laing, C.; et al. Neutrophil gelatinase-associated lipocalin prior to cardiac surgery predicts acute kidney injury and mortality. Heart 2017, 104, 313–317. [Google Scholar] [CrossRef] [PubMed]
Variables | NGAL Tertile 1 (n = 212) | NGAL Tertile 2 (n = 212) | NGAL Tertile 3 (n = 209) | p Value |
---|---|---|---|---|
Age (years) | 63.8 ± 10.8 | 65.1 ± 11.4 | 67.8 ± 12.7 | 0.002 |
Male | 131 (61.8%) | 136 (64.2%) | 151 (72.2%) | 0.060 |
Body mass index (kg/m2) | 24.9 ± 3.1 | 24.7 ± 3.9 | 24.7 ± 3.5 | 0.834 |
Hypertension | 139 (65.6%) | 156 (73.6%) | 161 (77.0%) | 0.027 |
Diabetes mellitus | 80 (37.7%) | 70 (33.0%) | 98 (46.9%) | 0.012 |
Dyslipidemia | 70 (33.0%) | 76 (35.8%) | 75 (35.9%) | 0.777 |
Current smoking | 53 (25.0%) | 64 (30.2%) | 64(30.6%) | 0.363 |
Family history of coronary artery disease | 20 (9.4%) | 19 (9.0%) | 15 (7.2%) | 0.683 |
Prior stroke | 17 (8.0%) | 19 (9.0%) | 31 (14.8%) | 0.049 |
Prior myocardial infarction | 19 (9.0%) | 19 (9.0%) | 16 (7.7%) | 0.858 |
Prior percutaneous coronary intervention | 29 (13.7%) | 29 (13.7%) | 27 (12.9%) | 0.966 |
Prior statin use | 59 (27.8%) | 67 (31.6%) | 66 (31.6%) | 0.624 |
Clinical presentation | <0.001 | |||
Stable angina pectoris | 73 (34.4%) | 59 (27.8%) | 41 (19.6%) | |
Unstable angina pectoris | 61 (28.8%) | 51 (24.1%) | 33(15.8%) | |
NSTEMI | 48 (22.6%) | 60 (28.3%) | 89 (42.6%) | |
STEMI | 27 (12.7%) | 38 (17.9%) | 40 (19.1%) | |
Silent myocardial ischemia | 3 (1.4%) | 4 (1.9%) | 6 (2.9%) | |
Ejection fraction (%) | 57.1 ± 10.5 | 54.5 ± 12.8 | 52.6 ± 13.0 | 0.001 |
Total cholesterol (mg/dL) | 135.2 ± 34.9 | 137.2 ± 31.6 | 131.4 ± 30.8 | 0.414 |
Triglyceride (mg/dL) | 135.2 ± 80.3 | 144.1 ± 75.9 | 194.5 ± 306.3 | 0.032 |
HDL cholesterol (mg/dL) | 47.0 ± 11.2 | 45.1 ± 10.5 | 41.0 ± 10.0 | <0.001 |
LDL cholesterol (mg/dL) | 72.2 ± 24.4 | 74.6 ± 22.7 | 71.4 ± 21.3 | 0.558 |
High-sensitivity C-reactive protein (mg/L) | 5.2 ± 17.3 | 7.3 ± 20.5 | 17.8 ± 39.5 | <0.001 |
Creatinine (mg/dL) | 0.89 ± 0.22 | 1.02 ± 0.32 | 1.46 ± 2.40 | <0.001 |
eGFR (mL/min/1.73 m2) | 83.1 ± 31.5 | 72.3 ± 27.0 | 58.5 ± 26.6 | <0.001 |
eGFR <60 mL/min/1.73 m2 | 41 (19.3%) | 78 (36.8%) | 106 (50.7%) | <0.001 |
Hemoglobin (mg/dL) | 13.7 ± 2.9 | 13.5 ± 2.0 | 13.2 ± 2.4 | 0.167 |
Medications at discharge | ||||
Aspirin | 210 (99.1%) | 207 (97.6%) | 198 (94.7%) | 0.025 |
Clopidogrel | 150 (70.8%) | 131 (61.8%) | 115 (55.0%) | 0.004 |
Potent P2Y12 inhibitor | 62 (29.2%) | 80 (37.7%) | 94 (45.0%) | 0.004 |
