High Inferior Vena Cava Diameter with High Left Ventricular End Systolic Diameter as a Risk Factor for Major Adverse Cardiovascular Events, Cardiovascular and Overall Mortality among Chronic Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. History Collection and Laboratory Data
2.3. Measurement of IVCD and LVESD
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Association between Mortality and IVCD of HD Patients with Functional AVA
3.3. Impact of IVCD on Outcome of HD Patients with Functional AVA
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheung, A.K.; Sarnak, M.J.; Yan, G.; Berkoben, M.; Heyka, R.; Kaufman, A.; Lewis, J.; Rocco, M.; Toto, R.; Windus, D.; et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO Study. Kidney Int. 2004, 65, 2380–2389. [Google Scholar] [CrossRef] [PubMed]
- De Jager, D.J.; Grootendorst, D.C.; Jager, K.J.; van Dijk, P.C.; Tomas, L.M.; Ansell, D.; Collart, F.; Finne, P.; Heaf, J.G.; De Meester, J.; et al. Cardiovascular and Noncardiovascular Mortality Among Patients Starting Dialysis. JAMA 2009, 302, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.E.; Tighiouart, H.; Amin, M.G.; Stark, P.C.; MacLeod, B.; Griffith, J.L.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: A pooled analysis of community-based studies. J. Am. Soc. Nephrol. 2004, 15, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Charra, B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial. Int. 2007, 11, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Regidor, D.L.; Kovesdy, C.P.; Van Wyck, D.; Bunnapradist, S.; Horwich, T.B.; Fonarow, G.C. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation 2009, 119, 671–679. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Chiu, Y.W.; Tsai, J.C.; Kuo, H.T.; Hung, C.C.; Hwang, S.J.; Chen, T.H.; Kuo, M.C.; Chen, H.C. Association of fluid overload with cardiovascular morbidity and all-cause mortality in stages 4 and 5 CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 39–46. [Google Scholar] [CrossRef]
- Segall, L.; Nistor, I.; Covic, A. Heart Failure in Patients with Chronic Kidney Disease: A Systematic Integrative Review. Biomed. Res. Int. 2014, 2014, 937398. [Google Scholar] [CrossRef]
- Beerendrakumar, N.; Ramamoorthy, L.; Haridasan, S. Dietary and Fluid Regime Adherence in Chronic Kidney Disease Patients. J. Caring Sci. 2018, 7, 17–20. [Google Scholar] [CrossRef]
- Pilcher, D.V.; Scheinkestel, C.D.; Snell, G.I.; Davey-Quinn, A.; Bailey, M.J.; Williams, T.J. High central venous pressure is associated with prolonged mechanical ventilation and increased mortality after lung transplantation. J. Thorac. Cardiovasc. Surg. 2005, 129, 912–918. [Google Scholar] [CrossRef]
- Damman, K.; van Deursen, V.M.; Navis, G.; Voors, A.A.; van Veldhuisen, D.J.; Hillege, H.L. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 2009, 53, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Cops, J.; Mullens, W.; Verbrugge, F.H.; Swennen, Q.; De Moor, B.; Reynders, C.; Penders, J.; Achten, R.; Driessen, A.; Dendooven, A.; et al. Selective abdominal venous congestion induces adverse renal and hepatic morphological and functional alterations despite a preserved cardiac function. Sci. Rep. 2018, 8, 17757. [Google Scholar] [CrossRef]
