Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Audit Study
2.2. Direct In-Scope Suction: Assembling the Device
2.3. Surgical Techniques
2.4. Patient Follow-Up
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Intraoperative Procedural Tips, Tricks and Overcoming Limitations
4.2. Future Directions
- (1)
- As for any procedure, we plan a randomized trial comparing DISS with traditional RIRS and vis a vis other commercially available SUAS.
- (2)
- (3)
- The minimalist, simplistic, and cost-effective construction of the two 3-way stoppers is the cornerstone for a highly effective DISS technique. As the regulation of the two valves could be cumbersome to some, there remains potential for improving the design module while retaining its cost-effectiveness, functionality, and utility.
- (4)
- We need to conduct more research into what the ideal vacuum pressure is and which device will be best suited for using suction in RIRS without compromising safety and efficacy.
- (5)
- Potentially removing all fragments may also help avoid the need for a post-operative ureteral stent, unnecessary imaging, repeat procedures, and radiation time.
- (6)
- Since this is a simple technique using a scope channel as the conduit for aspiration, and works effectively with a 7.5 Fr scope, studies can determine if this can minimize the need and problems associated with the use of a UAS. This may decrease the need for presenting as well as increase first pass RIRS if the ureter is amenable to passing a scope.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Türk, C.; Petřík, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Knoll, T. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur. Urol. 2016, 69, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Cho, K.S.; Kang, D.H.; Jung, H.D.; Kwon, J.K.; Lee, J.Y. Systematic Review and Meta-Analysis to Compare Success Rates of Retrograde Intrarenal Surgery versus Percutaneous Nephrolithotomy for Renal Stones >2 cm: An Update. Medicine 2017, 96, e9119. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.J.; Traxer, O.; Madarriaga, Y.Q.; Castellani, D.; Fong, K.Y.; Chan, V.W.-S.; Tur, A.B.; Pietropaolo, A.; Ragoori, D.; Shrestha, A. Outcomes and Lessons Learnt from Practice of Retrograde Intrarenal Surgery (RIRS) in a Paediatric Setting of Various Age Groups: A Global Study across 8 Centres. World J. Urol. 2022, 40, 1223–1229. [Google Scholar] [CrossRef]
- García Rojo, E.; Teoh, J.Y.-C.; Castellani, D.; Brime Menéndez, R.; Tanidir, Y.; Benedetto Galosi, A.; Bhatia, T.P.; Soebhali, B.; Sridharan, V.; Corrales, M.; et al. Real-World Global Outcomes of Retrograde Intrarenal Surgery in Anomalous Kidneys: A High Volume International Multicenter Study. Urology 2022, 159, 41–47. [Google Scholar] [CrossRef]
- Lim, E.J.; Teoh, J.Y.; Fong, K.Y.; Emiliani, E.; Gadzhiev, N.; Gorelov, D.; Tanidir, Y.; Sepulveda, F.; Al-Terki, A.; Khadgi, S. Propensity Score-Matched Analysis Comparing Retrograde Intrarenal Surgery with Percutaneous Nephrolithotomy in Anomalous Kidneys. Minerva Urol. Nephrol. 2022, 159, 41–47. [Google Scholar] [CrossRef]
- Breda, A.; Angerri, O. Retrograde Intrarenal Surgery for Kidney Stones Larger than 2.5 cm. Curr. Opin. Urol. 2014, 24, 179–183. [Google Scholar] [CrossRef]
