Assessment of the Predictive Value of Spectrophotometric Skin Color Parameters and Environmental and Behavioral Factors in Estimating the Risk of Skin Cancer: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Plan
2.2. Predictive Models
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristic of Training and Testing Groups
3.2. The Predictive Quality of Models According to the Spectrophotometric Parameters of Skin Color to Estimate the Risk of Skin Cancer
3.3. The Predictive Quality of Spectrophotometric Models Extended with Environmental and Behavioral Factors Significantly Associated with the Risk of Skin Cancer
3.4. The Predictive Quality of Spectrophotometric Models Extended with the Number of Sunburns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choquet, H.; Ashrafzadeh, S.; Kim, Y.; Asgari, M.M.; Jorgenson, E. Genetic and environmental factors underlying keratinocyte carcinoma risk. JCI Insight 2020, 5, e134783. [Google Scholar] [CrossRef]
- Nagarajan, P.; Asgari, M.M.; Green, A.C.; Guhan, S.M.; Arron, S.T.; Proby, C.M.; Rollison, D.E.; Harwood, C.A.; Toland, A.E. Keratinocyte carcinomas: Current concepts and future research priorities. Clin. Cancer Res. 2019, 25, 2379–2391. [Google Scholar] [CrossRef] [Green Version]
- Nehal, K.S.; Bichakjian, C.K. Update on keratinocyte carcinomas. N. Engl. J. Med. 2018, 379, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Fijałkowska, M.; Koziej, M.; Antoszewski, B. Detailed head localization and incidence of skin cancers. Sci. Rep. 2021, 11, 12391. [Google Scholar] [CrossRef] [PubMed]
- AlSalman, S.A.; Alkaff, T.M.; Alzaid, T.; Binamer, Y. Nonmelanoma skin cancer in Saudi Arabia: Single center experience. Ann. Saudi Med. 2018, 38, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husein-Elahmed, H.; Gutierrez-Salmeron, M.T.; Aneiros-Cachaza, J.; Naranjo-Sintes, R. Basal cell carcinoma arising in outdoor workers versus indoor workers: A retrospective study. Cutis 2017, 99, 55–60. [Google Scholar] [PubMed]
- Lowenstein, S.E.; Garrett, G.; Toland, A.E.; Jambusaria-Pahlajani, A.; Asgari, M.M.; Green, A.; Engels, E.A.; Arron, S.T. Risk prediction tools for keratinocyte carcinoma after solid organ transplantation: A review of the literature. Br. J. Dermatol. 2017, 177, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, I.; Pfahlberg, A.B.; Uter, W.; Heppt, M.V.; Veierød, M.B.; Gefeller, O. Risk prediction models for melanoma: A systematic review on the heterogeneity in model development and validation. Int. J. Environ. Res. Public Health 2020, 17, 7919. [Google Scholar] [CrossRef]
- Taylor, S.; Westerhof, W.; Im, S.; Lim, J. Noninvasive techniques for the evaluation of skin color. J. Am. Acad. Dermatol. 2006, 54, S282–S290. [Google Scholar] [CrossRef] [PubMed]
- Sitek, A.; Rosset, I.; Żądzińska, E.; Kasielska-Trojan, A.; Neskoromna-Jędrzejczak, A.; Antoszewski, B. Skin color parameters and Fitzpatrick phototypes in estimating the risk of skin cancer: A case-control study in the Polish population. J. Am. Acad. Dermatol. 2016, 74, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; Hajian-Tilaki, K.O. Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Acad. Radiol. 1997, 4, 49–58. [Google Scholar] [CrossRef]