- Marcelli, E.; Cercenelli, L.; Bortolani, B.; Marini, S.; Arfilli, L.; Capucci, A.; Plicchi, G. A Novel Non-Invasive Device for the Assessment of Central Venous Pressure in Hospital, Office and Home. Med. Devices 2021, 14, 141–154. [Google Scholar] [CrossRef]
- Katzarski, K.S.; Nisell, J.; Randmaa, I.; Danielsson, A.; Freyschuss, U.; Bergström, J. A critical evaluation of ultrasound measurement of inferior vena cava diameter in assessing dry weight in normotensive and hypertensive hemodialysis patients. Am. J. Kidney Dis. 1997, 30, 459–465. [Google Scholar] [CrossRef]
- Krause, I.; Birk, E.; Davidovits, M.; Cleper, R.; Blieden, L.; Pinhas, L.; Gamzo, Z.; Eisenstein, B. Inferior vena cava diameter: A useful method for estimation of fluid status in children on haemodialysis. Nephrol. Dial. Transplant. 2001, 16, 1203–1206. [Google Scholar] [CrossRef]
- Canaud, B.; Chazot, C.; Koomans, J.; Collins, A. Fluid and hemodynamic management in hemodialysis patients: Challenges and opportunities. J. Bras. Nefrol. 2019, 41, 550–559. [Google Scholar] [CrossRef]
- Mookadam, F.; Warsame, T.A.; Yang, H.S.; Emani, U.R.; Appleton, C.P.; Raslan, S.F. Effect of positional changes on inferior vena cava size. Eur. J. Echocardiogr. 2011, 12, 322–325. [Google Scholar] [CrossRef]
- Stawicki, S.P.; Braslow, B.M.; Panebianco, N.L.; Kirkpatrick, J.N.; Gracias, V.H.; Hayden, G.E.; Dean, A.J. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: Correlations with CVP. J. Am. Coll. Surg. 2009, 209, 55–61. [Google Scholar] [CrossRef]
- Brennan, J.M.; Blair, J.E.; Goonewardena, S.; Ronan, A.; Shah, D.; Vasaiwala, S.; Kirkpatrick, J.N.; Spencer, K.T. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J. Am. Soc. Echocardiogr. 2007, 20, 857–861. [Google Scholar] [CrossRef]
- Yavaşi, Ö.; Ünlüer, E.E.; Kayayurt, K.; Ekinci, S.; Sağlam, C.; Sürüm, N.; Köseoğlu, M.H.; Yeşil, M. Monitoring the response to treatment of acute heart failure patients by ultrasonographic inferior vena cava collapsibility index. Am. J. Emerg. Med. 2014, 32, 403–407. [Google Scholar] [CrossRef]
- Tchernodrinski, S.; Lucas, B.P.; Athavale, A.; Candotti, C.; Margeta, B.; Katz, A.; Kumapley, R. Inferior vena cava diameter change after intravenous furosemide in patients diagnosed with acute decompensated heart failure. J. Clin. Ultrasound 2015, 43, 187–193. [Google Scholar] [CrossRef]
- Assa, S.; Hummel, Y.M.; Voors, A.A.; Kuipers, J.; Westerhuis, R.; de Jong, P.E.; Franssen, C.F. Hemodialysis-induced regional left ventricular systolic dysfunction: Prevalence, patient and dialysis treatment-related factors, and prognostic significance. Clin. J. Am. Soc. Nephrol. 2012, 7, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Dasselaar, J.J.; Slart, R.H.; Knip, M.; Pruim, J.; Tio, R.A.; McIntyre, C.W.; de Jong, P.E.; Franssen, C.F. Haemodialysis is associated with a pronounced fall in myocardial perfusion. Nephrol. Dial. Transplant. 