Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Extraction and cDNA Synthesis
2.3. Primer Designing
2.4. qRT-PCR
2.5. Data Extraction and Processing
2.6. Statistical Analysis
3. Results
3.1. Expression Analysis of FGFR Genes in In Vitro
3.2. Association between FGFR Genes and Clinical Features
3.3. Expression Analysis of FGFR Genes in Validation Cohorts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, E.M.; Sherman, R.L.; Henley, S.J.; Jemal, A.; Siegel, D.A.; Feuer, E.J.; Firth, A.U.; Kohler, B.A.; Scott, S.; Ma, J.; et al. Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20–49 Years. JNCI J. Natl. Cancer Inst. 2019, 111, 1279–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, E.; Nomura, H.; Nakamuta, M.; Furusyo, N.; Kajiwara, E.; Dohmen, K.; Kawano, A.; Ooho, A.; Azuma, K.; Takahashi, K.; et al. Incidence of Hepatocellular Carcinoma after Treatment with Sofosbuvir-Based or Sofosbuvir-Free Regimens in Patients with Chronic Hepatitis C. Cancers 2020, 12, 2602. [Google Scholar] [CrossRef] [PubMed]
- Rosato, V.; Ascione, A.; Nevola, R.; Fracanzani, A.L.; Piai, G.; Messina, V.; Claar, E.; Coppola, C.; Fontanella, L.; Lombardi, R.; et al. Factors Affecting Long-term Changes of Liver Stiffness in Direct-acting Anti-hepatitis C Virus Therapy: A Multicentre Prospective Study. J. Viral Hepat. 2022, 29, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-F.; Xia, J.-G.; Li, W.; Shen, L.-J.; Huang, T.; Wu, P. Examining the Key Genes and Pathways in Hepatocellular Carcinoma Development from Hepatitis B Virus-positive Cirrhosis. Mol. Med. Rep. 2018, 18, 4940–4950. [Google Scholar] [CrossRef]
- Omata, M.; Cheng, A.-L.; Kokudo, N.; Kudo, M.; Lee, J.M.; Jia, J.; Tateishi, R.; Han, K.-H.; Chawla, Y.K.; Shiina, S.; et al. Asia–Pacific Clinical Practice Guidelines on the Management of Hepatocellular Carcinoma: A 2017 Update. Hepatol. Int. 2017, 11, 317–370. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Ding, X.-X.; Zhu, Q.-G.; Zhang, S.-M.; Guan, L.; Li, T.; Zhang, L.; Wang, S.-Y.; Ren, W.-L.; Chen, X.-M.; Zhao, J.; et al. Precision Medicine for Hepatocellular Carcinoma: Driver Mutations and Targeted Therapy. Oncotarget 2017, 8, 55715–55730. [Google Scholar] [CrossRef] [Green Version]
- El-Serag, H.B. Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. Gastroenterology 2012, 142, 1264–1273.e1. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Zhang, S.; Ou, X.; Li, S.; Ma, Z.; Wang, W.; Peppelenbosch, M.P.; Liu, J.; Pan, Q. Estimating the Global Prevalence, Disease Progression, and Clinical Outcome of Hepatitis Delta Virus Infection. J. Infect. Dis. 2020, 221, 1677–1687. [Google Scholar] [CrossRef]
- Elpek, G.O. Molecular Pathways in Viral Hepatitis-Associated Liver Carcinogenesis: An Update. WJCC 2021, 9, 4890–4917. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Ornitz, D.M. Fibroblast Growth Factors: From Molecular Evolution to Roles in Development, Metabolism and Disease. J. Biochem. 2011, 149, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kang, H.J.; Kim, K.M.; Yu, E.S.; Kim, K.H.; Kim, S.-M.; Kim, T.W.; Shim, J.H.; Lim, Y.-S.; Lee, H.C.; et al. Fibroblast Growth Factor Receptor Isotype Expression and Its Association with Overall Survival in Patients with Hepatocellular Carcinoma. Clin. Mol. Hepatol. 2015, 21, 60. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, D.; Zhang, T.; Xia, L. FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers 2021, 13, 1360. [Google Scholar] [CrossRef] [PubMed]
- Paur, J.; Nika, L.; Maier, C.; Moscu-Gregor, A.; Kostka, J.; Huber, D.; Mohr, T.; Heffeter, P.; Schrottmaier, W.C.; Kappel, S.; et al. Fibroblast Growth Factor Receptor 3 Isoforms: Novel Therapeutic Targets for Hepatocellular Carcinoma? Hepatology 2015, 62, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR Signaling in Health and Disease. Sig. Transduct. Target Ther. 2020, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Al-Khaykanee, A.M.; Abdel-Rahman, A.A.-H.; Essa, A.; Gadallah, A.-N.A.-A.; Ali, B.H.; Al-Aqar, A.A.; Badr, E.A.E.; Shehab-Eldeen, S. Genetic Polymorphism of Fibroblast Growth Factor Receptor 2 and Trinucleotide Repeat-Containing 9 Influence the Susceptibility to HCV-Induced Hepatocellular Carcinoma. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101636. [Google Scholar] [CrossRef]
- Hafeez Bhatti, A.B.; Dar, F.S.; Waheed, A.; Shafique, K.; Sultan, F.; Shah, N.H. Hepatocellular Carcinoma in Pakistan: National Trends and Global Perspective. Available online: https://www.hindawi.com/journals/grp/2016/5942306/ (accessed on 12 March 2019).
