Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Activated Serum
2.2. Liquid Chromatography-Mass Spectrophotometry Sample Preparation
2.3. Liquid Chromatography-Mass Spectrophotometry Analysis
2.4. Tissue Collection and Cell Isolation
2.5. Cultured Cell Treatment with Activated Serum
Cellular Proliferation
2.6. Protein Expression
2.7. Statistical Analysis
3. Results
3.1. Characterization of Activated Serum by LC-MS
3.2. Cellular Proliferation
3.3. Protein Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- West, T.A.; Williams, M.L. Orthobiologics. Clin. Podiatr. Med. Surg. 2019, 36, 609–626. [Google Scholar] [CrossRef]
- Rodeo, S.A. Biologic Approaches in Sports Medicine. Am. J. Sports Med. 2016, 44, 1657–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Y.; Fabricant, P.D.; Ishmael, C.R.; Wang, J.C.; Petrigliano, F.A.; Jones, K.J. Utilization of Platelet-Rich Plasma for Musculoskeletal Injuries: An Analysis of Current Treatment Trends in the United States. Orthop. J. Sports Med. 2016, 4, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, P.A.; Van Erp, A.; Desimone, A.; Cohen, D.S.; Gardner, R.D. Platelet Rich Plasma in Orthopedic Surgical Platelet Rich Plasma in Orthopedic Surgical Medicine. Platelets 2021, 32, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Thangarajah, T.; Sanghani-Kerai, A.; Henshaw, F.; Lambert, S.M.; Pendegrass, C.J.; Blunn, G.W. Application of a Demineralized Cortical Bone Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Chronic Rotator Cuff Degeneration. Am. J. Sports Med. 2018, 46, 98–108. [Google Scholar] [CrossRef]
- Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Current Clinical Recommendations for Use of Platelet-Rich Plasma. Curr. Rev. Musculoskelet. Med. 2018, 11, 624–634. [Google Scholar] [CrossRef]
- Matuska, A.M.; Klimovich, M.L.; Anz, A.W.; Podesta, L.; Chapman, J.R. Autologous Thrombin Preparations: Biocompatibility and Growth Factor Release. Wound Repair Regen. 2021, 29, 144–152. [Google Scholar] [CrossRef]
- Diesen, D.L.; Lawson, J.H. Bovine Thrombin: History, Use, and Risk in the Surgical Patient. Vascular 2008, 16 (Suppl. 1), S29–S36. [Google Scholar]
- Bishop, P.D.; Lewis, K.B.; Schultz, J.; Walker, K.M. Comparison of Recombinant Human Thrombin and Plasma-Derived Human Alpha-Thrombin. Semin. Thromb. Hemost. 2006, 32 (Suppl. 1), 86–97. [Google Scholar] [CrossRef]
- Huang, G.; Hua, S.; Yang, T.; Ma, J.; Yu, W.; Chen, X. Platelet-Rich Plasma Shows Beneficial Effects for Patients with Knee Osteoarthritis by Suppressing Inflammatory Factors. Exp. Ther. Med. 2018, 15, 3096–3102. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.H.; Chevalier, X.; Wehling, P. Autologous Conditioned Serum. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Raeissadat, S.A.; Rayegani, S.M.; Sohrabi, M.R.; Jafarian, N.; Bahrami, M.N. Effectiveness of Intra-Articular Autologous-Conditioned Serum Injection in Knee Osteoarthritis: A Meta-Analysis Study. Future Sci. OA 2021, 7, FSO759. [Google Scholar] [CrossRef] [PubMed]
- Otarodifard, K.; Bruce Canham, R.; Galatz, L.M. Biologic Augmentation of Rotator Cuff Repair. Semin. Arthroplasty 2014, 25, 220–225. [Google Scholar] [CrossRef]
- Lu, H.H.; Vo, J.M.; Chin, H.S.; Lin, J.; Cozin, M.; Tsay, R.; Eisig, S.; Landesberg, R. Controlled Delivery of Platelet-Rich Plasma-Derived Growth Factors for Bone Formation. J. Biomed. Mater. Res. A 2008, 86, 1128–1136. [Google Scholar] [CrossRef]
- Wehling, P.; Moser, C.; Frisbie, D.; Mcilwraith, C.W.; Kawcak, C.E.; Krauspe, R.; Reinecke, J.A.; Ag, O. Autologous Conditioned Serum in the Treatment of Orthopedic Diseases. BioDrugs 2007, 21, 323–332. [Google Scholar] [CrossRef]