- Lavan, L.; Herrmann, T.; Netsch, C.; Becker, B.; Somani, B.K. Outcomes of Ureteroscopy for Stone Disease in Anomalous Kidneys: A Systematic Review. World J. Urol. 2020, 38, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, A.; Hughes, T.; Mani, M.; Somani, B. Outcomes of Ureteroscopy and Laser Stone Fragmentation (URSL) for Kidney Stone Disease (KSD): Comparative Cohort Study Using MOSES Technology 60 W Laser System versus Regular Holmium 20 W Laser. J. Clin. Med. 2021, 10, 2742. [Google Scholar] [CrossRef] [PubMed]
- Corrales, M.; Traxer, O. Retrograde Intrarenal Surgery: Laser Showdown (Ho:YAG vs Thulium Fiber Laser). Curr. Opin. Urol. 2022, 32, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Proietti, S. New Technology in Retrograde Intrarenal Surgery: Unnecessary Luxury vs. Measurable Benefit. In Proceedings of the 35th Annual Congress of the European Association of Urology, Arnhem, The Netherlands, 17–19 July 2020. [Google Scholar]
- Atis, G.; Pelit, E.S.; Culpan, M.; Gunaydin, B.; Turan, T.; Danacioglu, Y.O.; Yildirim, A.; Caskurlu, T. The Fate of Residual Fragments After Retrograde Intrarenal Surgery in Long-Term Follow-Up. Urol. J. 2019, 16, 1–5. [Google Scholar] [CrossRef]
- Gauhar, V.; Biligere, S.; Swaminathan, G.; Goh, R.X.; Heng, C.T. PD16-02 Modified Ergonomic Lithotripsy (Mel): A Prospective Single Centre Study Demonstrating a Novel Method for Retrograde Intrarenal Surgery (Rirs) To Achieve High Stone Free Rates Without Surgeon Fatigue. J. Urol. 2017, 197, e347. [Google Scholar] [CrossRef]
- Liaw, C.W.; Khusid, J.A.; Gallante, B.; Bamberger, J.N.; Atallah, W.M.; Gupta, M. The T-Tilt Position: A Novel Modified Patient Position to Improve Stone-Free Rates in Retrograde Intrarenal Surgery. J. Urol. 2021, 206, 1232–1239. [Google Scholar] [CrossRef]
- Chiong, E.; Hwee, S.T.P.; Kay, L.M.; Liang, S.; Kamaraj, R.; Esuvaranathan, K. Randomized Controlled Study of Mechanical Percussion, Diuresis, and Inversion Therapy to Assist Passage of Lower Pole Renal Calculi after Shock Wave Lithotripsy. Urology 2005, 65, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, C.; Wang, Y.; Wang, R.; Wu, W.; Yan, J.; Gu, X.; Chen, X.; Wang, X.; Ye, Z.; et al. When Is the Best Time to Perform External Physical Vibration Lithecbole (EPVL) after Retrograde Intrarenal Surgery (RIRS): A Multi-Center Study Based on Randomized Controlled Trials. Urolithiasis 2020, 48, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, C.; Gao, L.; Lin, L.; Zheng, L.; Ke, L.; Chen, J.; Kuang, R. Novel Flexible Vacuum-Assisted Ureteral Access Sheath Can Actively Control Intrarenal Pressure and Obtain a Complete Stone-Free Status. J. Endourol. 2022, 36, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; He, Y.; Li, X.; Chen, M.; Zeng, X. RIRS with Vacuum-Assisted Ureteral Access Sheath versus MPCNL for the Treatment of 2–4 cm Renal Stone. BioMed. Res. Int. 2020, 2020, 8052013. [Google Scholar] [CrossRef] [PubMed]
- Reeves, T.; Griffin, S.; Pietropaolo, A.; Somani, B.K. Feasibility of Dusting and Pop-Dusting Using High-Power (100 W) Holmium YAG (HO:YAG) Laser in Treatment of Paediatric Stones: Results of First Worldwide Clincial Study. Cent. Eur. J. Urol. 2019, 72, 398–401. [Google Scholar] [CrossRef]
