The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Auditory Stimulation
2.2. Subjects and Tasks
2.3. Electroencephalography Recordings
2.4. Canonical Correlation Analysis and Selection Pertinent
2.5. Analysis of ASSR Source Activities Using Minimum Norm Estimation
2.6. Full Informational Spectral Analysis of Source Activities Using Holo-Hilbert Spectral Analysis (HHSA)
- Perform the first EMD to decompose the ASSR source activities into IMFFMs, and calculate instantaneous frequencies ω.
- Take the absolute values of the IMFFMs.
- Generate upper and lower envelopes for the absolute values of the IMFFMs by connecting the local extrema using spline interpolation.
- Perform the second EMD to the upper envelopes of the IMFFMs to obtain IMFAMs and calculate instantaneous frequencies Ω for IMFAMs.
- Arrange instantaneous amplitudes and instantaneous frequencies ωj(t) and Ωj,m(t) into vectors to form a three-dimensional AM-FM matrix.
- Construct the Holo-Hilbert Spectrum (HHS) by integrating the three-dimensional AM-FM matrices from all IMFFMs and IMFAMs.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, C.A.; Krishnan, G.P.; Vohs, J.L.; Ahn, W.-Y.; Hetrick, W.P.; Morzorati, S.L.; O’Donnell, B.F. Steady state responses: Electrophysiological assessment of sensory function in schizophrenia. Schizophr. Bull. 2009, 35, 1065–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vialatte, F.-B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-L.; Yeh, C.-L.; Cheng, J.Y.-S.; Yang, C.-Y.; Lan, G.-Y. An SSVEP-based BCI using high duty-cycle visual flicker. IEEE Trans. Biomed. Eng. 2011, 58, 3350–3359. [Google Scholar] [CrossRef] [PubMed]
- Vergeer, M.; Mesik, J.; Baek, Y.; Wilmerding, K.; Engel, S.A. Orientation-selective contrast adaptation measured with SSVEP. J. Vis. 2018, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Molina, G.G.; Mihajlović, V.; Aarts, R.M. Phase synchrony analysis for SSVEP-based BCIs. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; IEEE: Piscataway Township, NJ, USA, 2010; Volume 2, pp. V2-329–V322-333. [Google Scholar]
- Kelly, S.P.; Lalor, E.C.; Reilly, R.B.; Foxe, J.J. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 172–178. [Google Scholar] [CrossRef]
- Ross, B.; Picton, T.; Herdman, A.; Pantev, C. The effect of attention on the auditory steady-state response. Neurol. Clin. Neurophysiol. 2004, 2004, 22. [Google Scholar]
- Sharon, O.; Nir, Y. Attenuated fast steady-state visual evoked potentials during human sleep. Cereb. Cortex 2018, 28, 1297–1311. [Google Scholar] [CrossRef]
- Xu, P.; Tian, C.; Zhang, Y.; Jing, W.; Wang, Z.; Liu, T.; Hu, J.; Tian, Y.; Xia, Y.; Yao, D. Cortical network properties revealed by SSVEP in anesthetized rats. Sci. Rep. 2013, 3, 2496. [Google Scholar] [CrossRef] [Green Version]
- Palaniappan, R.; Mouli, S.; Balli, T.; McLoughlin, I. On the mental fatigue analysis of SSVEP entrainment. In Proceedings of the 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Malaysia, 24–26 July 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 19–24. [Google Scholar]
- Xie, J.; Xu, G.; Luo, A.; Li, M.; Zhang, S.; Han, C.; Yan, W. The role of visual noise in influencing mental load and fatigue in a steady-state motion visual evoked potential-based brain-computer interface. Sensors 2017, 17, 1873. [Google Scholar] [CrossRef]
- Xie, J.; Xu, G.; Wang, J.; Li, M.; Han, C.; Jia, Y. Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks: A comparison of periodic flickering and motion-reversal based visual attention. PLoS ONE 2016, 11, e0163426. [Google Scholar] [CrossRef]
- Lee, P.-L.; Lee, W.-K.; Chang, H.-H.; Hsu, H.-T.; Yeh, T.-K. Real-Time Cognitive Load Measurement in Classroom Environment using a Dry-Electrode EEG system. Int. J. Clin. Med. Bioeng. 2021, 1, 46–52. [Google Scholar] [CrossRef]
