Factors Associated with Elevated Tumor Necrosis Factor-α in Aqueous Humor of Patients with Open-Angle Glaucoma
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Aqueous Humor Sample
2.3. TNF-α Analysis
2.4. Analysis of TNF-α Levels
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maier, P.C.; Funk, J.; Schwarzer, G.; Antes, G.; Falck-Ytter, Y.T. Treatment of ocular hypertension and open angle glaucoma: Meta-analysis of randomised controlled trials. BMJ 2005, 331, 134. [Google Scholar] [CrossRef] [PubMed]
- Lambuk, L.; Ahmad, S.; Sadikan, M.Z.; Nordin, N.A.; Kadir, R.; Nasir, N.A.A.; Chen, X.; Boer, J.; Plebanski, M.; Mohamud, R. Targeting Differential Roles of Tumor Necrosis Factor Receptors as a Therapeutic Strategy for Glaucoma. Front. Immunol. 2022, 13, 857812. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Sun, H.; Guo, W.Y. Astrocyte polarization in glaucoma: A new opportunity. Neural Regen. Res. 2022, 17, 2582–2588. [Google Scholar] [PubMed]
- Cheng, S.; Wang, H.N.; Xu, L.J.; Li, F.; Miao, Y.; Lei, B.; Sun, X.; Wang, Z. Soluble tumor necrosis factor-alpha-induced hyperexcitability contributes to retinal ganglion cell apoptosis by enhancing Nav1.6 in experimental glaucoma. J. Neuroinflamm. 2021, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Cueva Vargas, J.L.; Osswald, I.K.; Unsain, N.; Aurousseau, M.R.; Barker, P.A.; Bowie, D.; Di Polo, A. Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J. Neurosci. 2015, 35, 12088–12102. [Google Scholar] [CrossRef]
- Vargas, J.L.; Di Polo, A. Neuroinflammation in glaucoma: Soluble tumor necrosis factor alpha and the connection with excitotoxic damage. Neural Regen. Res. 2016, 11, 424–426. [Google Scholar]
- Nakazawa, T.; Nakazawa, C.; Matsubara, A.; Noda, K.; Hisatomi, T.; She, H.; Michaud, N.; Hafezi-Moghadam, A.; Miller, J.W.; Benowitz, L.I. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 2006, 26, 12633–12641. [Google Scholar] [CrossRef]
- Sawada, H.; Fukuchi, T.; Tanaka, T.; Abe, H. Tumor necrosis factor-alpha concentrations in the aqueous humor of patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 903–906. [Google Scholar] [CrossRef]
- Liu, T.; Clark, R.K.; McDonnell, P.C.; Young, P.R.; White, R.F.; Barone, F.C.; Feuerstein, G.Z. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 1994, 25, 1481–1488. [Google Scholar] [CrossRef]
- Lieberman, A.P.; Pitha, P.M.; Shin, H.S.; Shin, M.L. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc. Natl. Acad. Sci. USA 1989, 86, 6348–6352. [Google Scholar] [CrossRef]
- Tezel, G.; Wax, M.B. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci. 2000, 20, 8693–8700. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. TNF-alpha signaling in glaucomatous neurodegeneration. Prog. Brain Res. 2008, 173, 409–421. [Google Scholar] [PubMed]
- Balaiya, S.; Edwards, J.; Tillis, T.; Khetpal, V.; Chalam, K.V. Tumor necrosis factor-alpha (TNF-alpha) levels in aqueous humor of primary open angle glaucoma. Clin. Ophthalmol. 2011, 5, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Farney, J.K.; Mamedova, L.K.; Godsey, B.H.; Bradford, B.J. Technical note: Validation of an ELISA for measurement of tumor necrosis factor alpha in bovine plasma. J. Dairy Sci. 2011, 94, 3504–3509. [Google Scholar] [CrossRef]
- Tezel, G.; Li, L.Y.; Patil, R.V.; Wax, M.B. TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1787–1794. [Google Scholar]
- Bengtsson, B.; Leske, M.C.; Hyman, L.; Heijl, A. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 2007, 114, 205–209. [Google Scholar] [CrossRef]
