Urinary Biomarkers for Early Diagnosis of Lung Cancer
Abstract
1. Introduction
2. The Role of Kidney Physiology in Oncological Practice
3. Materials and Methods
4. Results
5. Study Limitations
6. Future Perspectives
7. Summary
- -
- Urine is an appealing biological fluid in terms of ease and safety of collection, and quantity.
- -
- Renal filtration also results in a less complex matrix than that of blood, containing fewer factors known to interfere with biomarker assays.
- -
- So far, many urinary metabolites have been processed. However, they await validation.
- -
- Analytical methods have been reported for the detection of urinary biomarkers.
- -
- Technological strides in urine analytical methodology have resulted in enormous progress for basic research.
- -
- These methods could be standardized and integrated into a procedure for targeted metabolomics by clinical investigators. The resulting quantification of biomarkers would offer a formidable diagnostic tool for early-stage lung cancer.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Knight, S.B.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol. 2017, 7. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- The National Lung Screening Trial Research Team Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [CrossRef]
- Jaklitsch, M.T.; Jacobson, F.L.; Austin, J.H.M.; Field, J.K.; Jett, J.R.; Keshavjee, S.; MacMahon, H.; Mulshine, J.L.; Munden, R.F.; Salgia, R.; et al. The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J. Thorac. Cardiovasc. Surg. 2012, 144, 33–38. [Google Scholar] [CrossRef]
- Silva, M.; Milanese, G.; Pastorino, U.; Sverzellati, N. Lung cancer screening: Tell me more about post-test risk. J. Thorac. Dis. 2019, 11, 3681–3688. [Google Scholar] [CrossRef]
- Vander Heiden, M.; Cantley, L.; Thompson, C. Understanding the Warburg effect: The metabolic Requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P. Liquid biopsy for early detection of lung cancer. Curr. Opin. Oncol. 2017, 29, 73–78. [Google Scholar] [CrossRef]
- Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011, 12, 175–180. [Google Scholar] [CrossRef]
- Rolfo, C.; Russo, A. Liquid biopsy for early stage lung cancer moves ever closer. Nat. Rev. Clin. Oncol. 2020, 17, 523–524. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, E.C.; McGranahan, N.; Mitter, R.; Salm, M.; Wedge, D.C.; Yates, L.; Jamal-Hanjani, M.; Shafi, S.; Murugaesu, N.; Rowan, A.J.; et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 2014, 346, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Sedda, G.; Gasparri, R. A new era in lung cancer care: From early diagnosis to personalized treatment. Shanghai Chest 2019, 3, 9. [Google Scholar] [CrossRef]
- Swanton, C.; Govindan, R. Clinical Implications of Genomic Discoveries in Lung Cancer. N. Engl. J. Med. 2016, 374, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.I.; Harris, C.C. Integration of multiple “OMIC” biomarkers: A precision medicine strategy for lung cancer. Lung Cancer 2017, 107, 50–58. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zhou, X.; Yuan, M.; Qu, D.; Zheng, Y.; Vishinkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem. Rev. 2019, 119, 11761–11817. [Google Scholar] [CrossRef]
- Miners, J.O.; Yang, X.; Knights, K.M.; Zhang, L. The Role of the Kidney in Drug Elimination: Transport, Metabolism, and the Impact of Kidney Disease on Drug Clearance. Clin. Pharmacol. Ther. 2017, 102, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Harpole, M.; Davis, J.; Espina, V. Expert Review of Proteomics: Current state of the art for enhancing urine biomarker discovery Current state of the art for enhancing urine biomarker discovery. Expert Rev. Proteomics 2016, 9450, 609–626. [Google Scholar] [CrossRef] [PubMed]
