Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects
Abstract
:1. Introduction
2. Definitions and Concepts on Schizophrenia
3. The Heterogeneity and the New Nosological Schizophrenia Constructs
4. The Systems of Diagnostic Classification
5. Schizophrenia and Personalized Psychiatry
6. Genomics
7. Neuroimaging
8. Environmental Factors
9. Schizophrenia Treatment and Interventions
10. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Key Factors and Publications Concerning Schizophrenia; World Health Organization: Geneva, Switzerland, 2018.
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia—An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Menon, V. Brain Networks and Cognitive Impairment in Psychiatric Disorders. World Psychiatry 2020, 19, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Moritz, S.; Silverstein, S.M.; Dietrichkeit, M.; Gallinat, J. Neurocognitive Deficits in Schizophrenia Are Likely to Be Less Severe and Less Related to the Disorder than Previously Thought. World Psychiatry 2020, 19, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Moura, B.M.; Isvoranu, A.M.; Kovacs, V.; Van Rooijen, G.; Van Amelsvoort, T.; Simons, C.J.P.; Bartels-Velthuis, A.A.; Bakker, P.R.; Marcelis, M.; De Haan, L.; et al. The Puzzle of Functional Recovery in Schizophrenia-Spectrum Disorders—Replicating a Network Analysis Study. Schizophr. Bull. 2022, 48, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Alston, M.; Bennett, C.F.; Rochani, H. Treatment Adherence in Youth with First-Episode Psychosis: Impact of Family Support and Telehealth Delivery. Issues Ment. Health Nurs. 2019, 40, 951–956. [Google Scholar] [CrossRef]
- Green, M.F.; Lee, J.; Wynn, J.K. Experimental Approaches to Social Disconnection in the General Community: Can We Learn from Schizophrenia Research? World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 177–178. [Google Scholar] [CrossRef]
- Hunt, G.E.; Large, M.M.; Cleary, M.; Lai, H.M.X.; Saunders, J.B. Prevalence of Comorbid Substance Use in Schizophrenia Spectrum Disorders in Community and Clinical Settings, 1990–2017: Systematic Review and Meta-Analysis. Drug Alcohol. Depend. 2018, 191, 234–258. [Google Scholar] [CrossRef]
- Mamakou, V.; Thanopoulou, A.; Gonidakis, F.; Tentolouris, N.; Kontaxakis, V. Schizophrenia and Type 2 Diabetes Mellitus. Psychiatr. Psychiatr. 2018, 29, 64–73. [Google Scholar] [CrossRef]
- Brink, M.; Green, A.; Bojesen, A.B.; Lamberti, J.S.; Conwell, Y.; Andersen, K. Excess Medical Comorbidity and Mortality across the Lifespan in Schizophrenia: A Nationwide Danish Register Study. Schizophr. Res. 2019, 206, 347–354. [Google Scholar] [CrossRef]
- Nielsen, R.E.; Banner, J.; Jensen, S.E. Cardiovascular Disease in Patients with Severe Mental Illness. Nat. Rev. Cardiol. 2021, 18, 136–145. [Google Scholar] [CrossRef]
- Pouget, J.G.; Han, B.; Wu, Y.; Mignot, E.; Ollila, H.M.; Barker, J.; Spain, S.; Dand, N.; Trembath, R.; Martin, J. Schizophrenia Working Group of the Psychiatric Genomics Consortium; Cross-Disorder Analysis of Schizophrenia and 19 Immune-Mediated Diseases Identifies Shared Genetic Risk. Hum. Mol. Genet. 2019, 28, 3498–3513. [Google Scholar] [CrossRef] [PubMed]
- Melkersson, K. Schizophrenia- or Schizoaffective Disorder Diagnosis and the Risk for Subsequent Type 1- or Type 2 Diabetes Mellitus: A Swedish Nationwide Register-Based Cohort Study. Neuro. Endocrinol. Lett. 2020, 41, 245–254. [Google Scholar] [PubMed]
- Misiak, B.; Stańczykiewicz, B.; Wiśniewski, M.; Bartoli, F.; Carra, G.; Cavaleri, D.; Samochowiec, J.; Jarosz, K.; Rosińczuk, J.; Frydecka, D. Thyroid Hormones in Persons with Schizophrenia: A Systematic Review and Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110402. [Google Scholar] [CrossRef] [PubMed]
- Drake, R.E.; Xie, H.; McHugo, G.J. A 16-year Follow-up of Patients with Serious Mental Illness and Co-occurring Substance Use Disorder. World Psychiatry 2020, 19, 397–398. [Google Scholar] [CrossRef]
- Plana-Ripoll, O.; Musliner, K.L.; Dalsgaard, S.; Momen, N.C.; Weye, N.; Christensen, M.K.; Agerbo, E.; Iburg, K.M.; Laursen, T.M.; Mortensen, P.B.; et al. Nature and Prevalence of Combinations of Mental Disorders and Their Association with Excess Mortality in a Population-Based Cohort Study. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Solmi, M.; Croatto, G.; Schneider, L.K.; Rohani-Montez, S.C.; Fairley, L.; Smith, N.; Bitter, I.; Gorwood, P.; Taipale, H.; et al. Mortality in People with Schizophrenia: A Systematic Review and Meta-Analysis of Relative Risk and Aggravating or Attenuating Factors. World Psychiatry 2022, 21, 248–271. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Linscott, R.J.; Myin-Germeys, I.; Delespaul, P.; Krabbendam, L. A Systematic Review and Meta-Analysis of the Psychosis Continuum: Evidence for a Psychosis Proneness-Persistence-Impairment Model of Psychotic Disorder. Psychol. Med. 2009, 39, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R. Rethinking Schizophrenia. Nature 2010, 468, 187–193. [Google Scholar] [CrossRef]
- Barch, D.M.; Karcher, N.; Moran, E. Reinventing Schizophrenia-Embracing Complexity and Complication. Schizophr. Res. 2022, 242, 7–11. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Bondar, J.; Delgadillo, J.; Doherty, G.; Wasil, A.; Fokkema, M.; Cohen, Z.; Belgrave, D.; DeRubeis, R.; Iniesta, R.; et al. The Promise of Machine Learning in Predicting Treatment Outcomes in Psychiatry. World Psychiatry 2021, 20, 154–170. [Google Scholar] [CrossRef]
- DeLisi, L.E. Redefining Schizophrenia through Genetics: A Commentary on 50 Years Searching for Biological Causes. Schizophr. Res. 2022, 242, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Nasrallah, H.A. Re-Inventing the Schizophrenia Syndrome: The Elusive “Theory of Everything”. Schizophr. Res. 2022, 242, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Maj, M.; van Os, J.; De Hert, M.; Gaebel, W.; Galderisi, S.; Green, M.F.; Guloksuz, S.; Harvey, P.D.; Jones, P.B.; Malaspina, D.; et al. The Clinical Characterization of the Patient with Primary Psychosis Aimed at Personalization of Management. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2021, 20, 4–33. [Google Scholar] [CrossRef]
- Tortorella, A. We Should Improve Personalization of Management in Patients with a Diagnosis of Schizophrenia. J. Clin. Med. 2021, 11, 184. [Google Scholar] [CrossRef]
- Owoeye, O.; Kingston, T.; Scully, P.J.; Baldwin, P.; Browne, D.; Kinsella, A.; Russell, V.; O’Callaghan, E.; Waddington, J.L. Epidemiological and Clinical Characterization Following a First Psychotic Episode in Major Depressive Disorder: Comparisons with Schizophrenia and Bipolar I Disorder in the Cavan-Monaghan First Episode Psychosis Study (CAMFEPS). Schizophr. Bull. 2013, 39, 756–765. [Google Scholar] [CrossRef]
- Tamminga, C.A.; Ivleva, E.I.; Keshavan, M.S.; Pearlson, G.D.; Clementz, B.A.; Witte, B.; Morris, D.W.; Bishop, J.; Thaker, G.K.; Sweeney, J.A. Clinical Phenotypes of Psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am. J. Psychiatry 2013, 170, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, R.; Stahl, D.; McGuffin, P. Machine Learning, Statistical Learning and the Future of Biological Research in Psychiatry. Psychol. Med. 2016, 46, 2455–2465. [Google Scholar] [CrossRef]
- Tikka, S.K.; Singh, B.K.; Nizamie, S.H.; Garg, S.; Mandal, S.; Thakur, K.; Singh, L.K. Artificial Intelligence-Based Classification of Schizophrenia: A High Density Electroencephalographic and Support Vector Machine Study. Indian J. Psychiatry 2020, 62, 273–282. [Google Scholar] [CrossRef]
- Lai, J.W.; Ang, C.K.E.; Acharya, U.R.; Cheong, K.H. Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. Int. J. Environ. Res. Public. Health 2021, 18, 6099. [Google Scholar] [CrossRef]
- Cortes-Briones, J.A.; Tapia-Rivas, N.I.; D’Souza, D.C.; Estevez, P.A. Going Deep into Schizophrenia with Artificial Intelligence. Schizophr. Res. 2022, 245, 122–140. [Google Scholar] [CrossRef]
- Kraepelin, E. Psychiatrie: Ein kurzes Lehrbuch für Studirende und Aerzte. Dritte, Vielfach Umgearbeitete Auflage; Ambr. Abel: Leipzig, Germany, 1889. [Google Scholar]
- Kraepelin, E. Psychiatrie: Ein kurzes Lehrbuch für Studirende und Aerzte. Vierte, Vollstandig Umgerbeitete Auflage; Ambr. Abel: Leipzig, Germany, 1893. [Google Scholar]
- Kraepelin, E.; Robertson, G.M.; Barclay, R.M. Dementia Praecox and Paraphrenia. Translated from the 8th German Edition of the Lehrbruch der Psychiatrie; Chicago Medical Book Co.: Chicago, IL, USA, 1919; Volume iii. [Google Scholar]
- Heckers, S.; Kendler, K.S. The Evolution of Kraepelin’s Nosological Principles. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R. Agreement on the Contours of Schizophrenia: The First Order of Business. Schizophr. Res. 2022, 242, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Bleuler, E. Dementia Praecox or the Group of Schizophrenias; International Universities Press: New York, NY, USA, 1911. [Google Scholar]
- Kuhn, R. Eugen Bleuler’s Concepts of Psychopathology. Hist. Psychiatry 2004, 15 Pt 3, 361–366. [Google Scholar] [CrossRef]
- Gaebel, W.; Salveridou-Hof, E. Reinventing Schizophrenia: Updating the Construct-Primary Schizophrenia 2021—The Road Ahead. Schizophr. Res. 2022, 242, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K. Clinical Psychopathology; Grune & Stratton: New York, NY, USA, 1959. [Google Scholar]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2020. [Google Scholar]
- WHO. International Statistical Classification of Diseases and Related Health Problems, 10th ed.; World Health Organization: Geneva, Switzerland, 1992.