- Yu, M.C.; Yuan, J.-M. Environmental Factors and Risk for Hepatocellular Carcinoma. Gastroenterology 2004, 127, S72–S78. [Google Scholar] [CrossRef]
- Yang, J.D.; Mohamed, E.A.; Aziz, A.O.A.; Shousha, H.I.; Hashem, M.B.; Nabeel, M.M.; Abdelmaksoud, A.H.; Elbaz, T.M.; Afihene, M.Y.; Duduyemi, B.M.; et al. Characteristics, Management, and Outcomes of Patients with Hepatocellular Carcinoma in Africa: A Multicountry Observational Study from the Africa Liver Cancer Consortium. Lancet Gastroenterol. Hepatol. 2017, 2, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Iwata, T.; Leung, H.Y. Mechanisms of FGFR-Mediated Carcinogenesis. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 850–860. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhao, H.; Yan, H. Gene Expression Profiling of 1200 Pancreatic Ductal Adenocarcinoma Reveals Novel Subtypes. BMC Cancer 2018, 18, 603. Available online: https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4546-8 (accessed on 1 October 2021).
- Haq, F.; Sung, Y.-N.; Park, I.; Kayani, M.A.; Yousuf, F.; Hong, S.-M.; Ahn, S.-M. FGFR1 Expression Defines Clinically Distinct Subtypes in Pancreatic Cancer. J. Transl. Med. 2018, 16, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.-C.; Choi, E.K.; Shin, J.-S.; Moon, J.-H.; Hong, S.-W.; Lee, H.-R.; Kim, S.-M.; Jung, S.-A.; Lee, D.-H.; Jung, S.H.; et al. Targeting FGFR Pathway in Human Hepatocellular Carcinoma: Expressing PFGFR and PMET for Antitumor Activity. Mol. Cancer Ther. 2015, 14, 2613–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Shi, X.; Zheng, Q.; Wang, X.; Liu, X.; Tan, M.; Lv, G.; Zhang, P.; Martin, R.C.; Li, Y. Aberrant FGFR4 Signaling Worsens Nonalcoholic Steatohepatitis in FGF21KO Mice. Int. J. Biol. Sci. 2021, 17, 2576–2589. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.-J.; Hsieh, M.-J.; Chiang, W.-L.; Yang, S.-F.; Lee, H.-L.; Lee, L.-M.; Yeh, C.-B. Fibroblast Growth Factor Receptor 4 Polymorphism Is Associated with Liver Cirrhosis in Hepatocarcinoma. PLoS ONE 2015, 10, e0122961. [Google Scholar] [CrossRef]
- Gatius, S.; Velasco, A.; Azueta, A.; Santacana, M.; Pallares, J.; Valls, J.; Dolcet, X.; Prat, J.; Matias-Guiu, X. FGFR2 Alterations in Endometrial Carcinoma. Mod. Pathol. 2011, 24, 1500–1510. [Google Scholar] [CrossRef] [Green Version]
- Axley, P.; Ahmed, Z.; Ravi, S.; Singal, A.K. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J. Clin. Transl. Hepatol. 2018, 6, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Nevola, R.; Coppola, C.; Narciso, V.; Rinaldi, L.; Calvaruso, V.; Pafundi, P.C.; Lombardi, R.; et al. Reduced Incidence of Type 2 Diabetes in Patients with Chronic Hepatitis C Virus Infection Cleared by Direct-acting Antiviral Therapy: A Prospective Study. Diabetes Obes. Metab. 2020, 22, 2408–2416. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Caturano, A.; Galiero, R.; Vetrano, E.; Nevola, R.; Petta, S.; Fracanzani, A.L.; Coppola, C.; Di Marco, V.; et al. Impact of Direct Acting Antivirals (DAAs) on Cardiovascular Events in HCV Cohort with Pre-Diabetes. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2345–2353. [Google Scholar] [CrossRef]
- Maryam, M.; Idrees, M. Study of Promoter Hypomethylation Profiles of RAS Oncogenes in Hepatocellular Carcinoma Derived from Hepatitis C Virus Genotype 3a in Pakistani Population. J. Med. Virol. 2018, 90, 1516–1523. [Google Scholar] [CrossRef]
- Chhatwal, J.; Chen, Q.; Wang, X.; Ayer, T.; Zhuo, Y.; Janjua, N.Z.; Kanwal, F. Assessment of the Feasibility and Cost of Hepatitis C Elimination in Pakistan. JAMA Netw. Open 2019, 2, e193613. [Google Scholar] [CrossRef]
Characteristics | No. of Patients | % Age |
---|---|---|