- Duarte, A.F.; Sousa-Pinto, B.; Freitas, A.; Delgado, L.; Costa-Pereira, A.; Correia, O. Skin cancer healthcare impact: A nation-wide assessment of an administrative database. Cancer Epidemiol. 2018, 56, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Linos, E.; Katz, K.A.; Colditz, G.A. Skin cancer: The importance of prevention. JAMA Int. Med. 2016, 176, 1435–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, S.; Kaur, H.; Dhall, A.; Raghava, G.P.S. Prediction and analysis of skin cancer progression using genomics profiles of patients. Sci. Rep. 2019, 9, 15790. [Google Scholar] [CrossRef] [Green Version]
- Fijałkowska, M.; Kowalski, M.; Koziej, M.; Antoszewski, B. Elevated serum levels of cathelicidin and β-defensin 2 are associated with basal cell carcinoma. Cent. Eur. J. Immunol. 2021, 46, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Roffman, D.; Hart, G.; Girardi, M.; Ko, C.h.J.; Deng, J. Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network. Sci. Rep. 2018, 8, 1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.H.; Wang, Y.H.; Liang, C.W.; Li, Y.C. Assessment of deep learning using nonimaging information and sequential medical records to develop a prediction model for non-melanoma skin cancer. JAMA Dermatol. 2019, 155, 1277–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfayez, A.A.; Kunz, H.; Lai, A.G. Predicting the risk of cancer in adults using supervised machine learning: A scoping review. BMJ Open 2021, 11, e047755. [Google Scholar] [CrossRef]
- Dessinioti, C.; Tzannis, K.; Sypsa, V.; Nikolaou, V.; Kypreou, K.; Antoniou, C.; Katsambas, A.; Stratigos, A.J. Epidemiologic risk factors of basal cell carcinoma development and age at onset in a Southern European population from Greece. Exp. Dermatol. 2011, 20, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Khalesi, M.; Whiteman, D.C.; Tran, B.; Kimlin, M.G.; Olsen, C.M.; Neale, R.E. A meta-analysis of pigmentary characteristics, sun sensitivity, freckling and melanocytic nevi and risk of basal cell carcinoma of the skin. Cancer Epidemiol. 2013, 37, 534–543. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Training Group | Testing Group | Training Group vs. Testing Group | |
---|---|---|---|---|
Evaluation time | 2011–2014 | 2020–2021 | ||
N | 289 (100%) | 100 (100%) | ||
Sex | F | 189 (65%) | 61 (61%) | χ2Yates = 0.45 p = 0.5029 |
M | 100 (35%) | 39 (39%) | ||
Absence of skin cancer | 156 (54%) | 50 (50%) | χ2Yates = 0.33 p = 0.5680 | |
Presence of skin cancer | 133 (46%) | 50 (50%) | ||
Type of skin cancer | BCC | 100 (75%) | 46 (92%) | χ2 = 7.41 p = 0.0246 |
SCC | 21 (16%) | 4 (8%) | ||
MM | 12 (9%) | 0 (0%) | ||
Age (years) | M = 69; Q1–3 = 62–78 min–max = 41–93 | M = 67; Q1–3 = 56–75 min–max = 43–90 | Zcorrection = 2.37 p = 0.0179 |
Models | Spectrophotometric Parameters | I | II | III | |||
---|---|---|---|---|---|---|---|
AUC | SE | AUC | SE | AUC | SE | ||
Arm | |||||||
1 | MI | 0.674 | 0.0549 | 0.689 | 0.0535 | 0.686 | 0.0539 |
2 | R | 0.584 | 0.0581 | 0.622 | 0.0569 | 0.609 | 0.0574 |
3 | MI, EI | 0.656 | 0.0567 | 0.671 | 0.0556 | 0.664 | 0.0555 |
4 | L, a, b | 0.630 | 0.0566 | 0.660 | 0.0553 | 0.663 | 0.0550 |
5 | L, a | 0.650 | 0.0563 | 0.682 | 0.0541 | 0.691 | 0.0542 |
6 | L, b | 0.657 | 0.0554 | 0.679 | 0.0541 | 0.676 | 0.0545 |
Buttock | |||||||
7 | MI | 0.643 | 0.0568 | 0.657 | 0.0553 | 0.665 | 0.0556 |
8 | R | 0.566 | 0.0582 | 0.612 | 0.0569 | 0.608 | 0.0577 |
9 | MI, EI | 0.636 | 0.0567 | 0.652 | 0.0555 | 0.664 | 0.0555 |
10 | L, a, b | 0.536 | 0.0590 | 0.578 | 0.0579 | 0.576 | 0.0583 |
11 | L, a | 0.545 | 0.0588 | 0.600 | 0.0572 | 0.586 | 0.0578 |
Models | Spectrophotometric Variables in Models | AUC I vs. AUC II | AUC I vs. AUC III | AUC II vs. AUC III |