- Leidl, M.C.; Choi, C.J.; Syed, Z.A.; Melki, S.A. Intraocular pressure fluctuation and glaucoma progression: What do we know? Br. J. Ophthalmol. 2014, 98, 1315–1319. [Google Scholar] [CrossRef]
- Matlach, J.; Bender, S.; König, J.; Binder, H.; Pfeiffer, N.; Hoffmann, E.M. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin. Ophthalmol. 2019, 13, 9–16. [Google Scholar] [CrossRef]
- Memarzadeh, F.; Ying-Lai, M.; Chung, J.; Azen, S.P.; Varma, R.; Los Angeles Latino Eye Study Group. Blood pressure, perfusion pressure, and open-angle glaucoma: The Los Angeles Latino Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2872–2877. [Google Scholar] [CrossRef]
- Mitchell, P.; Lee, A.J.; Rochtchina, E.; Wang, J.J. Open-angle glaucoma and systemic hypertension: The blue mountains eye study. J. Glaucoma 2004, 13, 319–326. [Google Scholar] [CrossRef]
- Lebrun-Julien, F.; Duplan, L.; Pernet, V.; Osswald, I.; Sapieha, P.; Bourgeois, P.; Dickson, K.; Bowie, D.; Barker, P.A.; Di Polo, A. Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J. Neurosci. 2009, 29, 5536–5545. [Google Scholar] [CrossRef] [PubMed]
- Pribiag, H.; Stellwagen, D. Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 2014, 78, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Joos, K.M.; Li, C.; Sappington, R.M. Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6431–6440. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.J.; Kim, J.H.; Park, H.Y.; Park, C.K. Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Brain Res. 2011, 1403, 67–77. [Google Scholar] [CrossRef]
- Park, H.Y.; Park, S.H.; Park, C.K. Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2557–2563. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.E.; Kim, S.A.; Shin, D.Y.; Park, C.K.; Park, H.L. Ocular and Hemodynamic Factors Contributing to the Central Visual Function in Glaucoma Patients with Myopia. Investig. Ophthalmol. Vis. Sci. 2022, 63, 26. [Google Scholar] [CrossRef]
- Shen, R.; Wang, Y.M.; Cheung, C.Y.; Tang, F.Y.; Lam, A.; Tham, C.C.; Chan, P.P. Relationship between macular intercapillary area measured by optical coherence tomography angiography and central visual field sensitivity in normal tension glaucoma. Br. J. Ophthalmol. 2022. [Google Scholar] [CrossRef]
- Raman, P.; Suliman, N.B.; Zahari, M.; Mohamad, N.F.; Kook, M.S.; Ramli, N. Baseline Central Visual Field Defect as a Risk Factor for NTG Progression: A 5-Year Prospective Study. J. Glaucoma 2019, 28, 952–957. [Google Scholar] [CrossRef]
- Jeon, S.J.; Huh, J.; Jeong, E.; Park, C.K.; Park, H.Y.L. Angiotensin II related glial cell activation and necroptosis of retinal ganglion cells after systemic hypotension in glaucoma. Cell Death Dis. 2022, 13, 323. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.R.; Lee, Y.; Lee, K.S.; Na, J.H.; Han, S.; Kook, M.S. Relationship between 24-hour mean ocular perfusion pressure fluctuation and rate of paracentral visual field progression in normal-tension glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6150–6157. [Google Scholar] [CrossRef] [Green Version]
Variables | TNF-Positive Group (n = 31) | TNF-Negative Group (n = 42) | p-Value |
---|---|---|---|
Age at diagnosis (y) | 65.00 ± 16.31 | 66.90 ± 9.25 | 0.526 * |
Female, no. (%) | 15 (48.4) | 21 (50.0) | 0.540 † |
History of migraine, no. (%) | 1 (3.3) | 4 (9.5) | 0.301 † |
History of cold extremities, no. (%) | 2 (6.7) | 3 (7.1) | 0.658 † |
Axial length (mm) | 24.48 ± 1.53 | 24.15 ± 1.54 | 0.380 * |
Central corneal thickness (μm) | 544.00 ± 45.18 | 532.66 ± 32.23 | 0.282 * |