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013. [Google Scholar]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revised; American Psychiatric Association: Arlington, VA, USA, 2022. [Google Scholar]
- WHO. International Statistical Classification of Diseases and Related Health Problems, 11th; (ICD-11); World Health Organization: Geneva, Switzerland, 2019.
- Feighner, J.P.; Robins, E.; Guze, S.B.; Woodruff, R.A.; Winokur, G.; Munoz, R. Diagnostic Criteria for Use in Psychiatric Research. Arch. Gen. Psychiatry 1972, 26, 57–63. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Publishing: Washington, DC, USA, 1980. [Google Scholar]
- Spitzer, R.L.; Endicott, J.; Robins, E. Research Diagnostic Criteria: Rationale and Reliability. Arch. Gen. Psychiatry 1978, 35, 773–782. [Google Scholar] [CrossRef]
- Crow, T.J. Molecular Pathology of Schizophrenia: More than One Disease Process? Br. Med. J. 1980, 280, 66–68. [Google Scholar] [CrossRef]
- Carpenter, W.T.; Heinrichs, D.W.; Wagman, A.M. Deficit and Nondeficit Forms of Schizophrenia: The Concept. Am. J. Psychiatry 1988, 145, 578–583. [Google Scholar] [CrossRef]
- Andreasen, N.C.A. Unitary Model of Schizophrenia: Bleuler’s “Fragmented Phrene” as Schizencephaly. Arch. Gen. Psychiatry 1999, 56, 781–787. [Google Scholar] [CrossRef]
- Meehl, P.E. Schizotaxia, Schizotypy, Schizophrenia. In Schizophrenia: Seven Approaches; Routledge: London, UK, 1969. [Google Scholar]
- Lenzenweger, M.F. Schizotaxia, Schizotypy, and Schizophrenia: Paul E. Meehl’s Blueprint for the Experimental Psychopathology and Genetics of Schizophrenia. J. Abnorm. Psychol. 2006, 115, 195–200. [Google Scholar] [CrossRef]
- Roberts, D.F. Schizophrenia: The Epigenetic Puzzle. By I. I. Gottesman and J. Shields. Cambridge University Press: Cambridge. 1982. Psychol. Med. 1983, 13, 690–692. [Google Scholar] [CrossRef]
- Schizophrenia Genesis: The Origins of Madness—Royal Holloway, University of London. Available online: https://librarysearch.royalholloway.ac.uk/primo-explore/fulldisplay/44ROY_ALMA_DS2128877520002671/44ROY_VU2 (accessed on 20 June 2022).
- Crow, T.J.A. Re-Evaluation of the Viral Hypothesis: Is Psychosis the Result of Retroviral Integration at a Site Close to the Cerebral Dominance Gene? Br. J. Psychiatry J. Ment. Sci. 1984, 145, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.S.; Faraone, S.V.; Seidman, L.J.; Olson, E.A.; Tsuang, M.T.; Consortium on the Genetics on Schizophrenia. Searching for the Liability to Schizophrenia: Concepts and Methods Underlying Genetic High-Risk Studies of Adolescents. J. Child Adolesc. Psychopharmacol. 2005, 15, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, M.S.; Kulkarni, S.; Bhojraj, T.; Francis, A.; Diwadkar, V.; Montrose, D.M.; Seidman, L.J.; Sweeney, J. Premorbid Cognitive Deficits in Young Relatives of Schizophrenia Patients. Front. Hum. Neurosci. 2010, 3, 62. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.S.; Hsi, X.; Giuliano, A.J.; Tan, L.; Zhu, S.; Li, L.; Seidman, L.J.; Tsuang, M.T. Are Neurocognitive, Clinical and Social Dysfunctions in Schizotaxia Reversible Pharmacologically?: Results from the Changsha Study. Asian J. Psychiatry 2012, 5, 73–82. [Google Scholar] [CrossRef]
- Tsuang, M.T.; Stone, W.S.; Faraone, S.V. Toward Reformulating the Diagnosis of Schizophrenia. Am. J. Psychiatry 2000, 157, 1041–1050. [Google Scholar] [CrossRef]
- Raballo, A.; Poletti, M.; Preti, A.; Parnas, J. The Self in the Spectrum: A Meta-Analysis of the Evidence Linking Basic Self-Disorders and Schizophrenia. Schizophr. Bull. 2021, 47, 1007–1017. [Google Scholar] [CrossRef]
- van Os, J.; Kenis, G.; Rutten, B.P.F. The Environment and Schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef]
- Gur, R.E. Considering Alternatives to the Schizophrenia Construct. Schizophr. Res. 2022, 242, 49–51. [Google Scholar] [CrossRef]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Owen, M.J.; Schultz, S. Definition and Description of Schizophrenia in the DSM-5. Schizophr. Res. 2013, 150, 3–10. [Google Scholar] [CrossRef]
- Taghia, J.; Cai, W.; Ryali, S.; Kochalka, J.; Nicholas, J.; Chen, T.; Menon, V. Uncovering Hidden Brain State Dynamics That Regulate Performance and Decision-Making during Cognition. Nat. Commun. 2018, 9, 2505. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D. Psychosis, Schizophrenia, and States vs. Traits. Schizophr. Res. 2022, 242, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Clementz, B.A.; Trotti, R.L.; Pearlson, G.D.; Keshavan, M.S.; Gershon, E.S.; Keedy, S.K.; Ivleva, E.I.; McDowell, J.E.; Tamminga, C.A. Testing Psychosis Phenotypes from Bipolar-Schizophrenia Network for Intermediate Phenotypes for Clinical Application: Biotype Characteristics and Targets. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 2020, 5, 808–818. [Google Scholar] [CrossRef]
- Zick, J.L.; Staglin, B.; Vinogradov, S. Eliminate Schizophrenia. Schizophr. Res. 2022, 242, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Namkung, H.; Kim, S.H.; Sawa, A. The Insula: An Underestimated Brain Area in Clinical Neuroscience, Psychiatry, and Neurology. Trends Neurosci. 2017, 40, 200–207. [Google Scholar] [CrossRef]
- Sawa, A.; Yang, K.; Cascella, N.G. Paradigm Shift on the Concept of Schizophrenia That Matches with Both Academic and Clinical Needs. Schizophr. Res. 2022, 242, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, W.T. How the Diagnosis of Schizophrenia Impeded the Advance of Knowledge (and What to Do About It). In Schizophrenia: Evolution and Synthesis; Silverstein, S.M., Moghaddam, B., Wykes, T., Eds.; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cuthbert, B.N.; Morris, S.E. Evolving Concepts of the Schizophrenia Spectrum: A Research Domain Criteria Perspective. Front. Psychiatry 2021, 12, 641319. [Google Scholar] [CrossRef]
