The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design and Participants
2.2. Randomization and Blinding
2.3. Study Protocol
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hausenloy, D.J.; Candilio, L.; Evans, R.; Ariti, C.; Jenkins, D.P.; Kolvekar, S.; Knight, R.; Kunst, G.; Laing, C.; Nicholas, J.; et al. Remote Ischemic Preconditioning and Outcomes of Cardiac Surgery. N. Engl. J. Med. 2015, 373, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Yang, L.; Wang, G.; Zhang, C.; Fang, Z.; Lei, G.; Shi, S.; Li, J. Remote Ischemic Preconditioning Prevents Postoperative Acute Kidney Injury After Open Total Aortic Arch Replacement: A Double-Blind, Randomized, Sham-Controlled Trial. Anesth. Analg. 2019, 129, 287–293. [Google Scholar] [CrossRef]
- Zhang, L.; Diao, Y.; Chen, G.; Tanaka, A.; Eastwood, G.M.; Bellomo, R. Remote ischemic conditioning for kidney protection: A meta-analysis. J. Crit. Care 2016, 33, 224–232. [Google Scholar] [CrossRef]
- Yang, Y.; Lang, X.B.; Zhang, P.; Lv, R.; Wang, Y.F.; Chen, J.H. Remote ischemic preconditioning for prevention of acute kidney injury: A meta-analysis of randomized controlled trials. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2014, 64, 574–583. [Google Scholar] [CrossRef]
- Menting, T.P.; Wever, K.E.; Ozdemir-van Brunschot, D.M.; Van der Vliet, D.J.; Rovers, M.M.; Warle, M.C. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst. Rev. 2017, 3, Cd010777. [Google Scholar] [CrossRef]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Scosyrev, E.; Messing, E.M.; Sylvester, R.; Campbell, S.; Van Poppel, H. Renal function after nephron-sparing surgery versus radical nephrectomy: Results from EORTC randomized trial 30904. Eur. Urol. 2014, 65, 372–377. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Dong, W.; Remer, E.; Li, J.; Demirjian, S. Acute kidney injury after partial nephrectomy: Role of parenchymal mass reduction and ischemia and impact on subsequent functional recovery. Eur. Urol. 2016, 69. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Campbell, R.A.; Sharma, N.; Remer, E.M.; Simmons, M.N.; Li, J.; Demirjian, S.; Kaouk, J.; Campbell, S.C. Parenchymal volume preservation and ischemia during partial nephrectomy: Functional and volumetric analysis. Urology 2013, 82, 263–268. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Dong, B.; Kong, W.; Zhang, J.; Xue, W.; Liu, D.; Huang, Y. Effect of remote ischaemic preconditioning on renal protection in patients undergoing laparoscopic partial nephrectomy: A ’blinded’ randomised controlled trial. BJU Int. 2013, 112, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.Y.; Li, Y.; He, S.F.; Song, J.; Yu, D.X.; Wong, G.T.C.; Zhang, Y. Effects of differential-phase remote ischemic preconditioning intervention in laparoscopic partial nephrectomy: A single blinded, randomized controlled trial in a parallel group design. J. Clin. Anesth. 2017, 41, 21–28. [Google Scholar] [CrossRef]
- Dieterle, F.; Perentes, E.; Cordier, A.; Roth, D.R.; Verdes, P.; Grenet, O.; Pantano, S.; Moulin, P.; Wahl, D.; Mahl, A.; et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 2010, 28, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Koyner, J.L.; Garg, A.X.; Coca, S.G.; Sint, K.; Thiessen-Philbrook, H.; Patel, U.D.; Shlipak, M.G.; Parikh, C.R. Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Society Nephrol. JASN 2012, 23, 905–914. [Google Scholar] [CrossRef]
- Mulligan, J.S.; Blue, P.W.; Hasbargen, J.A. Methods for measuring GFR with technetium-99m-DTPA: An analysis of several common methods. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1990, 31, 1211–1219. [Google Scholar]
- Kim, W.H.; Shin, K.W.; Ji, S.H.; Jang, Y.E.; Lee, J.H.; Jeong, C.W.; Kwak, C.; Lim, Y.J. Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. J. Clin. Med. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Hur, M.; Park, S.K.; Shin, J.; Choi, J.Y.; Yoo, S.; Kim, W.H.; Kim, J.T. The effect of remote ischemic preconditioning on serum creatinine in patients undergoing partial nephrectomy: A study protocol for a randomized controlled trial. Trials 2018, 19, 473. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.K.; Kim, W.J.; Chin, J.H.; Lee, E.H.; Don Hahm, K.; Yeon Sim, J.; Cheol Choi, I. Intraoperative renal regional oxygen desaturation can be a predictor for acute kidney injury after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014, 28, 564–571. [Google Scholar] [CrossRef]