Baseline IOP (mmHg) | 19.94 ± 8.44 | 15.00 ± 6.61 | 0.007 * |
Mean follow-up IOP (mmHg) | 14.61 ± 4.28 | 13.29 ± 3.04 | 0.128 * |
IOP fluctuation (mmHg) | 8.38 ± 6.29 | 4.36 ± 2.21 | <0.001 * |
Baseline average pRNFL thickness (μm) | 68.94 ± 13.23 | 67.19 ± 23.59 | 0.712 * |
Baseline average mGCIPL thickness (μm) | 57.67 ± 24.73 | 50.81 ± 31.42 | 0.317 * |
Baseline MD of SAP (dB) | −10.27 ± 9.40 | −6.90 ± 6.33 | 0.071 * |
Baseline PSD of SAP (dB) | 5.99 ± 4.14 | 5.24 ± 4.21 | 0.452 * |
Presence of DH, no. (%) | 2 (6.5) | 3 (7.3) | 0.632 † |
Presence of central scotoma, no (%) | 12 (38.7) | 17 (40.5) | 0.537 † |
Systolic blood pressure (mmHg) | 136.55 ± 15.30 | 128.37 ± 10.24 | 0.009 * |
Diastolic blood pressure (mmHg) | 77.17 ± 10.25 | 75.88 ± 8.26 | 0.561 * |
TNF alpha level in aqueous humor (pg/mL) | 60.24 ± 73.95 | 1.12 ± 2.72 | <0.001 * |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age at diagnosis (y) | 0.998 (0.952–1.025) | 0.522 | ||
Female, no. (%) | 0.938 (0.370–2.372) | 0.892 | ||
History of Migraine, no. (%) | 3.053 (0.324–28.788) | 0.330 | ||
History of cold extremities, no. (%) | 1.077 (0.169–6.876) | 0.938 | ||
Axial length (mm) | 1.148 (0.845–1.561) | 0.376 | ||
Central corneal thickness (μm) | 1.008 (0.994–1.023) | 0.279 | ||
Baseline IOP (mmHg) | 1.104 (1.017–1.197) | 0.018 | 1.039 (0.946–1.141) | 0.422 |
Mean follow-up IOP (mmHg) | 1.112 (0.966–1.279) | 0.139 | ||
IOP fluctuation (mmHg) | 1.303 (1.087–1.561) | 0.004 | 1.231 (1.012–1.498) | 0.037 |
Baseline average pRNFL thickness (μm) | 1.005 (0.981–1.029) | 0.708 | ||
Baseline average mGCIPL thickness (μm) | 1.009 (0.992–1.026) | 0.314 | ||
Baseline MD of SAP (dB) | 0.946 (0.890–1.006) | 0.075 | 0.975 (0.899–1.057) | 0.542 |
Baseline PSD of SAP (dB) | 1.045 (0.934–1.169) | 0.446 | ||
Presence of DH, no. (%) | 1.145 (0.179–7.304) | 0.886 | ||
Presence of central scotoma, no (%) | 1.077 (0.417–2.783) | 0.879 | ||
Systolic blood pressure (mmHg) | 1.056 (1.010–1.104) | 0.016 | 1.060 (1.011–1.112) | 0.016 |
Diastolic blood pressure (mmHg) | 1.016 (0.963–1.072) | 0.555 |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
β (95% CI) | p-Value | β (95% CI) | p-Value | |
Age at diagnosis (y) | −1.022 (−2.050–0.006) | 0.051 | 0.102 (−1.125–1.329) | 0.869 |
Female, no. (%) | 0.938 (0.370–2.372) | 0.892 | ||
History of Migraine, no. (%) | 3.053 (0.324–28.788) | 0.330 | ||
History of cold extremities, no. (%) | 1.077 (0.169–6.876) | 0.938 | ||
Axial length (mm) | 7.185 (−1.315–15.886) | 0.096 | 5.930 (−2.812–14.673) | 0.180 |
Central corneal thickness (μm) | −3.033 (−6.717–0.651) | 0.105 | ||
Baseline IOP (mmHg) | 1.681 (0.022–3.341) | 0.047 | −1.591 (−3.940–0.758) | 0.181 |
Mean follow-up IOP (mmHg) | 5.964 (2.610–9.319) | 0.001 | 6.557 (2.336–10.777) | 0.003 |
IOP fluctuation (mmHg) | 3.278 (0.636–5.920) | 0.016 | 3.197 (−0.021–6.415) | 0.050 |
Baseline average pRNFL thickness (μm) | −0.132 (−0.803–0.539) | 0.696 | ||
Baseline average mGCIPL thickness (μm) | 0.040 (−0.421–0.501) | 0.864 | ||
Baseline MD of SAP (dB) | −1.401 (−3.048–0.246) | 0.094 | −1.160 (−2.815–0.495) | 0.166 |
Baseline PSD of SAP (dB) | −0.280 (−3.465–2.906) | 0.862 | ||
Presence of DH, no. (%) | 1.145 (0.179–7.304) | 0.886 | ||
Presence of central scotoma, no (%) | 1.077 (0.417–2.783) | 0.879 | ||
Systolic blood pressure (mmHg) | 0.508 (−0.103–1.118) | 0.243 | ||
Diastolic blood pressure (mmHg) | 0.453 (−0.440–1.347) | 0.315 |
Variables | TNF-Positive Group (n = 10) | TNF-Negative Group (n = 21) | p-Value |
---|---|---|---|