- Dinges, S.S.; Hohm, A.; Vandergrift, L.A.; Nowak, J.; Habbel, P.; Kaltashov, I.A.; Cheng, L.L. Cancer metabolomic markers in urine: Evidence, techniques and recommendations. Nat. Rev. Urol. 2019, 16, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.; Ma, Y. Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges. Curr. Med. Chem. 2019, 26, 5–28. [Google Scholar] [CrossRef]
- Amundsen, T.; Sundstrøm, S.; Buvik, T.; Gederaas, O.A.; Haaverstad, R. Can dogs smell lung cancer? First study using exhaled breath and urine screening in unselected patients with suspected lung cancer. Acta Oncol. (Madr.) 2014, 53, 307–315. [Google Scholar] [CrossRef]
- Mazzola, S.M.; Pirrone, F.; Sedda, G.; Gasparri, R.; Romano, R.; Spaggiari, L.; Mariangela, A. Two-step investigation of lung cancer detection by sniffer dogs. J. Breath Res. 2020, 14, 26011. [Google Scholar] [CrossRef] [PubMed]
- Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.J.; Shu, X.-O.; Nicholson, J.K.; Holmes, E.; Walker, D.I.; Hu, W.; Cai, Q.; Gao, Y.-T.; Xiang, Y.-B.; Moore, S.C.; et al. Association of Untargeted Urinary Metabolomics and Lung Cancer Risk Among Never-Smoking Women in China. JAMA Netw. Open 2019, 2, e1911970. [Google Scholar] [CrossRef] [PubMed]
- Haznadar, M.; Cai, Q.; Krausz, K.W.; Bowman, E.D.; Margono, E.; Noro, R.; Thompson, M.D.; Mathé, E.A.; Munro, H.M.; Steinwandel, M.D.; et al. Urinary metabolite risk biomarkers of lung cancer: A prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2016, 25, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M.; Butler, L.M.; Gao, Y.T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Nelson, H.H.; Hecht, S.S. Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis 2014, 35, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Pauly, G.T.; Tada, T.; Parker, A.L.; Toulabi, L.; Kanke, Y.; Oike, T.; Krausz, K.W.; Gonzalez, F.J.; Harris, C.C. Improved detection and precise relative quantification of the urinary cancer metabolite biomarkers—Creatine riboside, creatinine riboside, creatine and creatinine by UPLC-ESI-MS/MS: Application to the NCI-Maryland cohort population controls and lung can. J. Pharm. Biomed. Anal. 2020, 191, 113596. [Google Scholar] [CrossRef]
- Carrola, J.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 2011, 10, 221–230. [Google Scholar] [CrossRef]
- Zhang, C.; Leng, W.; Sun, C.; Lu, T.; Chen, Z.; Men, X.; Wang, Y.; Wang, G.; Zhen, B.; Qin, J. Urine Proteome Profiling Predicts Lung Cancer from Control Cases and Other Tumors. EBioMedicine 2018, 30, 120–128. [Google Scholar] [CrossRef]
- Hanai, Y.; Shimono, K.; Matzumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G.K.; Hiroaki, O. Urinary Volatile Compounds as Biomarkers for Lung Cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Pérez Antón, A.; Ramos, Á.G.; del Nogal Sánchez, M.; Pavón, J.L.P.; Cordero, B.M.; Pozas, Á.P.C. Headspace-programmed temperature vaporization-mass spectrometry for the rapid determination of possible volatile biomarkers of lung cancer in urine. Anal. Bioanal. Chem. 2016, 408, 5239–5246. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sakaguchi, K.; Horio, H.; Hiramatsu, K.; Moriya, S.; Takahashi, K.; Kawakita, M. Urinary N1, N12-diacetylspermine is a non-invasive marker for the diagnosis and prognosis of non-small-cell lung cancer. Br. J. Cancer 2015, 113, 1493–1501. [Google Scholar] [CrossRef]
- Takahashi, Y.; Horio, H.; Sakaguchi, K.; Hiramatsu, K.; Kawakita, M. Significant correlation between urinary N1, N12-diacetylspermine and tumor invasiveness in patients with clinical stage IA non-small cell lung cancer. BMC Cancer 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Wang, X.F.; Lim, S.; Choi, H.; Jett, J.; Vachani, A.; Zhang, Q.; Beukemann, M.; Seeley, M.; Martino, R.; et al. Accuracy of volatile urine biomarkers for the detection and characterization of lung cancer. BMC Cancer 2015, 15, 15–20. [Google Scholar] [CrossRef]
