New Perspective for Soft Tissue Closure in Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Barbed Sutures
Abstract
:1. Introduction
1.1. Medication-Related Osteonecrosis of the Jaw (MRONJ)
1.2. Barbed Sutures (BSs)
1.3. Study Aim
2. Materials and Methods
2.1. Study Design
2.2. Target Trial
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American Association of Oral and Maxillofacial Surgeons American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw—2014 Update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef]
- Chalem, M.; Medina, A.; Sarmiento, A.K.; Gonzalez, D.; Olarte, C.; Pinilla, E.; Paz, J.; Casas, N.; Vega, M.P.; Diaz, E. Therapeutic Approach and Management Algorithms in Medication-Related Osteonecrosis of the Jaw (MONJ): Recommendations of a Multidisciplinary Group of Experts. Arch. Osteoporos 2020, 15, 101. [Google Scholar] [CrossRef]
- Marx, R.E. Pamidronate (Aredia) and Zoledronate (Zometa) Induced Avascular Necrosis of the Jaws: A Growing Epidemic. J. Oral Maxillofac. Surg. 2003, 61, 1115–1117. [Google Scholar] [CrossRef]
- Ruggiero, S.L.; Woo, S.-B. Biophosphonate-Related Osteonecrosis of the Jaws. Dent. Clin. N. Am. 2008, 52, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Malan, J.; Ettinger, K.; Naumann, E.; Beirne, O.R. The Relationship of Denosumab Pharmacology and Osteonecrosis of the Jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Troeltzsch, M.; Woodlock, T.; Kriegelstein, S.; Steiner, T.; Messlinger, K.; Troeltzsch, M. Physiology and Pharmacology of Nonbisphosphonate Drugs Implicated in Osteonecrosis of the Jaw. J. Can. Dent. Assoc. 2012, 78, c85. [Google Scholar]
- Weeda, L. Goodbye BRONJ… Hello MRONJ. Cranio 2016, 34, 283–284. [Google Scholar] [CrossRef] [Green Version]
- Moraschini, V.; Calasans-Maia, M.D.; Louro, R.S.; Arantes, E.B.R.; José de Albuquerque, C.-M. Weak Evidence for the Management of Medication-Related Osteonecrosis of the Jaw: An Overview of Systematic Reviews and Meta-Analyses. J. Oral Pathol. Med. 2020. [Google Scholar] [CrossRef]
- Nicolatou-Galitis, O.; Schiødt, M.; Mendes, R.A.; Ripamonti, C.; Hope, S.; Drudge-Coates, L.; Niepel, D.; Van den Wyngaert, T. Medication-Related Osteonecrosis of the Jaw: Definition and Best Practice for Prevention, Diagnosis, and Treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Comas-Calonge, A.; Figueiredo, R.; Gay-Escoda, C. Surgical Treatment vs. Conservative Treatment in Intravenous Bisphosphonate-Related Osteonecrosis of the Jaws. Systematic Review. J. Clin. Exp. Dent. 2017, 9, e302–e307. [Google Scholar] [CrossRef]
- Schiodt, M.; Vadhan-Raj, S.; Chambers, M.S.; Nicolatou-Galitis, O.; Politis, C.; Coropciuc, R.; Fedele, S.; Jandial, D.; Zhang, J.; Ma, H.; et al. A Multicenter Case Registry Study on Medication-Related Osteonecrosis of the Jaw in Patients with Advanced Cancer. Support Care Cancer 2018, 26, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, A.; Saia, G.; Bettini, G.; Tronchet, A.; Totola, A.; Bedogni, G.; Ferronato, G.; Nocini, P.F.; Blandamura, S. Long-Term Outcomes of Surgical Resection of the Jaws in Cancer Patients with Bisphosphonate-Related Osteonecrosis. Oral Oncol. 2011, 47, 420–424. [Google Scholar] [CrossRef]
- Silva, L.F.; Curra, C.; Munerato, M.S.; Deantoni, C.C.; Matsumoto, M.A.; Cardoso, C.L.; Curi, M.M. Surgical Management of Bisphosphonate-Related Osteonecrosis of the Jaws: Literature Review. Oral Maxillofac Surg. 2016, 20, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, A.M.; Lemound, J.; Lindhorst, D.; Rana, M.; Gellrich, N.-C. Surgical Management of Bisphosphonate-Related Osteonecrosis of the Jaw in Oncologic Patients: A Challenging Problem. Anticancer Res. 2011, 31, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Ruff, G.L. The History of Barbed Sutures. Aesthet Surg. J. 2013, 33, 12S–16S. [Google Scholar] [CrossRef] [PubMed]