- Frisbie, D.D. Autologous-Conditioned Serum: Evidence for Use in the Knee. J. Knee Surg. 2015, 28, 63–66. [Google Scholar] [CrossRef]
- Matuska, A.M.; Klimovich, M.K.; Chapman, J.R. An Ethanol-Free Autologous Thrombin System. J. Extra. Corpor. Technol. 2018, 50, 237–243. [Google Scholar]
- Nurden, A.T.; Nurden, P.; Sanchez, M.; Andia, I.; Anitua, E. Platelets and Wound Healing. Front. Biosci. 2008, 13, 3532–3548. [Google Scholar] [CrossRef]
- Coppinger, J.A.; Cagney, G.; Toomey, S.; Kislinger, T.; Belton, O.; McRedmond, J.P.; Cahill, D.J.; Emili, A.; Fitzgerald, D.J.; Maguire, P.B. Characterization of the Proteins Released from Activated Platelets Leads to Localization of Novel Platelet Proteins in Human Atherosclerotic Lesions. Blood 2004, 103, 2096–2104. [Google Scholar] [CrossRef] [Green Version]
- Karpievitch, Y.V.; Polpitiya, A.D.; Anderson, G.A.; Smith, R.D.; Dabney, A.R. Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects. Ann. Appl. Stat. 2010, 4, 1797–1823. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- LeVasseur, M.R.; Hawthorne, B.C.; Mancini, M.R.; McCarthy, M.B.R.; Wellington, I.J.; Cote, M.P.; Solovyova, O.; Williams, V.J.; Mazzocca, A.D. Trochanteric Bursa Is a Source of Connective Tissue Progenitor Cells. Arthrosc. Sports Med. Rehabil. 2021, 3, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, D.; Johnson, J.D.; Kia, C.; McCarthy, M.B.R.; Macken, C.; Bellas, N.; Baldino, J.B.; Cote, M.P.; Mazzocca, A.D. Examining the Potency of Subacromial Bursal Cells as a Potential Augmentation for Rotator Cuff Healing: An In Vitro Study. Arthrosc.-J. Arthrosc. Relat. Surg. 2019, 35, 2978–2988. [Google Scholar] [CrossRef] [PubMed]
- Otto, A.; Mccarthy, M.B.R.; Baldino, J.B.; Pharm, D.; Mehl, J.; Muench, L.N.; Tamburini, L.M.; Uyeki, C.L.; Arciero, R.A.; Mazzocca, A.D. Biologically Augmented Suture for Ligament Bracing Procedures Positively Affects Human Ligamentocytes and Osteoblasts In Vitro. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 38, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Beitzel, K.; McCarthy, M.B.; Cote, M.P.; Apostolakos, J.; Russell, R.P.; Bradley, J.; ElAttrache, N.S.; Romeo, A.A.; Arciero, R.A.; Mazzocca, A.D. The Effect of Ketorolac Tromethamine, Methylprednisolone, and Platelet-Rich Plasma on Human Chondrocyte and Tenocyte Viability. Arthrosc. J. Arthrosc. Relat. Surg. 2013, 29, 1164–1174. [Google Scholar] [CrossRef]
- Donato, R.; Sorci, G.; Giambanco, I. S100A6 Protein: Functional Roles. Cell. Mol. Life Sci. 2017, 74, 2749–2760. [Google Scholar] [CrossRef]
- Stuard, W.L.; Titone, R.; Robertson, D.M. IGFBP-3 Functions as a Molecular Switch That Mediates Mitochondrial and Metabolic Homeostasis. FASEB J. 2022, 36, e22062. [Google Scholar] [CrossRef]
- Stuard, W.L.; Titone, R.; Robertson, D.M. The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front. Endocrinol. 2020, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Groeneveld, T.W.L.; Ramwadhdoebé, T.H.; Trouw, L.A.; van den Ham, D.L.; van der Borden, V.; Drijfhout, J.W.; Hiemstra, P.S.; Daha, M.R.; Roos, A. Human Neutrophil Peptide-1 Inhibits Both the Classical and the Lectin Pathway of Complement Activation. Mol. Immunol. 2007, 44, 3608–3614. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic Potentials of Superoxide Dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heldin, C.H.; Westermark, B. Mechanism of Action and in Vivo Role of Platelet-Derived Growth Factor. Physiol. Rev. 1999, 79, 1283–1316. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular Endothelial Growth Factor (VEGF) and Its Receptors. FASEB J. 1999, 13, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laron, Z. Insulin-like Growth Factor 1 (IGF-1): A Growth Hormone. J. Clin. Pathol.-Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Tauro, T.M.; Gifford, A.; Haunschild, E.D.; Gilat, R.; Fu, M.C.; Cole, B.J. Cartilage Restoration Using Dehydrated Allogeneic Cartilage, Platelet-Rich Plasma, and Autologous Cartilage Mixture Sealed with Activated Autologous Serum. Arthrosc. Tech. 2020, 9, e847–e857. [Google Scholar] [CrossRef]