2009, 24, 604–610. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.W.; Burton, J.O.; Selby, N.M.; Leccisotti, L.; Korsheed, S.; Baker, C.S.; Camici, P.G. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin. J. Am. Soc. Nephrol. 2008, 3, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Hsing, S.C.; Chao, Y.P.; Cheng, Y.W.; Lin, C.S.; Lin, C.; Fang, W.H. Clinical Relevance of the LVEDD and LVESD Trajectories in HF Patients with LVEF <35. Front. Med. 2022, 9, 846361. [Google Scholar]
- Yamada, S.; Ishii, H.; Takahashi, H.; Aoyama, T.; Morita, Y.; Kasuga, H.; Kimura, K.; Ito, Y.; Takahashi, R.; Toriyama, T.; et al. Prognostic value of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all-cause mortality in end-stage renal disease patients. Clin. J. Am. Soc. Nephrol. 2010, 5, 1793–1798. [Google Scholar] [CrossRef]
- Derthoo, D.; Belmans, A.; Claes, K.; Bammens, B.; Ciarka, A.; Droogné, W.; Vanhaecke, J.; Van Cleemput, J.; Janssens, S. Survival and heart failure therapy in chronic dialysis patients with heart failure and reduced left ventricular ejection fraction: An observational retrospective study. Acta Cardiol. 2013, 68, 51–57. [Google Scholar] [CrossRef]
- Parfrey, P.S.; Griffiths, S.M.; Harnett, J.D.; Taylor, R.; King, A.; Hand, J.; Barre, P.E. Outcome of congestive heart failure, dilated cardiomyopathy, hypertrophic hyperkinetic disease, and ischemic heart disease in dialysis patients. Am. J. Nephrol. 1990, 10, 213–221. [Google Scholar] [CrossRef]
- Raja, A.A.; Warming, P.E.; Nielsen, T.L.; Plesner, L.L.; Ersbøll, M.; Dalsgaard, M.; Schou, M.; Rydahl, C.; Brandi, L.; Iversen, K. Left-sided heart disease and risk of death in patients with end-stage kidney disease receiving haemodialysis: An observational study. BMC Nephrol. 2020, 21, 413. [Google Scholar]
- Tribouilloy, C.; Grigioni, F.; Avierinos, J.F.; Barbieri, A.; Rusinaru, D.; Szymanski, C.; Ferlito, M.; Tafanelli, L.; Bursi, F.; Trojette, F.; et al. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study. J. Am. Coll. Cardiol. 2009, 54, 1961–1968. [Google Scholar] [CrossRef]
- Gotch, F.A.; Sargent, J.A. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985, 28, 526–534. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., III; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.W. Effects of hemodialysis on cardiac function. Kidney Int. 2009, 76, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curbelo, J.; Aguilera, M.; Rodriguez-Cortes, P.; Gil-Martinez, P.; Suarez Fernandez, C. Usefulness of inferior vena cava ultrasonography in outpatients with chronic heart failure. Clin. Cardiol. 2018, 41, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Wizemann, V.; Wabel, P.; Chamney, P.; Zaluska, W.; Moissl, U.; Rode, C.; Malecka-Masalska, T.; Marcelli, D. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 2009, 24, 1574–1579. [Google Scholar] [CrossRef]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [Google Scholar] [CrossRef]