- Dennis, C.; Sethu, S.; Nayak, S.; Mohan, L.; Morsi, Y.Y.; Manivasagam, G. Suture Materials—Current and Emerging Trends. J. Biomed. Mater. Res. A 2016, 104, 1544–1559. [Google Scholar] [CrossRef] [PubMed]
- Ingle, N.P.; King, M.W.; Zikry, M.A. Finite Element Analysis of Barbed Sutures in Skin and Tendon Tissues. J. Biomech. 2010, 43, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.T.M.; Bengtson, B.P. Clinical Applications of Barbed Suture in Aesthetic Breast Surgery. Clin. Plast Surg. 2015, 42, 595–604. [Google Scholar] [CrossRef]
- Taboada-Suárez, A.; Brea-García, B.; Couto-González, I.; Vila-Moriente, J.L. Correction of Protruding Ears (Weerda Grade I Deformity) Using Knotless Bidirectional Barbed Absorbable Sutures. Otolaryngol. Head Neck Surg. 2014, 151, 939–944. [Google Scholar] [CrossRef]
- Shermak, M.A. The Application of Barbed Sutures in Body Contouring Surgery. Aesthet Surg. J. 2013, 33, 72S–75S. [Google Scholar] [CrossRef] [Green Version]
- Atiyeh, B.S.; Dibo, S.A.; Costagliola, M.; Hayek, S.N. Barbed Sutures “Lunch Time” Lifting: Evidence-Based Efficacy. J. Cosmet. Dermatol. 2010, 9, 132–141. [Google Scholar] [CrossRef]
- Horne, D.F.; Kaminer, M.S. Reduction of Face and Neck Laxity with Anchored, Barbed Polypropylene Sutures (Contour Threads). Skin Therapy Lett. 2006, 11, 5–7. [Google Scholar]
- Moffa, A.; Rinaldi, V.; Mantovani, M.; Pierri, M.; Fiore, V.; Costantino, A.; Pignataro, L.; Baptista, P.; Cassano, M.; Casale, M. Different Barbed Pharyngoplasty Techniques for Retropalatal Collapse in Obstructive Sleep Apnea Patients: A Systematic Review. Sleep Breath 2020, 24, 1115–1127. [Google Scholar] [CrossRef]
- Han, Y.; Yang, W.; Pan, J.; Zeng, L.; Liang, G.; Lin, J.; Luo, M.; Guo, D.; Liu, J. The Efficacy and Safety of Knotless Barbed Sutures in Total Joint Arthroplasty: A Meta-Analysis of Randomized-Controlled Trials. Arch. Orthop. Trauma Surg. 2018, 138, 1335–1345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xue, D.; Yin, H.; Xie, H.; Ma, H.; Chen, E.; Hu, D.; Pan, Z. Barbed versus Traditional Sutures for Wound Closure in Knee Arthroplasty: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 19764. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Kim, J.S.; Roh, S.-G.; Lee, N.-H.; Yang, K.-M. Biomechanical Analysis of Barbed Suture in Flexor Tendon Repair versus Conventional Method: Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2016, 138, 666e–674e. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Rowlands, M.; Au, A. Barbed Sutures and Tendon Repair—A Review. Hand (N. Y.) 2015, 10, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, E.; Wyman, A.; Hahn, L.; Hart, S. Barbed Sutures in Minimally Invasive Gynecologic Surgery. Surg. Technol. Int. 2016, 28, 185–191. [Google Scholar] [PubMed]
- Kondrup, J.D.; Anderson, F.R. An Update on the Use of Barbed Suture in Minimally Invasive Gynecological Surgery (MIGS). Surg. Technol. Int. 2016, 28, 161–164. [Google Scholar]
- Porreca, A.; Salvaggio, A.; Dandrea, M.; Cappa, E.; Zuccala, A.; Del Rosso, A.; D’Agostino, D. Robotic-Assisted Radical Prostatectomy with the Use of Barbed Sutures. Surg. Technol. Int. 2017, 30, 39–43. [Google Scholar] [PubMed]
- Lin, Y.-F.; Lai, S.-K.; Liu, Q.-Y.; Liao, B.-H.; Huang, J.; Du, L.; Wang, K.-J.; Li, H. Efficacy and Safety of Barbed Suture in Minimally Invasive Radical Prostatectomy: A Systematic Review and Meta-Analysis. Kaohsiung J. Med. Sci. 2017, 33, 107–115. [Google Scholar] [CrossRef]