- Kapur, S.; Phillips, A.G.; Insel, T.R. Why Has It Taken so Long for Biological Psychiatry to Develop Clinical Tests and What to Do about It? Mol. Psychiatry 2012, 17, 1174–1179. [Google Scholar] [CrossRef]
- Dazzan, P. Is Our Mistake Trying to Identify a “Homogeneous” Schizophrenia Construct? Schizophr. Res. 2022, 242, 20–21. [Google Scholar] [CrossRef]
- Carpenter, W.T. Schizophrenia: A View of Immediate Future. Schizophr. Res. 2022, 242, 15–16. [Google Scholar] [CrossRef]
- Murray, R.M.; Quattrone, D. The Kraepelian Concept of Schizophrenia: Dying but Not yet Dead. Schizophr. Res. 2022, 242, 102–105. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Guloksuz, S. Schizophrenia as a Symptom of Psychiatry’s Reluctance to Enter the Moral Era of Medicine. Schizophr. Res. 2022, 242, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Heckers, S. The Schizophrenia Concept. Schizophr. Res. 2022, 242, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Kotov, R.; Jonas, K.G.; Carpenter, W.T.; Dretsch, M.N.; Eaton, N.R.; Forbes, M.K.; Forbush, K.T.; Hobbs, K.; Reininghaus, U.; Slade, T.; et al. Validity and Utility of Hierarchical Taxonomy of Psychopathology (HiTOP): I. Psychosis Superspectrum. World Psychiatry 2020, 19, 151–172. [Google Scholar] [CrossRef]
- Tamminga, C.A. Assessing Striatal Dopamine in Schizophrenia. Biol. Psychiatry 2022, 91, 170–172. [Google Scholar] [CrossRef]
- Keshavan, M.S.; Nasrallah, H.A.; Tandon, R. Schizophrenia, “Just the Facts” 6. Moving Ahead with the Schizophrenia Concept: From the Elephant to the Mouse. Schizophr. Res. 2011, 127, 3–13. [Google Scholar] [CrossRef]
- Gordon, J.A.; Morris, S.E.; Avenevoli, S.A. Framework for Integration of Dimensional and Diagnostic Approaches to the Diagnosis of Schizophrenia. Schizophr. Res. 2022, 242, 98–101. [Google Scholar] [CrossRef]
- First, M.B.; Gaebel, W.; Maj, M.; Stein, D.J.; Kogan, C.S.; Saunders, J.B.; Poznyak, V.B.; Gureje, O.; Lewis-Fernández, R.; Maercker, A.; et al. An Organization- and Category-Level Comparison of Diagnostic Requirements for Mental Disorders in ICD-11 and DSM-5. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2021, 20, 34–51. [Google Scholar] [CrossRef]
- Rapoport, J.; Giedd, J.; Gogtay, N. Neurodevelopmental Model of Schizophrenia: Update 2012. Mol. Psychiatry 2012, 17, 1228–1238. [Google Scholar] [CrossRef]
- Reichenberg, A.; Akbarian, S. Towards DSM 10: A Bio-Classification of Developmental Schizophrenia? Schizophr. Res. 2022, 242, 4–6. [Google Scholar] [CrossRef]
- Sanislow, C.A. RDoC at 10: Changing the Discourse for Psychopathology. World Psychiatry 2020, 19, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.A.; Margolis, R.L. Research Domain Criteria: Strengths, Weaknesses, and Potential Alternatives for Future Psychiatric Research. Mol. Neuropsychiatry 2019, 5, 218–236. [Google Scholar] [CrossRef] [PubMed]
- Lahey, B.B.; Moore, T.M.; Kaczkurkin, A.N.; Zald, D.H. Hierarchical Models of Psychopathology: Empirical Support, Implications, and Remaining Issues. World Psychiatry 2021, 20, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kotov, R.; Krueger, R.F.; Watson, D.; Achenbach, T.M.; Althoff, R.R.; Bagby, R.M.; Brown, T.A.; Carpenter, W.T.; Caspi, A.; Clark, L.A.; et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A Dimensional Alternative to Traditional Nosologies. J. Abnorm. Psychol. 2017, 126, 454–477. [Google Scholar] [CrossRef]
- Kotov, R.; Jonas, K.G.; Lian, W.; Docherty, A.R.; Carpenter, W.T. Reconceptualizing Schizophrenia in the Hierarchical Taxonomy of Psychopathology (HiTOP). Schizophr. Res. 2022, 242, 73–77. [Google Scholar] [CrossRef]
- Krueger, R.F.; Hobbs, K.A.; Conway, C.C.; Dick, D.M.; Dretsch, M.N.; Eaton, N.R.; Forbes, M.K.; Forbush, K.T.; Keyes, K.M.; Latzman, R.D.; et al. HiTOP Utility Workgroup. Validity and Utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing Superspectrum. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2021, 20, 171–193. [Google Scholar] [CrossRef]
- Hjorthøj, C.; Albert, N.; Nordentoft, M. Association of Substance Use Disorders with Conversion From Schizotypal Disorder to Schizophrenia. JAMA Psychiatry 2018, 75, 733–739. [Google Scholar] [CrossRef]
- Clementz, B.A.; Parker, D.A.; Trotti, R.L.; McDowell, J.E.; Keedy, S.K.; Keshavan, M.S.; Pearlson, G.D.; Gershon, E.S.; Ivleva, E.I.; Huang, L.Y.; et al. Psychosis Biotypes: Replication and Validation from the B-SNIP Consortium. Schizophr. Bull. 2022, 48, 56–68. [Google Scholar] [CrossRef]
- Clementz, B.A.; Sweeney, J.A.; Hamm, J.P.; Ivleva, E.I.; Ethridge, L.E.; Pearlson, G.D.; Keshavan, M.S.; Tamminga, C.A. Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. Am. J. Psychiatry 2016, 173, 373–384. [Google Scholar] [CrossRef]
- Hall, M.H.; Smoller, J.W.; Cook, N.R.; Schulze, K.; Hyoun Lee, P.; Taylor, G.; Bramon, E.; Coleman, M.J.; Murray, R.M.; Salisbury, D.F.; et al. Patterns of Deficits in Brain Function in Bipolar Disorder and Schizophrenia: A Cluster Analytic Study. Psychiatry Res. 2012, 200, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Ginsburg, G.S.; McCarthy, J.J. Personalized Medicine: Revolutionizing Drug Discovery and Patient Care. Trends Biotechnol. 2001, 19, 491–496. [Google Scholar] [CrossRef]
- Roffman, J.L. Biomarkers and Personalized Psychiatry. Harv. Rev. Psychiatry 2011, 19, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, W.T. Primary Psychosis: More to Know, Much More to Do. World Psychiatry 2021, 20, 1–2. [Google Scholar] [CrossRef]
- Levchenko, A.; Nurgaliev, T.; Kanapin, A.; Samsonova, A.; Gainetdinov, R.R. Current Challenges and Possible Future Developments in Personalized Psychiatry with an Emphasis on Psychotic Disorders. Heliyon 2020, 6, e03990. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration: Silver Spring, MD, USA, 2016.