- Gào, X.; Xuan, Y.; Benner, A.; Anusruti, A.; Brenner, H.; Schöttker, B. Nitric Oxide Metabolites and Lung Cancer Incidence: A Matched Case-Control Study Nested in the ESTHER Cohort. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Gào, X.; Brenner, H.; Holleczek, B.; Cuk, K.; Zhang, Y.; Anusruti, A.; Xuan, Y.; Xu, Y.; Schöttker, B. Urinary 8-isoprostane levels and occurrence of lung, colorectal, prostate, breast and overall cancer: Results from a large, population-based cohort study with 14 years of follow-up. Free Radic. Biol. Med. 2018, 123, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Zhang, M. Evaluation of kininogen 1, osteopontin and α-1-antitrypsin in plasma, bronchoalveolar lavage fluid and urine for lung squamous cell carcinoma diagnosis. Oncol. Lett. 2020, 19, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Lu, J.J.; Zhang, S.S.; Su, C.H.; Luo, H.H. Midkine is a serum and urinary biomarker for the detection and prognosis of non-small cell lung cancer. Oncotarget 2016, 7, 87462–87472. [Google Scholar] [CrossRef]
- Liu, B.; Ricarte Filho, J.; Mallisetty, A.; Villani, C.; Kottorou, A.; Rodgers, K.; Chen, C.; Ito, T.; Holmes, K.; Gastala, N.; et al. Detection of Promoter DNA Methylation in Urine and Plasma Aids the Detection of Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 4339–4348. [Google Scholar] [CrossRef]
- Nolen, B.M.; Lomakin, A.; Marrangoni, A.; Velikokhatnaya, L.; Prosser, D.; Lokshin, A.E. Urinary Protein Biomarkers in the Early Detection of Lung Cancer. Cancer Prev. Res. 2015, 8, 111–119. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, Z.; Li, C.S.; Zhao, W.; Liang, Z.X.; Dai, Y.; Zhu, Q.; Miao, K.L.; Cui, D.H.; Chen, L.A. Differences in the genomic profiles of cell-free DNA between plasma, sputum, urine, and tumor tissue in advanced NSCLC. Cancer Med. 2019, 8, 910–919. [Google Scholar] [CrossRef]
- Kawamoto, H.; Hara, H.; Araya, J.; Ichikawa, A.; Fujita, Y.; Utsumi, H.; Hashimoto, M.; Wakui, H.; Minagawa, S.; Numata, T.; et al. Prostaglandin E-Major Urinary Metabolite (PGE-MUM) as a Tumor Marker for Lung Adenocarcinoma. Cancers 2019, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Kalinke, L.; Thakrar, R.; Janes, S.M. The promises and challenges of early non-small cell lung cancer detection: Patient perceptions, low-dose CT screening, bronchoscopy and biomarkers. Mol. Oncol. 2020, d, 1–21. [Google Scholar] [CrossRef]
- Burki, T.K. Predicting lung cancer prognosis using machine learning. Lancet Oncol. 2016, 17, e421. [Google Scholar] [CrossRef]
- Hart, G.R.; Roffman, D.A.; Decker, R.; Deng, J. A multi-parameterized artificial neural network for lung cancer risk prediction. PLoS ONE 2018, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, R.; Romano, R.; Sedda, G.; Borri, A.; Petrella, F.; Galetta, D.; Casiraghi, M.; Spaggiari, L. Diagnostic biomarkers for lung cancer prevention. J. Breath Res. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
Study | Population | Main Results |
---|---|---|
Amundsen T. 2014 [20] | Lung cancer (77) | Sensitivity: 60% Specificity: 29.2% |
Mazzola S.M. 2020 [21] | Lung cancer (140), Controls (194) | Sensitivity: 45–73% Specificity: 89–91% |
Study | Population | Lung Cancer Patients (n) | Method | Metabolites | Main Results |
---|---|---|---|---|---|
Mathé E.A. 2014 [22] | 1005 | 469 | LC-MS/MS | N-acetylneuraminic acid Cortisol sulfate Creatine Riboside 561+ | Accuracy = 78.1% |