- Pauchard, F.; Ventimiglia, E.; Corrales, M.; Traxer, O. A Practical Guide for Intra-Renal Temperature and Pressure Management during Rirs: What Is the Evidence Telling Us. J. Clin. Med. 2022, 11, 3429. [Google Scholar] [CrossRef]
- Rippel, C.A.; Nikkel, L.; Lin, Y.K.; Danawala, Z.; Olorunnisomo, V.; Youssef, R.F.; Pearle, M.S.; Lotan, Y.; Raman, J.D. Residual Fragments Following Ureteroscopic Lithotripsy: Incidence and Predictors on Postoperative Computerized Tomography. J. Urol. 2012, 188, 2246–2251. [Google Scholar] [CrossRef]
- Lovegrove, C.E.; Geraghty, R.M.; Yang, B.; Brain, E.; Howles, S.; Turney, B.; Somani, B. Natural History of Small Asymptomatic Kidney and Residual Stones over a Long-Term Follow-up: Systematic Review over 25 Years. BJU Int. 2022, 129, 442–456. [Google Scholar] [CrossRef]
- Humphreys, M.R.; Shah, O.D.; Monga, M.; Chang, Y.-H.; Krambeck, A.E.; Sur, R.L.; Miller, N.L.; Knudsen, B.E.; Eisner, B.H.; Matlaga, B.R.; et al. Dusting versus Basketing during Ureteroscopy-Which Technique Is More Efficacious? A Prospective Multicenter Trial from the EDGE Research Consortium. J. Urol. 2018, 199, 1272–1276. [Google Scholar] [CrossRef]
- Tonyali, S. Suctioning Ureteral Access Sheath Use in Flexible Ureteroscopy Might Decrease Operation Time and Prevent Infectious Complications. World J. Urol. 2019, 37, 393–394. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, Y.; Zeng, F.; Li, Y.; Chen, Z.; Hequn, C. Comparison of Suctioning and Traditional Ureteral Access Sheath during Flexible Ureteroscopy in the Treatment of Renal Stones. World J. Urol. 2019, 37, 921–929. [Google Scholar] [CrossRef]
- Inoue, T.; Okada, S.; Hamamoto, S.; Fujisawa, M. Retrograde Intrarenal Surgery: Past, Present, and Future. Investig. Clin. Urol. 2021, 62, 121–135. [Google Scholar] [CrossRef]
- Traxer, O.; Keller, E.X. Thulium Fiber Laser: The New Player for Kidney Stone Treatment? A Comparison with Holmium:YAG Laser. World J. Urol. 2020, 38, 1883–1894. [Google Scholar] [CrossRef]
- Ulvik, Ø.; Æsøy, M.S.; Juliebø-Jones, P.; Gjengstø, P.; Beisland, C. Thulium Fibre Laser versus Holmium:YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. Eur. Urol. 2022, 82, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.X.; De Coninck, V.; Doizi, S.; Daudon, M.; Traxer, O. What Is the Exact Definition of Stone Dust? An in Vitro Evaluation. World J. Urol. 2021, 39, 187–194. [Google Scholar] [CrossRef]
- Sierra Del Rio, A.; Corrales, M.; Kolvatzis, M.; Daudon, M.; Traxer, O. Thulium Fiber Laser’s Dust for Stone Composition Analysis: Is It Enough? J. Endourol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.B.; Portela, D.; Grasso, M. Advanced Ureteroscopy: Wireless and Sheathless. J. Endourol. 2006, 20, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.S.H.; Castellani, D.; Gorelov, D.; Girón-Nanne, I.; Swaroop, K.G.J.; Corrales, M.; Alshaashaa, M.; Chan, V.W.S.; Hameed, B.M.Z.; Cho, S.Y. Role and Importance of Ergonomics in Retrograde Intrarenal Surgery: Outcomes of a Narrative Review. J. Endourol. 2022, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, A.T.; Tanidir, Y.; Castellani, D.; Ragoori, D.; Jean, L.E.; Corrales, M.; Winoker, J.; Schwen, Z.; Matlaga, B.; Seitz, C.; et al. A Global Survey of Ergonomics Practice Patterns and Rates of Musculoskeletal Pain Among Urologists Performing Retrograde Intrarenal Surgery. J. Endourol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