- Weickert, C.S.; Weickert, T.W.; Pillai, A.; Buckley, P.F. Biomarkers in Schizophrenia: A Brief Conceptual Consideration. Dis. Markers 2013, 35, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, I.I.; Gould, T.D. The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- de Andrada Pereira, B.; Wangsawatwong, P.; Lehrman, J.N.; Sawa, A.G.U.; Lindsey, D.P.; Yerby, S.A.; Godzik, J.; Waguespack, A.M.; Uribe, J.; Kelly, B.P. Biomechanics of a Laterally Placed Sacroiliac Joint Fusion Device Supplemental to S2 Alar-Iliac Fixation in a Long-Segment Adult Spinal Deformity Construct: A Cadaveric Study of Stability and Strain Distribution. J. Neurosurg. Spine 2022, 36, 42–52. [Google Scholar] [CrossRef]
- Kelly, D.L.; Buchanan, R.W. Can the Current Schizophrenia Construct Endure? Schizophr. Res. 2022, 242, 64–66. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and Immunity in Schizophrenia: Implications for Pathophysiology and Treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Mize, T.; Wu, J.S.; Hong, E.; Nimgaonkar, V.; Kendler, K.S.; Allen, D.; Oh, E.; Netski, A.; Chen, X. Polygenic Risk Scores for Subtyping of Schizophrenia. Schizophr. Res. Treat. 2020, 2020, 1638403. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Sirivichayakul, S.; Matsumoto, A.K.; Maes, A.; Michelin, A.P.; de Oliveira Semeão, L.; de Lima Pedrão, J.V.; Moreira, E.G.; Barbosa, D.S. Increased Levels of Plasma Tumor Necrosis Factor-α Mediate Schizophrenia Symptom Dimensions and Neurocognitive Impairments and Are Inversely Associated with Natural IgM Directed to Malondialdehyde and Paraoxonase 1 Activity. Mol. Neurobiol. 2020, 57, 2333–2345. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, C.; Hosak, L.; Mössner, R.; Giegling, I.; Mandelli, L.; Bellivier, F.; Claes, S.; Collier, D.A.; Corrales, A.; Delisi, L.E.; et al. Consensus Paper of the WFSBP Task Force on Genetics: Genetics, Epigenetics and Gene Expression Markers of Major Depressive Disorder and Antidepressant Response. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2017, 18, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Haney, J.R.; Parikshak, N.N.; Leppa, V.; Ramaswami, G.; Hartl, C.; Schork, A.J.; Appadurai, V.; Buil, A. CommonMind Consortium; PsychENCODE Consortium; iPSYCH-BROAD Working Group. Shared Molecular Neuropathology across Major Psychiatric Disorders Parallels Polygenic Overlap. Science 2018, 359, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Martins-de-Souza, D.; Akbarian, S.; Cassoli, J.S.; Ehrenreich, H.; Fischer, A.; Fonteh, A.; Gattaz, W.F.; Gawlik, M.; Gerlach, M.; et al. Members of the WFSBP Task Force on Biological Markers. Consensus Paper of the WFSBP Task Force on Biological Markers: Criteria for Biomarkers and Endophenotypes of Schizophrenia, Part III: Molecular Mechanisms. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2017, 18, 330–356. [Google Scholar] [CrossRef]
- Kalia, M.; Costa, E.; Silva, J. Biomarkers of Psychiatric Diseases: Current Status and Future Prospects. Metabolism. 2015, 64 (Suppl. S1), S11–S15. [Google Scholar] [CrossRef]
- Lydon-Staley, D.M.; Bassett, D.S. Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry. Curr. Top. Behav. Neurosci. 2018, 40, 79–109. [Google Scholar] [CrossRef]
- Yenilmez, E.D.; Tamam, L.; Karaytug, O.; Tuli, A. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 Polymorphisms Using HRMA in Psychiatry Patients with Schizophrenia and Bipolar Disease for Personalized Medicine. Comb. Chem. High Throughput Screen. 2018, 21, 374–380. [Google Scholar] [CrossRef]
- Han, M.; Deng, C. BDNF as a Pharmacogenetic Target for Antipsychotic Treatment of Schizophrenia. Neurosci. Lett. 2020, 726, 133870. [Google Scholar] [CrossRef]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet Lond. Engl. 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Darby, M.M.; Yolken, R.H.; Sabunciyan, S. Consistently Altered Expression of Gene Sets in Postmortem Brains of Individuals with Major Psychiatric Disorders. Transl. Psychiatry 2016, 6, e890. [Google Scholar] [CrossRef] [PubMed]
- Charney, A.W.; Stahl, E.A.; Green, E.K.; Chen, C.Y.; Moran, J.L.; Chambert, K.; Belliveau, R.A.; Forty, L.; Gordon-Smith, K.; Lee, P.H.; et al. Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases. Biol. Psychiatry 2019, 86, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, L.; Rees, E.; Morris, D.W.; Lynham, A.J.; Richards, A.L.; Pardiñas, A.F.; Legge, S.E.; Harold, D.; Zammit, S. Rare Copy Number Variants Are Associated with Poorer Cognition in Schizophrenia. Biol. Psychiatry 2021, 90, 28–34. [Google Scholar] [CrossRef]
- Merikangas, A.K.; Shelly, M.; Knighton, A.; Kotler, N.; Tanenbaum, N.; Almasy, L. What Genes Are Differentially Expressed in Individuals with Schizophrenia? A Systematic Review. Mol. Psychiatry 2022, 27, 1373–1383. [Google Scholar] [CrossRef]
- Murray, G.K.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Wray, N.R. Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review. JAMA Psychiatry 2021, 78, 210–219. [Google Scholar] [CrossRef]
- Mistry, S.; Harrison, J.R.; Smith, D.J.; Escott-Price, V.; Zammit, S. The Use of Polygenic Risk Scores to Identify Phenotypes Associated with Genetic Risk of Bipolar Disorder and Depression: A Systematic Review. J. Affect. Disord. 2018, 234, 148–155. [Google Scholar] [CrossRef]
- Ronald, A.; Pain, O. A Systematic Review of Genome-Wide Research on Psychotic Experiences and Negative Symptom Traits: New Revelations and Implications for Psychiatry. Hum. Mol. Genet. 2018, 27, R136–R152. [Google Scholar] [CrossRef]
- Kauppi, K.; Westlye, L.T.; Tesli, M.; Bettella, F.; Brandt, C.L.; Mattingsdal, M.; Ueland, T.; Espeseth, T.; Agartz, I.; Melle, I.; et al. Polygenic Risk for Schizophrenia Associated with Working Memory-Related Prefrontal Brain Activation in Patients with Schizophrenia and Healthy Controls. Schizophr. Bull. 2015, 41, 736–743. [Google Scholar] [CrossRef]
- van der Merwe, C.; Passchier, R.; Mufford, M.; Ramesar, R.; Dalvie, S.; Stein, D.J. Polygenic Risk for Schizophrenia and Associated Brain Structural Changes: A Systematic Review. Compr. Psychiatry 2019, 88, 77–82. [Google Scholar] [CrossRef]
- Richards, A.L.; Pardiñas, A.F.; Frizzati, A.; Tansey, K.E.; Lynham, A.J.; Holmans, P.; Legge, S.E.; Savage, J.E.; Agartz, I.; Andreassen, O.A.; et al. The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophr. Bull. 2020, 46, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Legge, S.E.; Cardno, A.G.; Allardyce, J.; Dennison, C.; Hubbard, L.; Pardiñas, A.F.; Richards, A.; Rees, E.; Di Florio, A.; Escott-Price, V.; et al. Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA Psychiatry 2021, 78, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Costain, G.; Lionel, A.C.; Merico, D.; Forsythe, P.; Russell, K.; Lowther, C.; Yuen, T.; Husted, J.; Stavropoulos, D.J.; Speevak, M.; et al. Pathogenic Rare Copy Number Variants in Community-Based Schizophrenia Suggest a Potential Role for Clinical Microarrays. Hum. Mol. Genet. 2013, 22, 4485–4501. [Google Scholar] [CrossRef]
- Owen, M.J.; O’Donovan, M.C. Schizophrenia and the Neurodevelopmental Continuum: Evidence from Genomics. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2017, 16, 227–235. [Google Scholar] [CrossRef]