Age-wise distribution of HCC Patients | ||
>50 | 141 | 53% |
≤50 | 123 | 47% |
Gender-based distribution of HCC Patients | ||
Male | 222 | 84% |
Female | 39 | 14% |
NA (Not Available) | 3 | 1% |
HCV-based distribution of HCC Patients | ||
Positive | 30 | 11.3% |
Negative | 6 | 2% |
NA (Not Available) | 228 | 86% |
Grade-based distribution of HCC Patients | ||
Grade 1-G1 | 105 | 39.7% |
Grade 2-G2 | 105 | 39.7% |
Grade 3-G3 | 27 | 10% |
Nuclei appearance based on HCC Patients | ||
Pleomorphic | 144 | 54.5% |
Non-Pleomorphic | 60 | 22.7% |
HePar1-based distribution of HCC Patients | ||
Positive | 114 | 43% |
Negative | 15 | 5% |
AFP status-based distribution of HCC Patients | ||
High AFP status | 27 | 10% |
Low AFP status | 9 | 3.4% |
Cirrhosis-based distribution of HCC Patients | ||
Cirrhosis-Present | 30 | 11% |
No Cirrhosis-Absent | 48 | 18% |
Vascular Invasion status based on HCC Patients | ||
Vascular Invasion-Present | 15 | 5% |
No Vascular Invasion-Absent | 33 | 12% |
Features | FGFR1 | FGFR2 | FGFR3 | FGFR4 | ||||
---|---|---|---|---|---|---|---|---|
Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | |
Normal/HCC patients | −2.419 | 0.016 | ||||||
Age group | - | - | −2.510 | 0.012 | - | - | - | - |
HCV | −3.750 | 0.000 | −2.951 | 0.003 | - | - | −3.066 | 0.002 |
Cirrhosis Status | −2.690 | 0.007 | −2.436 | 0.015 | −2.045 | 0.041 | −2.867 | 0.004 |
Vascular Invasion | −3.020 | 0.003 | - | - | - | - | - | - |
Datasets | Genes | FGFR1 | FGFR2 | FGFR3 | FGFR4 | ||||
---|---|---|---|---|---|---|---|---|---|
Variable | Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | Chi-Square/ Z-Score | Sig. | |
GSE14323 | Normal vs. Disease | −3.735 | 0.000 | −5.968 | 0.000 | - | - | −2.530 | 0.011 |
Normal vs. HCC | −3.792 | 0.000 | −4.198 | 0.000 | - | - | - | - | |
Normal vs. Cirrhosis HCC | - | - | −4.944 | 0.000 | - | - | −3.628 | 0.000 | |
Normal vs. Cirrhosis | −3.615 | 0.000 | −6.174 | 0.000 | −3.711 | 0.000 | −3.933 | 0.000 | |
Disease States | 20.365 | 0.000 | 63.154 | 0.000 | 27.027 | 0.000 | 44.686 | 0.000 | |
GSE78737 | Age | - | - | - | - | - | - | −3.351 | 0.001 |
Normal vs. HCC | −6.056 | 0.000 | −2.901 | 0.004 | −4.018 | 0.000 | −5.630 | 0.000 | |
GSE6764 | Normal vs. HCC | −2.198 | 0.028 | −2.743 | 0.006 | - | - | −2.390 | 0.0091 |
HCC Early/Advance | - | - | - | - | −2.376 | 0.017 | −2.541 | 0.011 | |
Normal vs. Cirrhotic Liver | - | - | −2.326 | 0.020 | - | - | - | - | |
Normal vs. Dysplastic Liver Tissue | - | - | - | - | −3.314 | 0.001 | - | - | |
Disease States | 27.046 | 0.001 | 18.074 | 0.021 | 24.660 | 0.002 | 34.390 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.; Ahmad, W.; Hashem, A.M.; Zakai, S.; Haque, S.; Malik, M.F.A.; Harakeh, S.; Haq, F. Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients. J. Clin. Med. 2022, 11, 3093. https://doi.org/10.3390/jcm11113093
Khan W, Ahmad W, Hashem AM, Zakai S, Haque S, Malik MFA, Harakeh S, Haq F. Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients. Journal of Clinical Medicine. 2022; 11(11):3093. https://doi.org/10.3390/jcm11113093
Chicago/Turabian StyleKhan, Walizeb, Washaakh Ahmad, Anwar M. Hashem, Shadi Zakai, Shafiul Haque, Muhammad Faraz Arshad Malik, Steve Harakeh, and Farhan Haq. 2022. "Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients" Journal of Clinical Medicine 11, no. 11: 3093. https://doi.org/10.3390/jcm11113093
APA StyleKhan, W., Ahmad, W., Hashem, A. M., Zakai, S., Haque, S., Malik, M. F. A., Harakeh, S., & Haq, F. (2022). Genomic Relevance of FGFR2 on the Prognosis of HCV-Induced Hepatocellular Carcinoma Patients. Journal of Clinical Medicine, 11(11), 3093. https://doi.org/10.3390/jcm11113093