- Gonçalves, S.; Pecoits-Filho, R.; Perreto, S.; Barberato, S.H.; Stinghen, A.E.; Lima, E.G.; Fuerbringer, R.; Sauthier, S.M.; Riella, M.C. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol. Dial. Transplant. 2006, 21, 2788–2794. [Google Scholar] [CrossRef]
- Torterüe, X.; Dehoux, L.; Macher, M.A.; Niel, O.; Kwon, T.; Deschênes, G.; Hogan, J. Fluid status evaluation by inferior vena cava diameter and bioimpedance spectroscopy in pediatric chronic hemodialysis. BMC Nephrol. 2017, 18, 373. [Google Scholar] [CrossRef]
- Cheriex, E.C.; Leunissen, K.M.L.; Janssen, J.H.A.; Mooy, J.M.V.; van Hooff, J.P. Echography of the Inferior Vena Cava is a Simple and Reliable Tool for Estimation of ‘Dry Weight’ in Haemodialysis Patients. Nephrol. Dial. Transplant. 1989, 4, 563–568. [Google Scholar]
- Shrestha, S.K.; Ghimire, A.; Ansari, S.R.; Adhikari, A. Use of handheld ultrasound to estimate fluid status of hemodialysis patients. Nepal. Med. J. 2018, 1, 65–69. [Google Scholar] [CrossRef]
- Hirayama, S.; Ando, Y.; Sudo, Y.; Asano, Y. Improvement of cardiac function by dry weight optimization based on interdialysis inferior vena caval diameter. ASAIO J. 2002, 48, 320–325. [Google Scholar] [CrossRef]
- Jobs, A.; Brünjes, K.; Katalinic, A.; Babaev, V.; Desch, S.; Reppel, M.; Thiele, H. Inferior vena cava diameter in acute decompensated heart failure as predictor of all-cause mortality. Heart Vessel. 2017, 32, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Nath, J.; Vacek, J.L.; Heidenreich, P.A. A dilated inferior vena cava is a marker of poor survival. Am. Heart J. 2006, 151, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Tissot, C.; Singh, Y.; Sekarski, N. Echocardiographic Evaluation of Ventricular Function—For the Neonatologist and Pediatric Intensivist. Front. Pediatr. 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietel, T.; Filler, G.; Grenda, R.; Wolfish, N. Bioimpedance and inferior vena cava diameter for assessment of dialysis dry weight. Pediatr. Nephrol. 2000, 14, 903–907. [Google Scholar] [CrossRef] [PubMed]
Variables | High IVCD (n = 117) | Low IVCD (n = 124) | p Value |
---|---|---|---|
Age (years) | 63.3 ± 12.1 | 68.0 ± 12.4 | 0.005 * |
Male (%) | 75.0 (64.1) | 56.0 (45.2) | 0.003 † |
Female (%) | 42.0 (35.9) | 68.0 (54.8) | |
Height | 163.4 ± 8.9 | 160.0 ± 8.2 | 0.004 * |
Weight | 61.6 ± 14.3 | 58.1 ± 12.9 | 0.090 * |
Comorbid condition | |||
Diabetes mellitus (%) | 57.0 (48.7) | 47.0 (37.9) | 0.090 † |
Hypertension (%) | 92.0 (78.6) | 97.0 (78.2) | 0.940 † |
Hyperlipidemia (%) | 67.0 (57.3) | 57.0 (46.0) | 0.080 † |
Coronary artery disease (%) | 55.0 (47.0) | 42.0 (33.9) | 0.037 † |
Cerebrovascular accident (%) | 2.0 (1.7) | 3.0 (2.4) | 1.000 ‡ |
PAD (%) | 31.0 (26.5) | 26.0 (21.0) | 0.310 † |
Heart failure (%) | 28.0 (23.9) | 20.0 (16.1) | 0.130 † |
COPD (%) | 8.0 (6.8) | 17.0 (13.7) | 0.080 † |
Malignancy (%) | 12.0 (10.3) | 15.0 (12.1) | 0.650 † |
Lab data | |||
Total protein (g/dL) | 6.9 ± 0.6 | 6.8 ± 0.5 | 0.048 * |
Albumin (g/dL) | 3.9 ± 0.3 | 3.9 ± 0.4 | 0.350 * |
AST (IU/L) | 16.4 ± 5.9 | 16.2 ± 5.2 | 0.700 * |