- Cao, T.; Wan, F.; Wong, C.M.; da Cruz, J.N.; Hu, Y. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces. Biomed. Eng. Online 2014, 13, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopour, B.A.; Tavassoli, A.; Fried, I.; Ringach, D.L. Coding of information in the phase of local field potentials within human medial temporal lobe. Neuron 2013, 79, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Kisley, M.A.; Cornwell, Z.M. Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation. Clin. Neurophysiol. 2006, 117, 2549–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borst, A.; Theunissen, F.E. Information theory and neural coding. Nat. Neurosci. 1999, 2, 947–957. [Google Scholar] [CrossRef]
- Zhong, Z.; Henry, K.S.; Heinz, M.G. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas. Hear. Res. 2014, 309, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Nasir, S.M.; Darainy, M.; Ostry, D.J. Sensorimotor adaptation changes the neural coding of somatosensory stimuli. J. Neurophysiol. 2013, 109, 2077–2085. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Aghababaiyan, K.; Shah-Mansouri, V.; Maham, B. Capacity and error probability analysis of neuro-spike communication exploiting temporal modulation. IEEE Trans. Commun. 2019, 68, 2078–2089. [Google Scholar] [CrossRef]
- Borji, A.; Itti, L. Optimal attentional modulation of a neural population. Front. Comput. Neurosci. 2014, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Neural mechanisms of emotion regulation: Evidence for two independent prefrontal-subcortical pathways. Neuron 2008, 59, 1037. [Google Scholar] [CrossRef] [Green Version]
- Pfister, J.-P.; Toyoizumi, T.; Barber, D.; Gerstner, W. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput. 2006, 18, 1318–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, Y.; Tanaka, S.; Miyamoto, A.; Naruse, Y. Estimation of human workload from the auditory steady-state response recorded via a wearable electroencephalography system during walking. Front. Hum. Neurosci. 2017, 11, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boettcher, F.A.; Poth, E.A.; Mills, J.H.; Dubno, J.R. The amplitude-modulation following response in young and aged human subjects. Hear. Res. 2001, 153, 32–42. [Google Scholar] [CrossRef]
- Burton, M.J.; Cohen, L.T.; Rickards, F.W.; McNally, K.I.; Clark, G.M. Steady-state evoked potentials to amplitude modulated tones in the monkey. Acta Oto-Laryngol. 1992, 112, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Rees, A.; Green, G.G.; Kay, R.H. Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear. Res. 1986, 23, 123–133. [Google Scholar] [CrossRef]
- John, M.S.; Dimitrijevic, A.; van Roon, P.; Picton, T.W. Multiple auditory steady-state responses to AM and FM stimuli. Audiol. Neurotol. 2001, 6, 12–27. [Google Scholar] [CrossRef]
- Kim, S.; Jang, S.-K.; Kim, D.-W.; Shim, M.; Kim, Y.-W.; Im, C.-H.; Lee, S.-H. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 2019, 22, 101732. [Google Scholar] [CrossRef]
- Rass, O.; Krishnan, G.; Brenner, C.A.; Hetrick, W.P.; Merrill, C.C.; Shekhar, A.; O’Donnell, B.F. Auditory steady state response in bipolar disorder: Relation to clinical state, cognitive performance, medication status, and substance disorders. Bipolar Disord. 2010, 12, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Vanvooren, S.; Poelmans, H.; Hofmann, M.; Luts, H.; Dandache, S.; Ghesquière, P.; Wouters, J. Auditory temporal processing in dyslexia: An ASSR study in young children. Int. J. Psychophysiol. 2012, 85, 358. [Google Scholar] [CrossRef] [Green Version]
- De Siati, R.D.; Rosenzweig, F.; Gersdorff, G.; Gregoire, A.; Rombaux, P.; Deggouj, N. Auditory neuropathy spectrum disorders: From diagnosis to treatment: Literature review and case reports. J. Clin. Med. 2020, 9, 1074. [Google Scholar] [CrossRef]
- Ishida, I.M.; Stapells, D.R. Multiple-ASSR Interactions in Adults with Sensorineural Hearing Loss. Int. J. Otolaryngol. 2012, 2012, 802715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Maanen, A.; Stapells, D.R. Multiple-ASSR thresholds in infants and young children with hearing loss. J. Am. Acad. Audiol. 2010, 21, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Lins, O.G.; Picton, T.W.; Boucher, B.L.; Durieux-Smith, A.; Champagne, S.C.; Moran, L.M.; Perez-Abalo, M.C.; Martin, V.; Savio, G. Frequency-specific audiometry using steady-state responses. Ear Hear. 1996, 17, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Picton, T.W.; Dimitrijevic, A.; Perez-Abalo, M.C.; Van Roon, P. Estimating audiometric thresholds using auditory steady-state responses. J. Am. Acad. Audiol. 2005, 16, 140–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, D.L.; Speidel, D.P.; Petrak, M. Auditory steady-state response (ASSR): A beginner’s guide. Hear. Rev. 2007, 14, 34–37. [Google Scholar]