DISS RIRS (n = 30) | SUAS RIRS (n = 28) | p-Value | |
---|---|---|---|
Age, years, median (25th–75th percentiles) | 46.0 (39.3–53.8) | 49.0 (37.0–61.0) | 0.360 |
Gender, n (%) Female Male | 10 (33.3) 20 (66.7) | 13 (46.4) 15 (53.6) | 0.453 |
History of lithiasis, n (%) First time Recurrence | 20 (66.7) 10 (33.3) | 20 (71.4) 8 (28.6) | 0.914 |
Haematuria only at presentation, n (%) | 18 (60.0) | 1 (3.56) | <0.001 |
Pain only at presentation, n (%) | 12 (40.0) | 6 (21.43) | <0.001 |
Haematuria and pain at presentation, n (%) | 0 | 4 (14.28) | 0.104 |
Fever at presentation, n (%) | 0 | 5 (17.86) | 0.051 |
Elevated creatinine at presentation, n (%) | 1 (3.3) | 5 (17.9) | 0.167 |
Tamsulosin pre, n (%) | 1 (3.3) | 22 (78.6) | <0.001 |
Stone largest size, mm, median (25th–75th percentiles) | 22.0 (18.0–28.8) | 13.0 (11.8–15.0) | <0.001 |
Hounsfield unit, median (25th–75th percentiles) | 1000 (544–1180) | 1020 (1000–1070) | 0.340 |
Multiple stones, n (%) | 12 (40.0) | 0 | <0.001 |
Stone location, upper pole, n (%) | 6 (20.0) | 6 (21.44) | 0.99 |
Stone location, middle pole, n (%) | 24 (80.0) | 11 (39.28) | <0.001 |
Stone location, lower pole, n (%) | 12 (40.0) | 11 (39.28) | 0.99 |
Surgical time, minutes, median (25th–75th percentiles) | 80.0 (60.0–100) | 47.5 (41.5–60.3) | <0.001 |
Hospital stay, days, median (25th–75th percentiles) | 1.00 (0.667–0.80) | 1.00 (1.00–2.00) | 0.002 |
Residual fragments, n (%) Single residual fragments, n (%) Multiple residual fragments, n (%) | 10 (33.3) 2 (6.7) 8 (26.7) | 10 (35.7) 5 (17.9) 5 (17.9) | 0.99 |
Complications, n (%) Fever Haematuria Sepsis | 11 (36.7) 0 0 | 7 (25.0) 2 (7.1) 0 | 0.4990.441 |
Intervention for residual fragments, n (%) Observation RIRS PCNL SWL | 0 10 (33.3) 0 0 | 8 (28.6) 0 0 1 (3.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gauhar, V.; Somani, B.K.; Heng, C.T.; Gauhar, V.; Chew, B.H.; Sarica, K.; Teoh, J.Y.-C.; Castellani, D.; Saleem, M.; Traxer, O. Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones. J. Clin. Med. 2022, 11, 5710. https://doi.org/10.3390/jcm11195710
Gauhar V, Somani BK, Heng CT, Gauhar V, Chew BH, Sarica K, Teoh JY-C, Castellani D, Saleem M, Traxer O. Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones. Journal of Clinical Medicine. 2022; 11(19):5710. https://doi.org/10.3390/jcm11195710
Chicago/Turabian StyleGauhar, Vineet, Bhaskar Kumar Somani, Chin Tiong Heng, Vishesh Gauhar, Ben Hall Chew, Kemal Sarica, Jeremy Yuen-Chun Teoh, Daniele Castellani, Mohammed Saleem, and Olivier Traxer. 2022. "Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones" Journal of Clinical Medicine 11, no. 19: 5710. https://doi.org/10.3390/jcm11195710
APA StyleGauhar, V., Somani, B. K., Heng, C. T., Gauhar, V., Chew, B. H., Sarica, K., Teoh, J. Y.-C., Castellani, D., Saleem, M., & Traxer, O. (2022). Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones. Journal of Clinical Medicine, 11(19), 5710. https://doi.org/10.3390/jcm11195710