Alkaline-P (IU/L) | 78.2 ± 36.4 | 66.6 ± 24.7 | 0.035 * |
Total bilirubin (mg/dL) | 0.6 ± 0.3 | 0.5 ± 0.1 | 0.110 * |
Cholesterol (mg/dL) | 151.7 ± 32.6 | 163.4 ± 39.0 | 0.018 * |
Triglyceride (mg/dL) | 128.0 ± 84.9 | 146.2 ± 122.1 | 0.140 * |
Fasting glucose (mg/dL) | 114.3 ± 52.6 | 108.1 ± 48.0 | 0.300 * |
Hb (g/dL) | 10.3 ± 1.4 | 10.5 ± 1.3 | 0.150 * |
Platelet (×1000/μL) | 179.4 ± 54.0 | 201.8 ± 58.1 | 0.003 * |
Fe (ug/dL) | 76.9 ± 37.6 | 75.1 ± 29.4 | 0.890 * |
TIBC (ug/dL) | 245.9 ± 45.9 | 236.0 ± 45.1 | 0.090 * |
Ferritin (ng/mL) | 535.3 ± 320.4 | 573.1 ± 252.5 | 0.150 * |
Transferrin saturation (%) | 31.5 ± 13.9 | 32.2 ± 12.3 | 0.410 * |
Al (ng/mL) | 6.4 ± 3.1 | 7.0 ± 4.4 | 0.460 * |
Uric acid (mg/dL) | 6.1 ± 1.5 | 6.3 ± 1.6 | 0.210 * |
Na (meq/L) | 138.1 ± 2.9 | 137.9 ± 3.0 | 0.690 * |
K (meq/L) | 4.6 ± 0.6 | 4.7 ± 0.7 | 0.370 * |
iCa (mg/dL) | 4.5 ± 0.5 | 4.6 ± 0.5 | 0.360 * |
P (mg/dL) | 5.1 ± 1.3 | 5.1 ± 1.3 | 0.670 * |
Kt/V (Gotch) | 1.4 ± 0.2 | 1.4 ± 0.2 | 0.100 * |
PTH (pg/mL) | 327.6 ± 306.9 | 245.0 ± 250.9 | 0.010 * |
HD parameters | |||
SBP | 147.89 ± 23.96 | 140.52 ± 25.56 | 0.025 ** |
DBP | 70.28 ± 13.99 | 66.30 ± 14.53 | 0.035 ** |
MAP | 96.13 ± 15.34 | 91.02 ± 16.45 | 0.016 ** |
Hypotension during dialysis | 43 (36.8) | 52 (41.9) | 0.411 † |
Conductivity of HD | 13.99 ± 0.12 | 13.95 ± 0.39 | 0.697 * |
Treatment time of HD | <0.001 ‡ | ||
4 h | 103 (88) | 85 (68.5) | |
3.5–4 h | 3 (2.6) | 3 (2.4) | |
3.0–3.5 h | 11 (9.4) | 36 (29) | |
Treatment frequency | 0.916 ‡ | ||
TIW | 103 (88) | 111 (89.5) | |
BIW | 13 (11.1) | 12 (9.7) | |
QW | 1 (0.9) | 1 (0.8) | |
Interdialytic weight gain (kg) | 2.57 ± 1.23 | 2.45 ± 1.05 | 0.656 * |
Ultrafiltration (L) | 2.53 ± 1.13 | 2.41 ± 0.97 | 0.630 * |
Medications | |||
Anti-HTN drugs | |||
ACEI/ARB | 64 (54.7) | 66 (53.2) | 0.818 † |
β-blocker | 62 (53.0) | 63 (50.8) | 0.734 † |
Calcium channel antagonist | 68 (58.1) | 76 (61.3) | 0.616 † |
Anti-diabetic agents | |||
OAD (%) | 36 (30.8) | 35 (28.2) | 0.665 † |
Insulin and analogues (%) | 29 (24.8) | 12 (9.7) | 0.002 † |
Antiplatelets (%) | 61 (52.1) | 41 (33.1) | 0.003 † |
Anticoagulants (%) | 6 (5.1) | 4 (3.2) | 0.459 ‡ |
Variables | High IVCD (n = 117) | Low IVCD (n = 124) | p Value |
---|---|---|---|
Aortic root (mm) | 32.00 ± 4.33 | 32.18 ± 4.70 | 0.900 * |
IVS (mm) | 12.91 ± 5.01 | 11.37 ± 2.71 | <0.001 * |
LA diameter (mm) | 45.08 ± 8.55 | 40.50 ± 7.00 | <0.001 * |
LVEDD (mm) | 51.11 ± 7.59 | 47.84 ± 6.86 | <0.001 * |
LVESD (mm) | 32.95 ± 9.12 | 28.38 ± 6.63 | <0.001 * |
LVPW (mm) | 11.58 ± 3.15 | 10.51 ± 2.34 | <0.001 * |
LV mass (g) | 268.02 ± 202.51 | 201.10 ± 79.23 | <0.001 * |
LVMI | 162.65 ± 129.27 | 125.75 ± 45.28 | <0.001 * |
RWT (mm) | 0.47 ± 0.17 | 0.44 ± 0.13 | 0.476 * |
Inferior Vena Cava Diameter (IVCD) | Mortality | CV Mortality | MACE |
---|---|---|---|
Low | 11.0 (8.9) | 8.0 (6.5) | 21.0 (16.9) |
High | 26.0 (22.2) | 20.0 (17.1) | 50.0 (42.7) |
p Value | 0.004 * | 0.010 * | <0.001 * |
Event Outcome (Relative to Low IVCD) | Crude | Model 1 | Model 2 |
---|---|---|---|