- Marshall, C.R.; Howrigan, D.P.; Merico, D.; Thiruvahindrapuram, B.; Wu, W.; Greer, D.S.; Antaki, D.; Shetty, A.; Holmans, P.A. CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium. Contribution of Copy Number Variants to Schizophrenia from a Genome-Wide Study of 41,321 Subjects. Nat. Genet. 2017, 49, 27–35. [Google Scholar] [CrossRef]
- Cleynen, I.; Engchuan, W.; Hestand, M.S.; Heung, T.; Holleman, A.M.; Johnston, H.R.; Monfeuga, T.; McDonald-McGinn, D.M.; Gur, R.E.; Morrow, B.E.; et al. International 22q11.2DS Brain and Behavior Consortium. Genetic Contributors to Risk of Schizophrenia in the Presence of a 22q11.2 Deletion. Mol. Psychiatry 2021, 26, 4496–4510. [Google Scholar] [CrossRef]
- Komatsu, H.; Fukuchi, M.; Habata, Y. Potential utility of Biased GPCR signaling for treatment of psychiatric disorders. Int. J. Mol. Sci. 2019, 20, 3207. [Google Scholar] [CrossRef]
- Boczek, T.; Mackiewicz, J.; Sobolczyk, M.; Wawrzyniak, J.; Lisek, M.; Ferenc, B.; Guo, F.; Zylinska, L. The role of G Protein-Coupled Receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines. Cells 2021, 10, 1228. [Google Scholar] [CrossRef]
- Morozova, A.; Zorkina, T.; Pavlov, K.; Pavlova, O.; Storozheva, Z.; Zubkov, E.; Zakharova, N.; Karpenko, O.; Reznik, A.; Chekjonin, V.; et al. Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with clinical features of youth-onset schizophrenia. Front. Psuchiatry 2019, 10, 830. [Google Scholar] [CrossRef]
- Maj, C.; Minelli, A.; Giacopuzzi, E.; Sacchetti, E.; Gennarelli, M. The role of metabotropic glutamate receptor genes in schizophrenia. Curr. Neurophamacol. 2016, 14, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.M.; Mancuso, S.G.; Mostaid, M.S.; Liu, C.; Pantelis, C.; Everall, I.P.; Bousman, C.A. Meta-analysis support GWAS-implicated link between GRM3 and schizophrenia risk. Transl. Psychiatry 2017, 7, e1196. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhang, W.; Lv, Y.; Cai, S.; Xu, H.; Wang, J.; Huang, L. Effects of the 5-HT2A and DRD3 genotypes on cortical morphology and functional connectivity density in drug-naïve first episode schizophrenia. Schizophr. Res. 2020, 216, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zakharyan, R.; Ghazaryan, H.; Kocourkova, L.; Chavushyan, A.; Mkrtchyan, A.; Zizkova, V.; Arakelyan, A.; Martin, P. Association of genetic variations of dopamine and serotonin in schizophrenia. Arch. Med. Res. 2020, 51, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, J.; Li, M.; Zhu, W.; Zhou, W.; Shen, L.; Wu, H.; Zhang, N.; Wu, S.; Fu, C.; et al. Different responses to risperidone treatment in schizophrenia: A multicenter genome-wide association and whole exome sequencing joint study. Transl. Psychiatry 2022, 12, 173. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mim, S.A.; Islam, M.R.; Sultana, N.; Ahmed, M.; Kamal, M.A. Role of G-proteins and GPCR-mediated signaling in neuropathophysiology. CSN. Neurol. Disord. Drug. Targets 2022, preprint. [Google Scholar] [CrossRef]
- Smigielski, L.; Jagannath, V.; Rössler, W.; Walitza, S.; Grünblatt, E. Epigenetic Mechanisms in Schizophrenia and Other Psychotic Disorders: A Systematic Review of Empirical Human Findings. Mol. Psychiatry 2020, 25, 1718–1748. [Google Scholar] [CrossRef]
- Radua, J.; Ramella-Cravaro, V.; Ioannidis, J.P.A.; Reichenberg, A.; Phiphopthatsanee, N.; Amir, T.; Yenn Thoo, H.; Oliver, D.; Davies, C.; Morgan, C.; et al. What Causes Psychosis? An Umbrella Review of Risk and Protective Factors. World Psychiatry 2018, 17, 49–66. [Google Scholar] [CrossRef]
- van Erp, T.G.M.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.; Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; et al. Subcortical Brain Volume Abnormalities in 2028 Individuals with Schizophrenia and 2540 Healthy Controls via the ENIGMA Consortium. Mol. Psychiatry 2016, 21, 547–553. [Google Scholar] [CrossRef]
- van Erp, T.G.M.; Walton, E.; Hibar, D.P.; Schmaal, L.; Jiang, W.; Glahn, D.C.; Pearlson, G.D.; Yao, N.; Fukunaga, M.; Hashimoto, R.; et al. Cortical Brain Abnormalities in 4474 Individuals with Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 2018, 84, 644–654. [Google Scholar] [CrossRef]
- Keshavan, M.S.; Collin, G.; Guimond, S.; Kelly, S.; Prasad, K.M.; Lizano, P. Neuroimaging in Schizophrenia. Neuroimaging Clin. N. Am. 2020, 30, 73–83. [Google Scholar] [CrossRef]
- Wheeler, A.L.; Voineskos, A.N. A Review of Structural Neuroimaging in Schizophrenia: From Connectivity to Connectomics. Front. Hum. Neurosci. 2014, 8, 653. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.; Mann, L.; Laws, K.R.; Stephenson, C.M.E.; Nimmo-Smith, I.; McKenna, P.J. Hypofrontality in Schizophrenia: A Meta-Analysis of Functional Imaging Studies. Acta Psychiatr. Scand. 2004, 110, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Glahn, D.C.; Ragland, J.D.; Abramoff, A.; Barrett, J.; Laird, A.R.; Bearden, C.E.; Velligan, D.I. Beyond Hypofrontality: A Quantitative Meta-Analysis of Functional Neuroimaging Studies of Working Memory in Schizophrenia. Hum. Brain Mapp. 2005, 25, 60–69. [Google Scholar] [CrossRef]
- Kühn, S.; Gallinat, J. Resting-State Brain Activity in Schizophrenia and Major Depression: A Quantitative Meta-Analysis. Schizophr. Bull. 2013, 39, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, T.M.; Machado-de-Sousa, J.P.; Crippa, J.A.S.; Guimarães, M.R.C.; Hallak, J.E.C. Arterial Spin Labeling in Patients with Schizophrenia: A Systematic Review. Arch. Clin. Psychiatry 2016, 43, 151–156. [Google Scholar] [CrossRef]
- Laruelle, M.; Abi-Dargham, A.; Gil, R.; Kegeles, L.; Innis, R. Increased Dopamine Transmission in Schizophrenia: Relationship to Illness Phases. Biol. Psychiatry 1999, 46, 56–72. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Rodenhiser, J.; Printz, D.; Zea-Ponce, Y.; Gil, R.; Kegeles, L.S.; Weiss, R.; Cooper, T.B.; Mann, J.J.; Van Heertum, R.L.; et al. Increased Baseline Occupancy of D2 Receptors by Dopamine in Schizophrenia. Proc. Natl. Acad. Sci. USA 2000, 97, 8104–8109. [Google Scholar] [CrossRef]
- Poels, E.M.P.; Kegeles, L.S.; Kantrowitz, J.T.; Slifstein, M.; Javitt, D.C.; Lieberman, J.A.; Abi-Dargham, A.; Girgis, R.R. Imaging Glutamate in Schizophrenia: Review of Findings and Implications for Drug Discovery. Mol. Psychiatry 2014, 19, 20–29. [Google Scholar] [CrossRef]
- Nikolaus, S.; Müller, H.W.; Hautzel, H. Different Patterns of 5-HT Receptor and Transporter Dysfunction in Neuropsychiatric Disorders—A Comparative Analysis of in Vivo Imaging Findings. Rev. Neurosci. 2016, 27, 27–59. [Google Scholar] [CrossRef]
- Egerton, A.; Modinos, G.; Ferrera, D.; McGuire, P. Neuroimaging Studies of GABA in Schizophrenia: A Systematic Review with Meta-Analysis. Transl. Psychiatry 2017, 7, e1147. [Google Scholar] [CrossRef] [Green Version]
- Cannon, T.D.; Chung, Y.; He, G.; Sun, D.; Jacobson, A.; van Erp, T.G.M.; McEwen, S.; Addington, J.; Bearden, C.E.; Cadenhead, K.; et al. North American Prodrome Longitudinal Study Consortium. Progressive Reduction in Cortical Thickness as Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk. Biol. Psychiatry 2015, 77, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Cappucciati, M.; Rutigliano, G.; Schultze-Lutter, F.; Bonoldi, I.; Borgwardt, S.; Riecher-Rössler, A.; Addington, J.; Perkins, D.; Woods, S.W.; et al. At Risk or Not at Risk? A Meta-Analysis of the Prognostic Accuracy of Psychometric Interviews for Psychosis Prediction. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2015, 14, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Koutsouleris, N.; Meisenzahl, E.M.; Davatzikos, C.; Bottlender, R.; Frodl, T.; Scheuerecker, J.; Schmitt, G.; Zetzsche, T.; Decker, P.; Reiser, M.; et al. Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition. Arch. Gen. Psychiatry 2009, 66, 700–712. [Google Scholar] [CrossRef]