- Khuwaja, G.A.; Haghighi, S.J.; Hatzinakos, D. 40-Hz ASSR fusion classification system for observing sleep patterns. EURASIP J. Bioinform. Syst. Biol. 2015, 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Swanepoel, D.; Hugo, R.; Roode, R. Auditory steady-state responses for children with severe to profound hearing loss. Arch. Otolaryngol.-Head Neck Surg. 2004, 130, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, S.; Ohi, K.; Kuramitsu, A.; Takai, K.; Muto, Y.; Taniguchi, T.; Kinukawa, T.; Takeuchi, N.; Motomura, E.; Nishihara, M. The auditory steady-state response: Electrophysiological index for sensory processing dysfunction in psychiatric disorders. Front. Psychiatry 2021, 12, 644541. [Google Scholar] [CrossRef]
- Yokota, Y.; Naruse, Y. Phase coherence of auditory steady-state response reflects the amount of cognitive workload in a modified N-back task. Neurosci. Res. 2015, 100, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Kallenberg, M.; Desain, P.; Gielen, S. Auditory selective attention as a method for a brain computer interface. Nijmegen CNS 2006, 2, 1–16. [Google Scholar]
- Biesmans, W.; Bertrand, A.; Wouters, J.; Moonen, M. Optimal spatial filtering for auditory steady-state response detection using high-density EEG. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April; IEEE: Piscataway Township, NJ, USA, 2015; pp. 857–861. [Google Scholar]
- Janani, A.S.; Grummett, T.S.; Lewis, T.W.; Fitzgibbon, S.P.; Whitham, E.M.; DelosAngeles, D.; Bakhshayesh, H.; Willoughby, J.O.; Pope, K.J. Improved artefact removal from EEG using Canonical Correlation Analysis and spectral slope. J. Neurosci. Methods 2018, 298, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-W.; Chang, H.-H.; Hsu, C.-C.; Chen, K.-C.; Hsieh, J.-C.; Li, L.P.-H.; Lee, P.-L.; Shiao, A.-S. Extractions of steady-state auditory evoked fields in normal subjects and tinnitus patients using complementary ensemble empirical mode decomposition. BioMedical Eng. OnLine 2015, 14, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin, G.; Gao, X.; Yan, Z.; Hong, B.; Gao, S. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J. Neural Eng. 2009, 6, 046002. [Google Scholar] [CrossRef]
- Huang, N.E.; Hu, K.; Yang, A.C.; Chang, H.-C.; Jia, D.; Liang, W.-K.; Yeh, J.R.; Kao, C.-L.; Juan, C.-H.; Peng, C.K. On Holo-Hilbert spectral analysis: A full informational spectral representation for nonlinear and non-stationary data. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2016, 374, 20150206. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Schlee, W.; Weisz, N.; Bertrand, O.; Hartmann, T.; Elbert, T. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 2008, 3, e3720. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef]
- Cointepas, Y.; Mangin, J.-F.; Garnero, L.; Poline, J.-B.; Benali, H. BrainVISA: Software platform for visualization and analysis of multi-modality brain data. Neuroimage 2001, 13, 98. [Google Scholar] [CrossRef]
- Solomon, O.M., Jr. PSD Computations Using Welch’s Method. [Power Spectral Density (PSD)]; Sandia National Labs: Albuquerque, NM, USA, 1991. [Google Scholar]
- von Lühmann, A.; Li, X.; Müller, K.-R.; Boas, D.A.; Yücel, M.A. Improved physiological noise regression in fNIRS: A multimodal extension of the general linear model using temporally embedded canonical correlation analysis. NeuroImage 2020, 208, 116472. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [Google Scholar] [CrossRef] [Green Version]