---|---|---|---|---|
p | p | p | ||
Arm | ||||
1 | MI | 0.4021 | 0.3095 | 0.7940 |
2 | R | 0.1120 | 0.0611 | 0.4129 |
3 | MI, EI | 0.4299 | 0.8836 | 0.8664 |
4 | L, a, b | 0.2965 | 0.1172 | 0.8630 |
5 | L, a | 0.1513 | 0.0160 | 0.5434 |
6 | L, b | 0.3147 | 0.1541 | 0.8653 |
Buttock | ||||
7 | MI | 0.4482 | 0.0370 | 0.5872 |
8 | R | 0.0598 | 0.0166 | 0.7601 |
9 | MI, EI | 0.3678 | 0.0212 | 0.4377 |
10 | L, a, b | 0.1529 | 0.0210 | 0.9370 |
11 | L, a | 0.0427 | 0.0083 | 0.4839 |
Compared Models | Z | p | |
---|---|---|---|
MI arm | R arm | 2.77 | 0.0055 |
MI, EI arm | 0.78 | 0.9151 | |
L, a, b arm | 1.35 | 0.8289 | |
L, a arm | 1.11 | 0.2660 | |
L, b arm | 0.42 | 0.6747 | |
MI buttock | 0.67 | 0.5043 | |
R buttock | 2.11 | 0.0352 | |
MI, EI buttock | 0.80 | 0.4258 | |
L, a, b buttock | 2.50 | 0.0126 | |
L, a buttock | 2.39 | 0.0170 | |
Compared models | Z | p | |
L, a arm, number of sunburns | MI arm, number of sunburns | 0.28 | 0.7819 |
R arm, number of sunburns | 2.61 | 0.0090 | |
MI, EI arm, number of sunburns | 0.64 | 0.5251 | |
L, a, b arm, number of sunburns | 0.88 | 0.3800 | |
L, b arm, number of sunburns | 0.35 | 0.7279 | |
MI buttock, number of sunburns | 0.56 | 0.5583 | |
R buttock, number of sunburns | 1.62 | 0.1058 | |
MI, EI buttock, number of sunburns | 0.64 | 0.5251 | |
L, a, b buttock, number of sunburns | 2.10 | 0.0354 | |
L, a buttock, number of sunburns | 1.99 | 0.0463 |
Compared Models | Z | p | |
---|---|---|---|
L, a arm, number of sunburns | MI arm, number of sunburns | 0.28 | 0.7819 |
R arm, number of sunburns | 2.61 | 0.0090 | |
MI, EI arm, number of sunburns | 0.64 | 0.5251 | |
L, a, b arm, number of sunburns | 0.88 | 0.3800 | |
L, b arm, number of sunburns | 0.35 | 0.7279 | |
MI buttock, number of sunburns | 0.56 | 0.5583 | |
R buttock, number of sunburns | 1.62 | 0.1058 | |
MI, EI buttock, number of sunburns | 0.64 | 0.5251 | |
L, a, b buttock, number of sunburns | 2.10 | 0.0354 | |
L, a buttock, number of sunburns | 1.99 | 0.0463 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijałkowska, M.; Koziej, M.; Żądzińska, E.; Antoszewski, B.; Sitek, A. Assessment of the Predictive Value of Spectrophotometric Skin Color Parameters and Environmental and Behavioral Factors in Estimating the Risk of Skin Cancer: A Case–Control Study. J. Clin. Med. 2022, 11, 2969. https://doi.org/10.3390/jcm11112969
Fijałkowska M, Koziej M, Żądzińska E, Antoszewski B, Sitek A. Assessment of the Predictive Value of Spectrophotometric Skin Color Parameters and Environmental and Behavioral Factors in Estimating the Risk of Skin Cancer: A Case–Control Study. Journal of Clinical Medicine. 2022; 11(11):2969. https://doi.org/10.3390/jcm11112969
Chicago/Turabian StyleFijałkowska, Marta, Mateusz Koziej, Elżbieta Żądzińska, Bogusław Antoszewski, and Aneta Sitek. 2022. "Assessment of the Predictive Value of Spectrophotometric Skin Color Parameters and Environmental and Behavioral Factors in Estimating the Risk of Skin Cancer: A Case–Control Study" Journal of Clinical Medicine 11, no. 11: 2969. https://doi.org/10.3390/jcm11112969
APA StyleFijałkowska, M., Koziej, M., Żądzińska, E., Antoszewski, B., & Sitek, A. (2022). Assessment of the Predictive Value of Spectrophotometric Skin Color Parameters and Environmental and Behavioral Factors in Estimating the Risk of Skin Cancer: A Case–Control Study. Journal of Clinical Medicine, 11(11), 2969. https://doi.org/10.3390/jcm11112969