- Yogev, Y. A Humoral Solution: Autologous Blood Products and Tissue Repair. Cell. Immunol. 2020, 356, 104178. [Google Scholar] [CrossRef]
- Leong, N.L.; Kator, J.L.; Clemens, T.L.; James, A.; Enamoto-Iwamoto, M.; Jiang, J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J. Orthop. Res. 2020, 38, 7–12. [Google Scholar] [CrossRef]
- Muench, L.N.; Tamburini, L.; Kriscenski, D.; Landry, A.; Berthold, D.P.; Kia, C.; Cote, M.P.; McCarthy, M.B.; Mazzocca, A.D. The Effect of Insulin and Insulin-like Growth Factor 1 (IGF-1) on Cellular Proliferation and Migration of Human Subacromial Bursa Tissue. Arthrosc. Sports Med. Rehabil. 2021, 3, e781–e789. [Google Scholar] [CrossRef]
- Liu, C.-F.; Aschbacher-Smith, L.; Barthelery, N.J.; Dyment, N.; Butler, D.; Wylie, C. What We Should Know before Using Tissue Engineering Techniques to Repair Injured Tendons: A Developmental Biology Perspective. Tissue Eng. Part B Rev. 2011, 17, 165–176. [Google Scholar] [CrossRef] [Green Version]
Identified Proteins | Fold Change | t-Test (p-Value) |
---|---|---|
Spectrin alpha chain, erythrocytic 1 | INF | <0.00010 * |
Ankyrin-1 | INF | 0.00089 * |
Purine nucleoside phosphorylase | INF | 0.011 * |
Methanethiol oxidase | INF | 0.14 |
Band 4.1 | INF | 0.00016 * |
Peroxiredoxin-6 | INF | 0.017 * |
Phosphoglycerate kinase 1 | INF | 0.0014 * |
Cluster of Nucleoside diphosphate kinase A | INF | 0.00017 * |
Transitional endoplasmic reticulum ATPase | INF | 0.00016 * |
Triosephosphate isomerase | INF | <0.00010 * |
Parkinson disease protein 7 | INF | 0.00044 * |
Protein 4.2 | INF | <0.00010 * |
Retinal dehydrogenase 1 | INF | 0.13 |
Adenylate kinase isoenzyme 1 | INF | 0.15 |
Rab GDP dissociation inhibitor beta | INF | 0.12 |
Protein S100-A6 | INF | 0.004 * |
Eukaryotic translation initiation factor 5A (Fragment) | INF | 0.13 |
Transaldolase | INF | 0.13 |
S-formylglutathione hydrolase | INF | 0.12 |
Protein S100-A4 | INF | 0.068 |
GTP-binding nuclear protein Ran | INF | 0.12 |
D-dopachrome decarboxylase | INF | 0.13 |
Heat shock cognate 71 kDa protein | INF | 0.12 |
Polyubiquitin-B | INF | 0.0014 * |
Myotrophin | INF | 0.0056 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsmarski, O.P.; Hawthorne, B.C.; Cusano, A.; LeVasseur, M.R.; Wellington, I.J.; McCarthy, M.B.; Cote, M.P.; Mazzocca, A.D. Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells. J. Clin. Med. 2022, 11, 3442. https://doi.org/10.3390/jcm11123442
Karsmarski OP, Hawthorne BC, Cusano A, LeVasseur MR, Wellington IJ, McCarthy MB, Cote MP, Mazzocca AD. Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells. Journal of Clinical Medicine. 2022; 11(12):3442. https://doi.org/10.3390/jcm11123442
Chicago/Turabian StyleKarsmarski, Owen P., Benjamin C. Hawthorne, Antonio Cusano, Matthew R. LeVasseur, Ian J. Wellington, Mary Beth McCarthy, Mark P. Cote, and Augustus D. Mazzocca. 2022. "Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells" Journal of Clinical Medicine 11, no. 12: 3442. https://doi.org/10.3390/jcm11123442
APA StyleKarsmarski, O. P., Hawthorne, B. C., Cusano, A., LeVasseur, M. R., Wellington, I. J., McCarthy, M. B., Cote, M. P., & Mazzocca, A. D. (2022). Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells. Journal of Clinical Medicine, 11(12), 3442. https://doi.org/10.3390/jcm11123442