HR (95% CI) | aHR (95% CI) | aHR (95% CI) | |
All-cause mortality | |||
high IVCD | 2.66 (1.31, 5.38) ** | 2.72 (1.34, 5.54) ** | 2.88 (1.06, 7.86) * |
CV mortality | |||
high IVCD | 2.81 (1.24, 6.39) * | 2.69 (1.21, 5.99) ** | 2.85 (0.97, 8.34) |
MACE | |||
high IVCD | 2.95 (1.77, 4.92) *** | 3.16 (1.84, 5.43) *** | 3.42 (1.73, 6.77) *** |
Endpoints | N | Event | % | HR | (95% CI) | Interaction p Value | |
---|---|---|---|---|---|---|---|
All-cause mortality | 241 | 37 | 15.4 | ||||
IVCD | |||||||
High | 117 | 26 | 22.2 | 2.66 | (1.31–5.38) | ||
Low | 124 | 11 | 8.9 | 1.00 | (ref.) | ||
IVCD | LVESD | 0.0575 | |||||
High | High | 67 | 14 | 20.9 | 4.60 | (1.04–20.4) | |
Low | High | 41 | 2 | 4.9 | 1.00 | (ref.) | |
High | Low | 49 | 12 | 24.5 | 2.50 | (1.03–6.09) | |
Low | Low | 76 | 8 | 10.5 | 1.00 | (ref.) | |
CV mortality | 241 | 28 | 11.6 | ||||
IVCD | |||||||
High | 117 | 20 | 17.1 | 2.81 | (1.24–6.39) | ||
Low | 124 | 8 | 6.5 | 1.00 | (ref.) | ||
IVCD | LVESD | 0.0318 | |||||
High | High | 67 | 11 | 16.4 | 7.21 | (0.93–55.6) | |
Low | High | 41 | 1 | 2.4 | 1.00 | (ref.) | |
High | Low | 49 | 9 | 18.4 | 2.52 | (0.90–7.03) | |
Low | Low | 76 | 6 | 7.9 | 1.00 | (ref.) | |
MACE | 241 | 71 | 29.5 | ||||
IVCD | |||||||
High | 117 | 50 | 42.7 | 2.95 | (1.77–4.92) | ||
Low | 124 | 21 | 16.9 | 1.00 | (ref.) | ||
IVCD | LVESD | 0.0042 | |||||
High | High | 67 | 31 | 46.3 | 3.88 | (1.63–9.28) | |
Low | High | 41 | 6 | 14.6 | 1.00 | (ref.) | |
High | Low | 49 | 19 | 38.8 | 2.34 | (1.18–4.66) | |
Low | Low | 76 | 14 | 18.4 | 1.00 | (ref.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-K.; Yar, N.; Kao, Z.-K.; Chuang, M.-T.; Chang, T.-H. High Inferior Vena Cava Diameter with High Left Ventricular End Systolic Diameter as a Risk Factor for Major Adverse Cardiovascular Events, Cardiovascular and Overall Mortality among Chronic Hemodialysis Patients. J. Clin. Med. 2022, 11, 5485. https://doi.org/10.3390/jcm11185485
Wu C-K, Yar N, Kao Z-K, Chuang M-T, Chang T-H. High Inferior Vena Cava Diameter with High Left Ventricular End Systolic Diameter as a Risk Factor for Major Adverse Cardiovascular Events, Cardiovascular and Overall Mortality among Chronic Hemodialysis Patients. Journal of Clinical Medicine. 2022; 11(18):5485. https://doi.org/10.3390/jcm11185485
Chicago/Turabian StyleWu, Chung-Kuan, Noi Yar, Zih-Kai Kao, Ming-Tsang Chuang, and Tzu-Hao Chang. 2022. "High Inferior Vena Cava Diameter with High Left Ventricular End Systolic Diameter as a Risk Factor for Major Adverse Cardiovascular Events, Cardiovascular and Overall Mortality among Chronic Hemodialysis Patients" Journal of Clinical Medicine 11, no. 18: 5485. https://doi.org/10.3390/jcm11185485
APA StyleWu, C. -K., Yar, N., Kao, Z. -K., Chuang, M. -T., & Chang, T. -H. (2022). High Inferior Vena Cava Diameter with High Left Ventricular End Systolic Diameter as a Risk Factor for Major Adverse Cardiovascular Events, Cardiovascular and Overall Mortality among Chronic Hemodialysis Patients. Journal of Clinical Medicine, 11(18), 5485. https://doi.org/10.3390/jcm11185485