- Ferrer-Márquez, M.; Belda-Lozano, R. Barbed Sutures in General and Digestive Surgery. Review. Cir. Esp. 2016, 94, 65–69. [Google Scholar] [CrossRef]
- Lodi, S.; Phillips, A.; Lundgren, J.; Logan, R.; Sharma, S.; Cole, S.R.; Babiker, A.; Law, M.; Chu, H.; Byrne, D.; et al. Effect Estimates in Randomized Trials and Observational Studies: Comparing Apples With Apples. Am. J. Epidemiol. 2019, 188, 1569–1577. [Google Scholar] [CrossRef]
- Schomaker, M.; Kühne, F.; Siebert, U. Re: “Effect estimates in randomized trials and observational studies: Comparing apples with apples”. Am. J. Epidemiol. 2020, 189, 77–78. [Google Scholar] [CrossRef]
- Hernán, M.A. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data. Am. J. Public Health 2018, 108, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J. An Introduction to Causal Inference. Int. J. Biostat. 2010, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Ristow, O.; Rückschloß, T.; Bodem, J.; Berger, M.; Bodem, E.; Kargus, S.; Engel, M.; Hoffmann, J.; Freudlsperger, C. Double-Layer Closure Techniques after Bone Surgery of Medication-Related Osteonecrosis of the Jaw—A Single Center Cohort Study. J. Craniomaxillofac Surg. 2018, 46, 815–824. [Google Scholar] [CrossRef]
- Ahrenbog, G.; Gottsauner, M.; Meier, J.K.; Ettl, T.; Reichert, T.E.; Klingelhöffer, C. Surgical Treatment of Advanced Medication-Related Osteonecrosis of the Jaws: Comparison of Soft Tissue Closure Techniques and Evaluation of Side Effects. J. Craniomaxillofac Surg. 2020, 48, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Robins, J.M. Estimating Causal Effects from Epidemiological Data. J. Epidemiol. Community Health 2006, 60, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Hernán, M.A.; Robins, J.M. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am. J. Epidemiol. 2016, 183, 758–764. [Google Scholar] [CrossRef] [Green Version]
Patients without Prior Surgery | Total | All Patients | Total | ||||
---|---|---|---|---|---|---|---|
BS Group n (%) | Control Group n (%) | BS Group n (%) | Control Group n (%) | ||||
Outcome | Dehiscence yes | 10 (18.2%) | 103 (81.1%) | 113 (62.1%) | 15 (17.9%) | 177 (79.7%) | 192 (62.7%) |
Dehiscence no | 45 (81.8%) | 24 (18.9%) | 69 (37.9%) | 69 (82.1%) | 45 (20.3%) | 114 (37.3%) | |
Time to event in days | Mean (SD) | 234.76 (219.94) | 117.04 (278.19) | 152.62 (266.92) | 243.17 (210.88) | 128.97 (300.29) | 160.32 (282.93) |
Median IQR (25–75%) | 148 407 (42–449) | 15 40 (12–52) | 29 164 (13–177) | 195.5 398.5 (48–446.5) | 19 54 (12–66) | 30 168 (14–182) | |
Surgeons | 1 | 30 (54.6%) | 5 (3.9%) | 35 (19.2%) | 44 (52.4%) | 9 (4.0%) | 53 (17.3%) |
2 | 17 (30.9%) | 0 (0%) | 17 (9.3%) | 28 (33.3%) | 3 (1.4%) | 31 (10.1%) | |
3 | 7 (12.7%) | 6 (4.7%) | 13 (7.1%) | 9 (10.7%) | 7 (3.2%) | 16 (5.2%) | |
Other | 1 (1.8%) | 116 (91.4%) | 117 (64.3%) | 3 (3.6%) | 203 (91.4%) | 206 (67.3%) | |
Stage | 1 | 17 (30.9%) | 20 (15.8%) | 37 (20.3%) | 32 (38.1%) | 58 (26.1%) | 90 (29.4%) |
2 | 30 (54.5%) | 94 (74.0%) | 124 (68.1%) | 37 (44.0%) | 137 (61.7%) | 174 (56.9%) | |
3 (fistulas) | 8 (14.6%) | 13 (10.2%) | 21 (11.5%) | 15 (17.9%) | 27 (12.2%) | 42 (13.7%) | |
Drugs | Biphosphonate only | 8 (14.6%) | 57 (44.9%) | 65 (35.7%) | 15 (17.9%) | 106 (47.8%) | 121 (39.5%) |
Denosumab only | 29 (52.7%) | 42 (33.1%) | 71 (39.0%) | 40 (47.6%) | 61 (27.5%) | 101 (33.0%) | |
Biphosphonate -> Denosumab | 13 (23.6%) | 24 (18.9%) | 37 (20.3%) | 21 (25.0%) | 48 (21.2%) | 69 (22.5%) | |
Cancer | Yes | 47 (85.4%) | 111 (87.4%) | 158 (86.8%) | 72 (85.7%) | 189 (85.1%) | 261 (85.3%) |
No | 8 (14.6%) | 16 (12.6%) | 24 (13.2%) | 12 (14.3%) | 33 (14.9%) | 45 (14.7%) | |