- Mechelli, A.; Riecher-Rössler, A.; Meisenzahl, E.M.; Tognin, S.; Wood, S.J.; Borgwardt, S.J.; Koutsouleris, N.; Yung, A.R.; Stone, J.M. Neuroanatomical Abnormalities That Predate the Onset of Psychosis: A Multicenter Study. Arch. Gen. Psychiatry 2011, 68, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Koutsouleris, N.; Riecher-Rössler, A.; Meisenzahl, E.M.; Smieskova, R.; Studerus, E.; Kambeitz-Ilankovic, L.; von Saldern, S.; Cabral, C.; Reiser, M.; Falkai, P.; et al. Detecting the Psychosis Prodrome across High-Risk Populations Using Neuroanatomical Biomarkers. Schizophr. Bull. 2015, 41, 471–482. [Google Scholar] [CrossRef]
- Cao, H.; Chén, O.Y.; Chung, Y.; Forsyth, J.K.; McEwen, S.C.; Gee, D.G.; Bearden, C.E.; Addington, J.; Goodyear, B.; Cadenhead, K.S.; et al. Cerebello-Thalamo-Cortical Hyperconnectivity as a State-Independent Functional Neural Signature for Psychosis Prediction and Characterization. Nat. Commun. 2018, 9, 3836. [Google Scholar] [CrossRef]
- Collin, G.; Seidman, L.J.; Keshavan, M.S.; Stone, W.S.; Qi, Z.; Zhang, T.; Tang, Y.; Li, H.; Anteraper, S.A.; Niznikiewicz, M.A.; et al. Functional Connectome Organization Predicts Conversion to Psychosis in Clinical High-Risk Youth from the SHARP Program. Mol. Psychiatry 2020, 25, 2431–2440. [Google Scholar] [CrossRef]
- Demjaha, A.; Murray, R.M.; McGuire, P.K.; Kapur, S.; Howes, O.D. Dopamine Synthesis Capacity in Patients with Treatment-Resistant Schizophrenia. Am. J. Psychiatry 2012, 169, 1203–1210. [Google Scholar] [CrossRef]
- Guimond, S.; Béland, S.; Lepage, M. Strategy for Semantic Association Memory (SESAME) Training: Effects on Brain Functioning in Schizophrenia. Psychiatry Res. Neuroimag. 2018, 271, 50–58. [Google Scholar] [CrossRef]
- Cui, L.B.; Cai, M.; Wang, X.R.; Zhu, Y.Q.; Wang, L.X.; Xi, Y.B.; Wang, H.N.; Zhu, X.; Yin, H. Prediction of Early Response to Overall Treatment for Schizophrenia: A Functional Magnetic Resonance Imaging Study. Brain Behav. 2019, 9, e01211. [Google Scholar] [CrossRef] [Green Version]
- Jauhar, S.; Veronese, M.; Nour, M.M.; Rogdaki, M.; Hathway, P.; Turkheimer, F.E.; Stone, J.; Egerton, A.; McGuire, P.; Kapur, S.; et al. Determinants of Treatment Response in First-Episode Psychosis: An 18F-DOPA PET Study. Mol. Psychiatry 2019, 24, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Tarcijonas, G.; Sarpal, D.K. Neuroimaging Markers of Antipsychotic Treatment Response in Schizophrenia: An Overview of Magnetic Resonance Imaging Studies. Neurobiol. Dis. 2019, 131, 104209. [Google Scholar] [CrossRef] [PubMed]
- Pence, A.Y.; Pries, L.K.; Ferrara, M.; Rutten, B.P.F.; van Os, J.; Guloksuz, S. Gender Differences in the Association between Environment and Psychosis. Schizophr. Res. 2022, 243, 120–137. [Google Scholar] [CrossRef] [PubMed]
- Woolway, G.E.; Smart, S.E.; Lynham, A.J.; Lloyd, J.L.; Owen, M.J.; Jones, I.R.; Walters, J.T.R.; Legge, S.E. Schizophrenia Polygenic Risk and Experiences of Childhood Adversity: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2022, 1, sbac049. [Google Scholar] [CrossRef] [PubMed]
- Large, M.; Mullin, K.; Gupta, P.; Harris, A.; Nielssen, O. Systematic Meta-Analysis of Outcomes Associated with Psychosis and Co-Morbid Substance Use. Aust. N. Z. J. Psychiatry 2014, 48, 418–432. [Google Scholar] [CrossRef]
- Schoeler, T.; Petros, N.; Di Forti, M.; Pingault, J.B.; Klamerus, E.; Foglia, E.; Small, A.; Murray, R.; Bhattacharyya, S. Association Between Continued Cannabis Use and Risk of Relapse in First-Episode Psychosis: A Quasi-Experimental Investigation Within an Observational Study. JAMA Psychiatry 2016, 73, 1173–1179. [Google Scholar] [CrossRef]
- Di Forti, M.; Marconi, A.; Carra, E.; Fraietta, S.; Trotta, A.; Bonomo, M.; Bianconi, F.; Gardner-Sood, P.; O’Connor, J.; Russo, M.; et al. Proportion of Patients in South London with First-Episode Psychosis Attributable to Use of High Potency Cannabis: A Case-Control Study. Lancet Psychiatry 2015, 2, 233–238. [Google Scholar] [CrossRef]
- Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; et al. EU-GEI WP2 Group. The Contribution of Cannabis Use to Variation in the Incidence of Psychotic Disorder across Europe (EU-GEI): A Multicentre Case-Control Study. Lancet Psychiatry 2019, 6, 427–436. [Google Scholar] [CrossRef]
- Ringen, P.A.; Nesvåg, R.; Helle, S.; Lagerberg, T.V.; Lange, E.H.; Løberg, E.M.; Agartz, I.; Andreassen, O.A.; Melle, I. Premorbid Cannabis Use Is Associated with More Symptoms and Poorer Functioning in Schizophrenia Spectrum Disorder. Psychol. Med. 2016, 46, 3127–3136. [Google Scholar] [CrossRef]
- Seddon, J.L.; Birchwood, M.; Copello, A.; Everard, L.; Jones, P.B.; Fowler, D.; Amos, T.; Freemantle, N.; Sharma, V.; Marshall, M.; et al. Cannabis Use Is Associated with Increased Psychotic Symptoms and Poorer Psychosocial Functioning in First-Episode Psychosis: A Report From the UK National EDEN Study. Schizophr. Bull. 2016, 42, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Quattrone, D.; Di Forti, M.; Gayer-Anderson, C.; Ferraro, L.; Jongsma, H.E.; Tripoli, G.; La Cascia, C.; La Barbera, D.; Tarricone, I.; Berardi, D.; et al. Transdiagnostic Dimensions of Psychopathology at First Episode Psychosis: Findings from the Multinational EU-GEI Study. Psychol. Med. 2019, 49, 1378–1391. [Google Scholar] [CrossRef] [PubMed]
- Guloksuz, S.; Rutten, B.P.F.; Pries, L.K.; Ten Have, M.; de Graaf, R.; van Dorsselaer, S.; Klingenberg, B.; van Os, J.; Ioannidis, J.P.A.; European Network of National Schizophrenia Networks Studying Gene-Environment Interactions Work Package 6 (EU-GEI WP6) Group. The Complexities of Evaluating the Exposome in Psychiatry: A Data-Driven Illustration of Challenges and Some Propositions for Amendments. Schizophr. Bull. 2018, 44, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Guloksuz, S.; van Os, J.; Rutten, B.P.F. The Exposome Paradigm and the Complexities of Environmental Research in Psychiatry. JAMA Psychiatry 2018, 75, 985–986. [Google Scholar] [CrossRef] [PubMed]
- Pries, L.K.; Erzin, G.; Rutten, B.P.F.; van Os, J.; Guloksuz, S. Estimating Aggregate Environmental Risk Score in Psychiatry: The Exposome Score for Schizophrenia. Front. Psychiatry 2021, 12, 671334. [Google Scholar] [CrossRef]
- Erzin, G.; Pries, L.K.; van Os, J.; Fusar-Poli, L.; Delespaul, P.; Kenis, G.; Luykx, J.J.; Lin, B.D.; Richards, A.L.; Akdede, B.; et al. Examining the Association between Exposome Score for Schizophrenia and Functioning in Schizophrenia, Siblings, and Healthy Controls: Results from the EUGEI Study. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2021, 64, e25. [Google Scholar] [CrossRef]
- Pries, L.K.; Guloksuz, S.; Ten Have, M.; de Graaf, R.; van Dorsselaer, S.; Gunther, N.; Rauschenberg, C.; Reininghaus, U.; Radhakrishnan, R.; Bak, M.; et al. Evidence That Environmental and Familial Risks for Psychosis Additively Impact a Multidimensional Subthreshold Psychosis Syndrome. Schizophr. Bull. 2018, 44, 710–719. [Google Scholar] [CrossRef]