- Mosher, J.C.; Leahy, R.M. Recursive MUSIC: A framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 1998, 45, 1342–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-H.; Hsu, C.-C.; Chen, C.-Y.; Lee, W.-K.; Hsu, H.-T.; Shyu, K.-K.; Yeh, J.-R.; Lin, P.-J.; Lee, P.-L. A method for respiration rate detection in wrist PPG signal using Holo-Hilbert spectrum. IEEE Sens. J. 2018, 18, 7560–7569. [Google Scholar] [CrossRef]
- Hsu, H.-T.; Lee, W.-K.; Shyu, K.-K.; Yeh, T.-K.; Chang, C.-Y.; Lee, P.-L. Analyses of EEG oscillatory activities during slow and fast repetitive movements using Holo-Hilbert spectral analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-M.; Lee, P.-L.; Lee, I.-H.; Lee, W.-K.; Wu, T.-Y.; Hsu, H.-T.; Yeh, C.-L.; Lin, P.-J.; Shyu, K.-K. Study of heart-rate variability in a video task using Holo-Hilbert spectral analysis. Biomed. Signal Processing Control. 2022, 71, 103229. [Google Scholar] [CrossRef]
- Griskova-Bulanova, I.; Ruksenas, O.; Dapsys, K.; Maciulis, V.; Arnfred, S.M. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs). Clin. Neurophysiol. 2011, 122, 1541–1548. [Google Scholar] [CrossRef]
- Heo, J.; Baek, H.J.; Hong, S.; Chang, M.H.; Lee, J.S.; Park, K.S. Music and natural sounds in an auditory steady-state response based brain–computer interface to increase user acceptance. Comput. Biol. Med. 2017, 84, 45–52. [Google Scholar] [CrossRef]
- Vohs, J.L.; Andrew Chambers, R.; Krishnan, G.P.; O’Donnell, B.F.; Berg, S.; Morzorati, S.L. GABAergic modulation of the 40 Hz auditory steady-state response in a rat model of schizophrenia. Int. J. Neuropsychopharmacol. 2010, 13, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Z.; Tian, Z.; Wang, X.; Li, Y.; Qin, L. Emotional arousal modifies auditory steady state response in the auditory cortex and prefrontal cortex of rats. Stress 2019, 22, 492–500. [Google Scholar] [CrossRef]
- Anderssen, S.; Nicolaisen, R.; Gabrielsen, G. Autonomic response to auditory stimulation. Acta Paediatr. 1993, 82, 913–918. [Google Scholar] [CrossRef]
- Dimberg, U. Facial electromyographic reactions and autonomic activity to auditory stimuli. Biol. Psychol. 1990, 31, 137–147. [Google Scholar] [CrossRef]
- Valenti, V.E.; Guida, H.L.; Frizzo, A.C.; Cardoso, A.C.; Vanderlei, L.C.M.; de Abreu, L.C. Auditory stimulation and cardiac autonomic regulation. Clinics 2012, 67, 955–958. [Google Scholar] [CrossRef]
- Drewes, J.; Muschter, E.; Zhu, W.; Melcher, D. Individual resting-state alpha peak frequency and within-trial changes in alpha peak frequency both predict visual dual-pulse segregation performance. Cereb. Cortex 2022, 32, bhac026. [Google Scholar] [CrossRef] [PubMed]
- Noda, Y.; Takano, M.; Hayano, M.; Li, X.; Wada, M.; Nakajima, S.; Mimura, M.; Kondo, S.; Tsubota, K. Photobiological Neuromodulation of Resting-State EEG and Steady-State Visual-Evoked Potentials by 40 Hz Violet Light Optical Stimulation in Healthy Individuals. J. Pers. Med. 2021, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Long, X.; Zuo, X.; Yan, C.; Zhu, C.; Yang, Y.; Liu, D.; He, Y.; Zang, Y. Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: A resting-state fMRI study. Hum. Brain Mapp. 2009, 30, 3066–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-L.; Lee, T.-M.; Lee, W.-K.; Chu, N.N.; Shelepin, Y.E.; Hsu, H.-T.; Chang, H.-H. The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. J. Clin. Med. 2022, 11, 3868. https://doi.org/10.3390/jcm11133868
Lee P-L, Lee T-M, Lee W-K, Chu NN, Shelepin YE, Hsu H-T, Chang H-H. The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. Journal of Clinical Medicine. 2022; 11(13):3868. https://doi.org/10.3390/jcm11133868
Chicago/Turabian StyleLee, Po-Lei, Te-Min Lee, Wei-Keung Lee, Narisa Nan Chu, Yuri E. Shelepin, Hao-Teng Hsu, and Hsiao-Huang Chang. 2022. "The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis" Journal of Clinical Medicine 11, no. 13: 3868. https://doi.org/10.3390/jcm11133868
APA StyleLee, P.-L., Lee, T.-M., Lee, W.-K., Chu, N. N., Shelepin, Y. E., Hsu, H.-T., & Chang, H.-H. (2022). The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. Journal of Clinical Medicine, 11(13), 3868. https://doi.org/10.3390/jcm11133868