Seow W.J. 2019 [23] | 564 | 275 | LC-MS/MS | 5-methyl-2-furoic-acid | N.R. |
Haznadar M. 2016 [24] | 529 | 178 | LC-MS/MS | Creatine riboside N-acetylneuraminic acid Cortisol sulfate 561+ | Sensitivity = 50% Specificity = 86% |
Yuan J.M. 2014 [25] | 165 | 82 | LC-MS/MS | PheT 3-OH-Phe total OH-Phe | |
Patel D.P. 2020 [26] | 174 | 76 | UPLC-ESI-MS | Creatine ribosi de Creatinine riboside Creatine Creatinine | |
Carrola J. 2011 [27] | 125 | 71 | HR-NMR | hydroxyisovalerate R-hydroxyisobutyrate N-acetylglutamine Creatinine | Sensitivity = 93% Specificity = 94% |
Zhang C. 2018 [28] | 231 | 33 | LC-MS/MS | FTL MAPK1IP1L FGB RAB33B RAB15 | Sensitivity = 90–96.9% Specificity = 54.5–90% |
Hanai Y. 2012 [29] | 40 | 20 | GC-TOF MS | 2-pentanone | Sensitivity = 85–95% Specificity = 70–100% |
Anton A.P. 2016 [30] | 20 | 6 | HS-PTV-MS | 2-Butanone 2-Pentanone Pyrrole 2-Heptanone 2-Ethyl-1-hexanol | Sensitivity = 40–100% Specificity = 100% |
Study | Population | Lung Cancer Patients (n) | Metabolites | Method/Device | Main Results |
---|---|---|---|---|---|
Takahashi Y., 2015 [31] | 171 | 171 | N1,N12-diacetylspermine | Colloid gold aggregation procedure | Sensitivity: 69.4% Specificity: 57.4% Accuracy: 60.8% |
Takahashi Y., 2015 [32] | 499 | 260 | Diacetylspermine | Colloidal gold aggregation procedure | Sensitivity: 62.2% Specificity: 71.7% |
Mazzone P.J., 2015 [33] | 145 | 90 | Volatile organic compounds analysis | Colorimetric sensor array | Sensitivity: 81.4% Specificity: 60.0% |
Gào X., 2019 [34] | 980 | 245 | NO metabolites (nitrite and nitrate) 8-isoprostane | ELISA | |
Gào X., 2018 [35] | 866 | 207 | 8-isoprostane | ELISA | Accuracy: 62.4% |
Zhang W., 2020 [36] | 309 | 112 | Ferritin light chain, Mitogen-Activated Protein Kinase 1 Interacting Protein 1 Like, Fibrinogen Beta Chain, Member RAS Oncogene Family RAB33B and RAB15 | ELISA | Accuracy: 82.0–94.7% |
Xia X., 2016 [37] | 65 | 45 | Midkine | ELISA | Sensitivity: 71.2% Specificity: 88.1% |
Wang W., 2020 [36] | 51 | 31 | Kininogen 1 Osteopontin α-1-antitrypsin | ELISA | Sensitivity: 85–100% Specificity: 53–65% |
Liu B., 2020 [38] | 101 | 74 | Gene: CDO1, TAC1, HOXA, SOX17 | Methylation on beads and real-time PCR | Sensitivity: 93% Specificity: 30% |
Nolen B.M., 2015 [39] | 234 | 83 | Insulin-like growth factor-binding protein 1, interleukin-1 receptor antagonist a, Carcinoembryonic antigen-related cell adhesion molecule 1 | Multiplexed bead-based immunoassays | Sensitivity: 72% Specificity: 100% Accuracy: 71–83% |
Wu Z., 2019 [40] | 50 | 50 | Cell-free DNA | Next-generation sequencing platform | Accuracy: 69% |
Kawamoto H., 2019 [41] | 178 | 54 | Prostaglandin E-major urinary metabolite | Radioimmunoassay | Sensitivity: 67.7% Specificity: 70.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparri, R.; Sedda, G.; Caminiti, V.; Maisonneuve, P.; Prisciandaro, E.; Spaggiari, L. Urinary Biomarkers for Early Diagnosis of Lung Cancer. J. Clin. Med. 2021, 10, 1723. https://doi.org/10.3390/jcm10081723
Gasparri R, Sedda G, Caminiti V, Maisonneuve P, Prisciandaro E, Spaggiari L. Urinary Biomarkers for Early Diagnosis of Lung Cancer. Journal of Clinical Medicine. 2021; 10(8):1723. https://doi.org/10.3390/jcm10081723
Chicago/Turabian StyleGasparri, Roberto, Giulia Sedda, Valentina Caminiti, Patrick Maisonneuve, Elena Prisciandaro, and Lorenzo Spaggiari. 2021. "Urinary Biomarkers for Early Diagnosis of Lung Cancer" Journal of Clinical Medicine 10, no. 8: 1723. https://doi.org/10.3390/jcm10081723
APA StyleGasparri, R., Sedda, G., Caminiti, V., Maisonneuve, P., Prisciandaro, E., & Spaggiari, L. (2021). Urinary Biomarkers for Early Diagnosis of Lung Cancer. Journal of Clinical Medicine, 10(8), 1723. https://doi.org/10.3390/jcm10081723