- Barzilay, R.; Calkins, M.E.; Moore, T.M.; Wolf, D.H.; Satterthwaite, T.D.; Cobb Scott, J.; Jones, J.D.; Benton, T.D.; Gur, R.C.; Gur, R.E. Association between Traumatic Stress Load, Psychopathology, and Cognition in the Philadelphia Neurodevelopmental Cohort. Psychol. Med. 2019, 49, 325–334. [Google Scholar] [CrossRef]
- Gaebel, W.; Falkai, P.; Hasan, A. The Revised German Evidence- and Consensus-Based Schizophrenia Guideline. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 117–119. [Google Scholar] [CrossRef]
- Hasan, A.; Falkai, P.; Wobrock, T.; Lieberman, J.; Glenthoj, B.; Gattaz, W.F.; Thibaut, F.; Möller, H.J.; WFSBP Task force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, Part 2: Update 2012 on the Long-Term Treatment of Schizophrenia and Management of Antipsychotic-Induced Side Effects. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2013, 14, 2–44. [Google Scholar] [CrossRef]
- Remington, G.; Addington, D.; Honer, W.; Ismail, Z.; Raedler, T.; Teehan, M. Guidelines for the Pharmacotherapy of Schizophrenia in Adults. Can. J. Psychiatry Rev. Can. Psychiatr. 2017, 62, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Keepers, G.A.; Fochtmann, L.J.; Anzia, J.M.; Benjamin, S.; Lyness, J.M.; Mojtabai, R.; Servis, M.; Walaszek, A.; Buckley, P.; Lenzenweger, M.F.; et al. The American Psychiatric Association Practice Guideline for the Treatment of Patients with Schizophrenia. Am. J. Psychiatry 2020, 177, 868–872. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence: Guidelines. Psychosis and Schizophrenia in Adults: Prevention and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2014. [Google Scholar]
- Hasan, A.; Falkai, P.; Wobrock, T.; Lieberman, J.; Glenthoj, B.; Gattaz, W.F.; Thibaut, F.; Möller, H.J.; World Federation of Societies of Biological Psychiatry (WFSBP) Task Force on Treatment Guidelines for Schizophrenia. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, Part 1: Update 2012 on the Acute Treatment of Schizophrenia and the Management of Treatment Resistance. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2012, 13, 318–378. [Google Scholar] [CrossRef] [PubMed]
- Verdoux, H.; Tournier, M.; Bégaud, B. Antipsychotic Prescribing Trends: A Review of Pharmaco-Epidemiological Studies. Acta Psychiatr. Scand. 2010, 121, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Taipale, H.; Tanskanen, A.; Mehtälä, J.; Vattulainen, P.; Correll, C.U.; Tiihonen, J. 20-Year Follow-up Study of Physical Morbidity and Mortality in Relationship to Antipsychotic Treatment in a Nationwide Cohort of 62,250 Patients with Schizophrenia (FIN20). World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ostuzzi, G.; Vita, G.; Bertolini, F.; Tedeschi, F.; De Luca, B.; Gastaldon, C.; Nosé, M.; Papola, D.; Purgato, M.; Del Giovane, C.; et al. Continuing, Reducing, Switching, or Stopping Antipsychotics in Individuals with Schizophrenia-Spectrum Disorders Who Are Clinically Stable: A Systematic Review and Network Meta-Analysis. Lancet Psychiatry 2022, 9, 614–624. [Google Scholar] [CrossRef]
- Huhn, M.; Arndt, T.; Schneider-Thoma, J.; Leucht, S. Effects of Antipsychotics on Heart Rate in Treatment of Schizophrenia: A Systematic Review and Meta-Analysis. Ther. Adv. Psychopharmacol. 2022, 12, 20451253221097260. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Krystal, J.H.; Howes, O.D. Dopamine and Glutamate in Schizophrenia: Biology, Symptoms and Treatment. World Psychiatry 2020, 19, 15–33. [Google Scholar] [CrossRef]
- Llorca, P.M.; Nuss, P.; Fakra, É.; Alamome, I.; Drapier, D.; El Hage, W.; Jardri, R.; Mouchabac, S.; Rabbani, M.; Simon, N.; et al. Place of the Partial Dopamine Receptor Agonist Aripiprazole in the Management of Schizophrenia in Adults: A Delphi Consensus Study. BMC Psychiatry 2022, 22, 364. [Google Scholar] [CrossRef]
- Osugo, M.; Whitehurst, T.; Shatalina, E.; Townsend, L.; O’Brien, O.; Mak, T.L.A.; McCutcheon, R.; Howes, O. Dopamine Partial Agonists and Prodopaminergic Drugs for Schizophrenia: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neurosci. Biobehav. Rev. 2022, 135, 104568. [Google Scholar] [CrossRef]
- Kumar, V.; Manchegowda, S.; Jacob, A.; Rao, N.P. Glutamate Metabolites in Treatment Resistant Schizophrenia: A Meta-Analysis and Systematic Review of 1H-MRS Studies. Psychiatry Res. Neuroimag. 2020, 300, 111080. [Google Scholar] [CrossRef]
- Kiemes, A.; Davies, C.; Kempton, M.J.; Lukow, P.B.; Bennallick, C.; Stone, J.M.; Modinos, G. GABA, Glutamate and Neural Activity: A Systematic Review with Meta-Analysis of Multimodal 1H-MRS-FMRI Studies. Front. Psychiatry 2021, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Bighelli, I.; Salanti, G.; Huhn, M.; Schneider-Thoma, J.; Krause, M.; Reitmeir, C.; Wallis, S.; Schwermann, F.; Pitschel-Walz, G.; Barbui, C.; et al. Psychological Interventions to Reduce Positive Symptoms in Schizophrenia: Systematic Review and Network Meta-Analysis. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2018, 17, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Barnicot, K.; Michael, C.; Trione, E.; Lang, S.; Saunders, T.; Sharp, M.; Crawford, M.J. Psychological Interventions for Acute Psychiatric Inpatients with Schizophrenia-Spectrum Disorders: A Systematic Review and Meta-Analysis. Clin. Psychol. Rev. 2020, 82, 101929. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, A.; Lal, S.; Dark, F.; De Monte, V.; Kisely, S.; Siskind, D. CBTp for People with Treatment Refractory Schizophrenia on Clozapine: A Systematic Review and Meta-Analysis. J. Ment. Health Abingdon Engl. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mc Glanaghy, E.; Turner, D.; Davis, G.A.; Sharpe, H.; Dougall, N.; Morris, P.; Prentice, W.; Hutton, P.A. Network Meta-Analysis of Psychological Interventions for Schizophrenia and Psychosis: Impact on Symptoms. Schizophr. Res. 2021, 228, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Gastaldon, C.; Mosler, F.; Toner, S.; Tedeschi, F.; Bird, V.J.; Barbui, C.; Priebe, S. Are Trials of Psychological and Psychosocial Interventions for Schizophrenia and Psychosis Included in the NICE Guidelines Pragmatic? A Systematic Review. PLoS ONE 2019, 14, e0222891. [Google Scholar] [CrossRef]
- Nucifora, F.C.; Woznica, E.; Lee, B.J.; Cascella, N.; Sawa, A. Treatment Resistant Schizophrenia: Clinical, Biological, and Therapeutic Perspectives. Neurobiol. Dis. 2019, 131, 104257. [Google Scholar] [CrossRef]
- Corripio, I.; Roldán, A.; Sarró, S.; McKenna, P.J.; Alonso-Solís, A.; Rabella, M.; Díaz, A.; Puigdemont, D.; Pérez-Solà, V.; Álvarez, E.; et al. Deep Brain Stimulation in Treatment Resistant Schizophrenia: A Pilot Randomized Cross-over Clinical Trial. EBioMedicine 2020, 51, 102568. [Google Scholar] [CrossRef]
- Sciortino, D.; Pigoni, A.; Delvecchio, G.; Maggioni, E.; Schiena, G.; Brambilla, P. Role of RTMS in the Treatment of Cognitive Impairments in Bipolar Disorder and Schizophrenia: A Review of Randomized Controlled Trials. J. Affect. Disord. 2021, 280 Pt A, 148–155. [Google Scholar] [CrossRef]
- Glenthøj, L.B.; Mariegaard, L.S.; Fagerlund, B.; Jepsen, J.R.M.; Kristensen, T.D.; Wenneberg, C.; Krakauer, K.; Medalia, A.; Roberts, D.L.; Hjorthøj, C.; et al. Effectiveness of Cognitive Remediation in the Ultra-High Risk State for Psychosis. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 401–402. [Google Scholar] [CrossRef]