Age at diagnosis (y) | 70.84 ± 10.19 | 67.00 ± 10.56 | 0.228 * |
Female, no. (%) | 8 (80.0) | 10 (47.6) | 0.092 † |
History of Migraine, no. (%) | 1 (10.0) | 2 (9.5) | 0.704 † |
History of cold extremities, no. (%) | 2 (20.0) | 1 (4.8) | 0.237 † |
Axial length (mm) | 24.78 ± 1.43 | 24.37 ± 1.82 | 0.423 * |
Central corneal thickness (μm) | 542.79 ± 40.65 | 539.75 ± 35.07 | 0.817 * |
Baseline IOP (mmHg) | 15.63 ± 2.41 | 13.19 ± 2.91 | 0.005 * |
Mean follow-up IOP (mmHg) | 13.68 ± 3.05 | 12.74 ± 3.09 | 0.317 * |
IOP fluctuation (mmHg) | 5.84 ± 2.89 | 4.34 ± 2.35 | 0.062 * |
Baseline average pRNFL thickness (μm) | 66.58 ± 9.19 | 66.42 ± 11.17 | 0.961 * |
Baseline average mGCIPL thickness (μm) | 50.36 ± 28.14 | 49.69 ± 27.95 | 0.937 * |
Baseline MD of SAP (dB) | −8.28 ± 8.56 | −8.56 ± 6.09 | 0.896 * |
Baseline PSD of SAP (dB) | 6.38 ± 4.18 | 6.45 ± 4.19 | 0.959 * |
Presence of DH, no. (%) | 5 (50.0) | 0 | 0.002 † |
Presence of central scotoma, no (%) | 6 (60.0) | 2 (9.5) | 0.006 † |
Systolic blood pressure (mmHg) | 134.35 ± 11.80 | 128.60 ± 10.75 | 0.110 * |
Diastolic blood pressure (mmHg) | 76.35 ± 11.50 | 76.92 ± 8.71 | 0.857 * |
TNF alpha level in aqueous humor (pg/mL) | 62.08 ± 86.11 | 1.66 ± 3.27 | 0.001 * |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age at diagnosis (y) | 1.065 (0.978–1.161) | 0.149 | ||
Female, no. (%) | 4.400 (0.749–25.842) | 0.101 | ||
History of migraine, no. (%) | 0.947 (0.076–11.870) | 0.947 | ||
History of cold extremities, no. (%) | 0.200 (0.016–2.527) | 0.214 | ||
Axial length (mm) | 0.890 (0.500–1.583) | 0.691 | ||
Central corneal thickness (μm) | 1.030 (0.816–1.301) | 0.801 | ||
Baseline IOP (mmHg) | 1.318 (0.952–1.824) | 0.097 | 1.174 (0.776–1.777) | 0.448 |
Mean follow-up IOP (mmHg) | 1.085 (0.844–1.394) | 0.525 | ||
IOP fluctuation (mmHg) | 1.090 (0.774–1.534) | 0.622 | ||
Baseline average pRNFL thickness (μm) | 1.034 (0.957–1.117) | 0.393 | ||
Baseline average mGCIPL thickness (μm) | 1.046 (0.979–1.117) | 0.181 | ||
Baseline MD of SAP (dB) | 1.161 (0.977–1.381) | 0.190 | ||
Baseline PSD of SAP (dB) | 0.930 (0.759–1.139) | 0.484 | ||
Presence of DH, no. (%) | 2.042 (0.310–5.222) | 0.006 | 2.252 (0.037–6.612) | 0.093 |
Presence of central scotoma, no (%) | 14.250 (2.069–98.140) | 0.007 | 7.532 (1.235–12.448) | 0.029 |
Systolic blood pressure (mmHg) | 1.009 (0.941–1.082) | 0.802 | ||
Diastolic blood pressure (mmHg) | 0.956 (0.880–1.040) | 0.296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Ohn, K.; Shin, H.; Oh, S.E.; Park, C.K.; Park, H.-Y.L. Factors Associated with Elevated Tumor Necrosis Factor-α in Aqueous Humor of Patients with Open-Angle Glaucoma. J. Clin. Med. 2022, 11, 5232. https://doi.org/10.3390/jcm11175232
Jung Y, Ohn K, Shin H, Oh SE, Park CK, Park H-YL. Factors Associated with Elevated Tumor Necrosis Factor-α in Aqueous Humor of Patients with Open-Angle Glaucoma. Journal of Clinical Medicine. 2022; 11(17):5232. https://doi.org/10.3390/jcm11175232
Chicago/Turabian StyleJung, Younhea, Kyoung Ohn, Heejong Shin, Si Eun Oh, Chan Kee Park, and Hae-Young Lopilly Park. 2022. "Factors Associated with Elevated Tumor Necrosis Factor-α in Aqueous Humor of Patients with Open-Angle Glaucoma" Journal of Clinical Medicine 11, no. 17: 5232. https://doi.org/10.3390/jcm11175232
APA StyleJung, Y., Ohn, K., Shin, H., Oh, S. E., Park, C. K., & Park, H.-Y. L. (2022). Factors Associated with Elevated Tumor Necrosis Factor-α in Aqueous Humor of Patients with Open-Angle Glaucoma. Journal of Clinical Medicine, 11(17), 5232. https://doi.org/10.3390/jcm11175232