Statins | 210 (99.1%) | 210 (99.1%) | 206 (98.6%) | 0.856 |
Beta-blocker | 134 (63.2%) | 151 (71.2%) | 160 (76.6%) | 0.011 |
Renin angiotensin system inhibitor | 124 (58.5%) | 113 (53.3%) | 107 (51.2%) | 0.302 |
Hypotension | 13 (6.1%) | 26 (12.3%) | 26 (12.4%) | 0.052 |
IABP or ECMO | 0 (0%) | 2 (0.9%) | 2 (1.0%) | 0.363 |
Culprit coronary lesion | 0.215 | |||
Left anterior descending | 114 (54.5%) | 101 (48.1%) | 91 (45.0%) | |
Left circumflex | 30 (14.4%) | 41 (19.5%) | 49 (24.3%) | |
Right | 53 (25.4%) | 59 (28.1%) | 54 (26.7%) | |
Left main | 12 (5.7%) | 9 (4.3%) | 7 (3.5%) | |
Multivessel | 55 (25.9%) | 67 (31.6%) | 82 (39.2%) | 0.014 |
Contrast volume (mL) | 198.9 ± 103.6 | 221.1 ± 127.9 | 233.1 ± 124.1 | 0.020 |
Number of total stents | 1.56 ± 0.92 | 1.71 ± 1.00 | 1.89 ± 1.16 | 0.006 |
Mean diameter of stents (mm) | 3.13 ± 0.43 | 3.12 ± 0.44 | 3.07 ± 0.39 | 0.255 |
Total length of stents (mm) | 39.1 ± 26.9 | 42.9 ± 29.7 | 51.1 ± 36.1 | <0.001 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | 1.025 (1.005–1.044) | 0.012 | 1.041 (1.014–1.068) | 0.003 |
Female | 1.556 (1.003–2.415) | 0.048 | 0.337 (0.151–0.751) | 0.008 |
Body mass index | 0.953 (0.879–0.994) | 0.030 | 0.987 (0.919–1.060) | 0.716 |
Hypertension | 1.245 (0.757–2.046) | 0.388 | ||
Diabetes mellitus | 1.714 (1.111–2.644) | 0.015 | 1.787 (1.082–2.952) | 0.023 |
Dyslipidemia | 0.560 (0.342–0.918) | 0.021 | 0.361 (0.076–1.701) | 0.198 |
Smoking | 1.134 (0.709–1.813) | 0.599 | ||
Family history of CAD | 0.813 (0.356–1.857) | 0.623 | ||
Chronic kidney disease | 1.730 (0.759–3.942) | 0.192 | ||
Prior stroke | 1.261 (0.647–2.458) | 0.496 | ||
Prior statin use | 0.622 (0.374–1.034) | 0.067 | 1.952 (0.395–9.648) | 0.412 |
Acute myocardial infarction | 1.752 (1.131–2.714) | 0.012 | 1.618 (0.962–2.721) | 0.069 |
Left ventricular ejection fraction | 0.963 (0.948–0.979) | <0.001 | 0.961 (0.943–0.980) | <0.001 |
eGFR | 1.012 (1.005–1.018) | 0.001 | 1.035 (1.023–1.047) | <0.001 |
Hemoglobin | 0.900 (0.810–0.999) | 0.048 | 0.932 (0.814–1.068) | 0.310 |
Multivessel disease | 1.258 (0.803–1.972) | 0.317 | ||
LAD lesion | 1.451 (0.930–2.262) | 0.101 | ||
Hypotension | 0.877 (0.418–1.839) | 0.728 | ||
Contrast volume | 1.000 (0.998–1.002) | 0.816 | ||
NGAL tertile 2 | 1.913 (1.078–3.394) | 0.027 | 2.700 (1.391–5.239) | 0.003 |
NGAL tertile 3 | 2.167 (1.228–3.823) | 0.008 | 3.573 (1.788–7.141) | <0.001 |
NGAL | p Value | |||
---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | ||