- Lysaker, P.H.; Hasson-Ohayon, I. Metacognition in Psychosis: A Renewed Path to Understanding of Core Disturbances and Recovery-oriented Treatment. World Psychiatry 2021, 20, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Phelan, S.; Sigala, N. The Effect of Treatment on Insight in Psychotic Disorders—A Systematic Review and Meta-Analysis. Schizophr. Res. 2022, 244, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.H.; Bogie, B.J.M.; Rahman, T.T.; Thérond, A.; Matheson, H.; Guimond, S. Feasibility and Efficacy of Virtual Reality Interventions to Improve Psychosocial Functioning in Psychosis: Systematic Review. JMIR Ment. Health 2022, 9, e28502. [Google Scholar] [CrossRef]
- Rodolico, A.; Bighelli, I.; Avanzato, C.; Concerto, C.; Cutrufelli, P.; Mineo, L.; Schneider-Thoma, J.; Siafis, S.; Signorelli, M.S.; Wu, H.; et al. Family Interventions for Relapse Prevention in Schizophrenia: A Systematic Review and Network Meta-Analysis. Lancet Psychiatry 2022, 9, 211–221. [Google Scholar] [CrossRef]
- Bond, G.R.; Drake, R.E.; Becker, D.R. An Update on Individual Placement and Support. World Psychiatry 2020, 19, 390–391. [Google Scholar] [CrossRef]
- Hellström, L.; Pedersen, P.; Christensen, T.N.; Wallstroem, I.G.; Bojesen, A.B.; Stenager, E.; Bejerholm, U.; van Busschbach, J.; Michon, H.; Mueser, K.T.; et al. Vocational Outcomes of the Individual Placement and Support Model in Subgroups of Diagnoses, Substance Abuse, and Forensic Conditions: A Systematic Review and Analysis of Pooled Original Data. J. Occup. Rehabil. 2021, 31, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Frederick, D.E.; VanderWeele, T.J. Supported Employment: Meta-Analysis and Review of Randomized Controlled Trials of Individual Placement and Support. PLoS ONE 2019, 14, e0212208. [Google Scholar] [CrossRef]
- Brinchmann, B.; Widding-Havneraas, T.; Modini, M.; Rinaldi, M.; Moe, C.F.; McDaid, D.; Park, A.L.; Killackey, E.; Harvey, S.B.; Mykletun, A.A. Meta-Regression of the Impact of Policy on the Efficacy of Individual Placement and Support. Acta Psychiatry Scand. 2020, 141, 206–220. [Google Scholar] [CrossRef]
- Baller, J.B.; Blyler, C.R.; Bronnikov, S.; Xie, H.; Bond, G.R.; Filion, K.; Hale, T. Long-Term Follow-Up of a Randomized Trial of Supported Employment for SSDI Beneficiaries with Mental Illness. Psychiatry Serv. 2020, 71, 243–249. [Google Scholar] [CrossRef]
- Feldman, R. What Is Resilience: An Affiliative Neuroscience Approach. World Psychiatry 2020, 19, 132–150. [Google Scholar] [CrossRef]
- Harvey, P.D.; Strassing, M. Predicting the Severity of Everyday Functional Disability in People with Schizophrenia: Cognitive Deficits, Functional Capacity, Symptoms, and Health Status. World Psychiatry 2012, 11, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Green, M.F.; Horan, W.P.; Lee, J. Nonsocial and Social Cognition in Schizophrenia: Current Evidence and Future Directions. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2019, 18, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Rucci, P.; Mucci, A.; Rossi, A.; Rocca, P.; Bertolino, A.; Aguglia, E.; Amore, M.; Bellomo, A.; Bozzatello, P.; et al. Italian Network for Research on Psychoses. The Interplay among Psychopathology, Personal Resources, Context-Related Factors and Real-Life Functioning in Schizophrenia: Stability in Relationships after 4 Years and Differences in Network Structure between Recovered and Non-Recovered Patients. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2020, 19, 81–91. [Google Scholar] [CrossRef]
- Jablensky, A. Psychiatric Classifications: Validity and Utility. World Psychiatry 2016, 15, 26–31. [Google Scholar] [CrossRef]
- Kendler, K.S. The Nature of Psychiatric Disorders. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2016, 15, 5–12. [Google Scholar] [CrossRef]
- Comparelli, A.; Raballo, A.; Pompili, M.; Galderisi, S. Beyond the Transnosographic Emphasis on Psychosis: Nosological Perspectives on Schizophrenia and Its Prevention. Front. Psychiatry 2019, 10, 666. [Google Scholar] [CrossRef]
- Martínez-Alés, G.; Susser, E.S. A Useful Construct to Improve the Lives of People with Schizophrenia. Schizophr. Res. 2022, 242, 91–93. [Google Scholar] [CrossRef]
- Maruta, T.; Volpe, U.; Gaebel, W.; Matsumoto, C.; Iimori, M. Should Schizophrenia Still Be Named So? Schizophr. Res. 2014, 152, 305–306. [Google Scholar] [CrossRef]
- Nasrallah, H.A. To Change the Label of Schizophrenia, First Revise the Construct. Schizophr. Res. 2021, 238, 201–202. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Mizuno, M.; Ojio, Y.; Sawada, U.; Matsunaga, A.; Ando, S.; Koike, S. Associations between Renaming Schizophrenia and Stigma-Related Outcomes: A Systematic Review. Psychiatry Clin. Neurosci. 2017, 71, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Mesholam-Gately, R.I.; Varca, N.; Spitzer, C.; Parrish, E.M.; Hogan, V.; Behnke, S.H.; Larson, L.; Rosa-Baez, C.; Schwirian, N.; Stromeyer, C.; et al. Are We Ready for a Name Change for Schizophrenia? A Survey of Multiple Stakeholders. Schizophr. Res. 2021, 238, 152–160. [Google Scholar] [CrossRef]
- Chiu, H.F.K.; Sato, M.; Kua, E.H.; Lee, M.S.; Yu, X.; Ouyang, W.C.; Yang, Y.K.; Sartorius, N. Renaming Dementia—An East Asian Perspective. Int. Psychogeriatr. 2014, 26, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Sato, M. Renaming Schizophrenia: A Japanese Perspective. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 2006, 5, 53–55. [Google Scholar]
- Cho, J.W.; Jang, E.Y.; Woo, H.J.; Park, Y.C.; Kim, S.H.; Hong, K.S.; Lee, Y.S.; Kwon, J.S. Effects of Renaming Schizophrenia in Korea: From “Split-Mind Disorder” to “Attunement Disorder”. Psychiatry Investig. 2018, 15, 656–662. [Google Scholar] [CrossRef]
- Koike, S.; Yamaguchi, S.; Ohta, K.; Ojio, Y.; Watanabe, K.I.; Ando, S. Mental-Health-Related Stigma among Japanese Children and Their Parents and Impact of Renaming of Schizophrenia. Psychiatry Clin. Neurosci. 2017, 71, 170–179. [Google Scholar] [CrossRef]
- Lieberman, J.A.; First, M.B. Renaming Schizophrenia. BMJ 2007, 334, 108. [Google Scholar] [CrossRef] [PubMed]
- Lasalvia, A.; Penta, E.; Sartorius, N.; Henderson, S. Should the Label “Schizophrenia” Be Abandoned? Schizophr. Res. 2015, 162, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Gaebel, W.; Kerst, A. The Debate about Renaming Schizophrenia: A New Name Would Not Resolve the Stigma. Epidemiol. Psychiatry Sci. 2018, 28, 258–261. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsolini, L.; Pompili, S.; Volpe, U. Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects. J. Clin. Med. 2022, 11, 5040. https://doi.org/10.3390/jcm11175040
Orsolini L, Pompili S, Volpe U. Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects. Journal of Clinical Medicine. 2022; 11(17):5040. https://doi.org/10.3390/jcm11175040
Chicago/Turabian StyleOrsolini, Laura, Simone Pompili, and Umberto Volpe. 2022. "Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects" Journal of Clinical Medicine 11, no. 17: 5040. https://doi.org/10.3390/jcm11175040
APA StyleOrsolini, L., Pompili, S., & Volpe, U. (2022). Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects. Journal of Clinical Medicine, 11(17), 5040. https://doi.org/10.3390/jcm11175040