Sex | Men | 20 (36.4%) | 52 (40.9%) | 72 (39.6%) | 27 (32.1%) | 83 (37.4%) | 110 (35.9%) |
Women | 35 (63.6%) | 75 (59.1%) | 110 (60.4%) | 57 (67.9%) | 139 (62.6%) | 196 (64.1%) | |
Age at surgery in years | Mean (SD) | 69.2 (11.7) | 68.8 (12.6) | 68.9 (12.3) | 69.5 (12.1) | 68.6 (13.2) | 68.9 (12.9) |
Median IQR (25–75%) | 71.9 18.7 (59.7–78.4) | 72.6 17.7 (60.9–78.6) | 72.5 18.1 (60.5–78.6) | 72.7 19.1 (60.1–79.2) | 73.4 19.6 (59.5–79.1) | 73.2 19.4 (59.7–79.1) |
Setting | Hazard Ratio (HR) BS versus Vicryl® | 95% CI | p-Value |
---|---|---|---|
Patients without prior surgery, crude effect | 0.13 | 0.06; 0.25 | <0.001 |
Patients without prior surgery, adjusted for surgeon and calendar time | 0.03 | 0.01; 0.14 | <0.001 |
Patients without prior surgery, crude effect, for three treatment groups | 0.14 (Stratafix™) 0.11 (V-Loc™) Ref (Vicryl®) | 0.07; 0.31 0.04; 0.35 | <0.001 <0.001 |
Patients without prior surgery, adjusted for surgeon and calendar time, for three treatment groups | 0.04 (Stratafix™) a 0.03 (V-Loc™) a Ref (Vicryl®) | 0.01; 0.16 0.01; 0.15 | <0.001 <0.001 |
All patients, crude effect | 0.14 a | 0.08; 0.23 | <0.001 |
All patients, adjusted for surgeon and calendar time | 0.08 a | 0.03; 0.21 | <0.001 |
Patients without prior surgery, crude effect, effect modification of stage | 0.20 (stage 1) a 0.14 (stage 2) a 0.06 (stage 3) a | 0.06; 0.69 0.06; 0.32 0.01; 0.48 | 0.011 <0.001 0.008 |
Patients without prior surgery, adjusted for surgeon and calendar time, effect modification of stage | 0.05 (stage 1) a 0.04 (stage 2) a 0.02 (stage 3) a | 0.01; 0.30 0.01; 0.16 0.01; 0.19 | 0.001 <0.001 0.001 |
Patients without prior surgery, crude effect, effect modification of cancer | 0.16 (cancer) a | 0.08; 0.30 | <0.001 |
Patients without prior surgery, adjusted for surgeon and calendar time, effect modification cancer | 0.04 (cancer) a | 0.01; 0.17 | <0.001 |
Patients without prior surgery, effect modification of drug types administered | 0.11 (Denosumab only) a -- (Biphosphonate only) b 0.23 (Biphosphonate followed by Denosumab) a | 0.05; 0.26 -- 0.07; 0.80 | <0.001 -- 0.020 |
Patients without prior surgery, adjusted for surgeon and calendar time, effect modification of drug types administered | 0.06 (Denosumab only) a -- (Biphosphonate only) b 0.10 (Biphosphonate followed by Denosumab) a | 0.01; 0.28 -- 0.015; 0.65 | <0.001 -- 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laimer, J.; Hechenberger, M.; Lercher, J.M.; Born, E.; Schomaker, M.; Puntscher, S.; Siebert, U.; Bruckmoser, E. New Perspective for Soft Tissue Closure in Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Barbed Sutures. J. Clin. Med. 2021, 10, 1677. https://doi.org/10.3390/jcm10081677
Laimer J, Hechenberger M, Lercher JM, Born E, Schomaker M, Puntscher S, Siebert U, Bruckmoser E. New Perspective for Soft Tissue Closure in Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Barbed Sutures. Journal of Clinical Medicine. 2021; 10(8):1677. https://doi.org/10.3390/jcm10081677
Chicago/Turabian StyleLaimer, Johannes, Martin Hechenberger, Johanna Maria Lercher, Eva Born, Michael Schomaker, Sibylle Puntscher, Uwe Siebert, and Emanuel Bruckmoser. 2021. "New Perspective for Soft Tissue Closure in Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Barbed Sutures" Journal of Clinical Medicine 10, no. 8: 1677. https://doi.org/10.3390/jcm10081677
APA StyleLaimer, J., Hechenberger, M., Lercher, J. M., Born, E., Schomaker, M., Puntscher, S., Siebert, U., & Bruckmoser, E. (2021). New Perspective for Soft Tissue Closure in Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Barbed Sutures. Journal of Clinical Medicine, 10(8), 1677. https://doi.org/10.3390/jcm10081677