MACCEs | 8 (3.8%) | 13 (6.1%) | 22 (10.5%) | 0.020 |
All-cause death | 3 (1.4%) | 9 (4.2%) | 23 (11.0%) | <0.001 |
Cardiovascular death | 2 (0.9%) | 7 (3.3%) | 15 (7.2%) | 0.003 |
Nonfatal myocardial infarction | 1 (0.5%) | 1 (0.5%) | 0 (0%) | 0.610 |
Nonfatal stroke | 2 (0.9%) | 2 (0.9%) | 2 (1.0%) | 0.999 |
Any revascularization | 5 (2.4%) | 5 (2.4%) | 6 (2.9%) | 0.928 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
MACCEs | ||||||||
Tertile 1 | 1 | 1 | 1 | 1 | ||||
Tertile 2 | 1.652 (0.685–3.986) | 0.264 | 1.600 (0.662–3.868) | 0.297 | 1.545 (0.633–3.775) | 0.340 | 2.151 (0.827–5.592) | 0.116 |
Tertile 3 | 2.984 (1.328–6.704) | 0.008 | 2.781 (1.211–6.386) | 0.016 | 2.596 (1.093–6.167) | 0.031 | 2.725 (1.052–7.058) | 0.039 |
All-cause death | ||||||||
Tertile 1 | 1 | 1 | 1 | 1 | ||||
Tertile 2 | 3.039 (0.823–11.227) | 0.095 | 2.631 (0.710–9.752) | 0.148 | 2.437 (0.650–9.142) | 0.187 | 3.692 (0.938–14.522) | 0.062 |
Tertile 3 | 8.260 (2.480–27.512) | 0.001 | 5.879 (1.721–20.078) | 0.005 | 5.077 (1.416–18.201) | 0.013 | 6.172 (1.650–23.077) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byeon, J.; Choi, I.J.; Lee, D.; Ahn, Y.; Kim, M.-J.; Jeon, D.S. Predictive and Prognostic Value of Serum Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury and Long-Term Clinical Outcomes after Percutaneous Coronary Intervention. J. Clin. Med. 2022, 11, 5971. https://doi.org/10.3390/jcm11195971
Byeon J, Choi IJ, Lee D, Ahn Y, Kim M-J, Jeon DS. Predictive and Prognostic Value of Serum Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury and Long-Term Clinical Outcomes after Percutaneous Coronary Intervention. Journal of Clinical Medicine. 2022; 11(19):5971. https://doi.org/10.3390/jcm11195971
Chicago/Turabian StyleByeon, Jaeho, Ik Jun Choi, Dongjae Lee, Youngchul Ahn, Mi-Jeong Kim, and Doo Soo Jeon. 2022. "Predictive and Prognostic Value of Serum Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury and Long-Term Clinical Outcomes after Percutaneous Coronary Intervention" Journal of Clinical Medicine 11, no. 19: 5971. https://doi.org/10.3390/jcm11195971
APA StyleByeon, J., Choi, I. J., Lee, D., Ahn, Y., Kim, M. -J., & Jeon, D. S. (2022). Predictive and Prognostic Value of Serum Neutrophil Gelatinase-Associated Lipocalin for Contrast-Induced Acute Kidney Injury and Long-Term Clinical Outcomes after Percutaneous Coronary Intervention. Journal of Clinical Medicine, 11(19), 5971. https://doi.org/10.3390/jcm11195971