- Csáthy, L.; Oláh, A.V.; Pócsi, I.; Varga, J.; Balla, G.; Price, R.G. Age-dependent urinary N-acetyl-beta-D-glucosaminidase activity in healthy children. Orv. Hetil. 1994, 135, 1301–1303. [Google Scholar]
- Kidney Disease Improving Global Outcomes Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, X.; Xu, J.; Zhang, Z.; Klingensmith, N.J.; Liu, S.; Pan, C.; Yang, Y.; Qiu, H. Effect of Remote Ischemic Preconditioning on Outcomes in Adult Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Studies. Anesth. Analg. 2018, 127, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Zhou, M.; Xu, J.; Fang, C.; Zhong, Z.; Zhou, Y.; Xu, J.; Zhou, W. Effect of Remote Ischemic Preconditioning on Patients Undergoing Elective Major Vascular Surgery: A Systematic Review and Meta-analysis. Ann. Vasc. Surg. 2020, 62, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Stokfisz, K.; Ledakowicz-Polak, A.; Kidawa, M.; Zielinska, M. Remote Ischemic Preconditioning and Contrast-Induced Acute Kidney Injury in Patients Undergoing Elective Percutaneous Coronary Intervention: A Randomized Clinical Trial. Curr. Ther. Res. Clin. Exp. 2020, 93, 100599. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Levey, A.S.; Serio, A.M.; Snyder, M.; Vickers, A.J.; Raj, G.V.; Scardino, P.T.; Russo, P. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: A retrospective cohort study. Lancet Oncol. 2006, 7, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Kim, W.H. Perioperative Cardioprotection by Remote Ischemic Conditioning. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunaydin, B.; Cakici, I.; Soncul, H.; Kalaycioglu, S.; Cevik, C.; Sancak, B.; Kanzik, I.; Karadenizli, Y. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol. Res. 2000, 41, 493–496. [Google Scholar] [CrossRef]
- Choi, J.E.; You, J.H.; Kim, D.K.; Rha, K.H.; Lee, S.H. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: A systematic review and meta-analysis. Eur. Urol. 2015, 67, 891–901. [Google Scholar] [CrossRef]
- Ney, J.; Hoffmann, K.; Meybohm, P.; Goetzenich, A.; Kraemer, S.; Benstöm, C.; Weber, N.C.; Bickenbach, J.; Rossaint, R.; Marx, G.; et al. Remote Ischemic Preconditioning Does Not Affect the Release of Humoral Factors in Propofol-Anesthetized Cardiac Surgery Patients: A Secondary Analysis of the RIPHeart Study. Int. J. Mol. Sci. 2018, 19, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.; Garg, A.X.; Devereaux, P.J.; Argalious, M.; Honar, H.; Sessler, D.I. The association between perioperative hemoglobin and acute kidney injury in patients having noncardiac surgery. Anesth. Analg. 2013, 117, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.Z.; Rosen, D.C.; Paulucci, D.J.; Sfakianos, J.P.; Abaza, R.; Badani, K.K. R.E.N.A.L. Nephrometry Score Predicts Non-neoplastic Parenchymal Volume Removed During Robotic Partial Nephrectomy. J. Endourol. 2016, 30, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; McVeigh, T.; Cerneviciute, R.; Mohamed, S.; Tubassam, M.; Karim, M.; Walsh, S. Effectiveness of contrast-associated acute kidney injury prevention methods; a systematic review and network meta-analysis. BMC Nephrol. 2018, 19, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaemian, A.; Yazdani, J.; Azizi, S.; Farsavian, A.A.; Nabati, M.; Malekrah, A.; Dabirian, M.; Espahbodi, F.; Mirjani, B.; Mohsenipouya, H.; et al. Remote ischemic preconditioning to reduce contrast-induced acute kidney injury in chronic kidney disease: A randomized controlled trial. BMC Nephrol. 2018, 19, 373. [Google Scholar] [CrossRef]
- Hu, J.; Liu, S.; Jia, P.; Xu, X.; Song, N.; Zhang, T.; Chen, R.; Ding, X. Protection of remote ischemic preconditioning against acute kidney injury: A systematic review and meta-analysis. Crit. Care 2016, 20, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruf, B.; Bonelli, V.; Balling, G.; Hörer, J.; Nagdyman, N.; Braun, S.L.; Ewert, P.; Reiter, K. Intraoperative renal near-infrared spectroscopy indicates developing acute kidney injury in infants undergoing cardiac surgery with cardiopulmonary bypass: A case-control study. Crit. Care 2015, 19, 27. [Google Scholar] [CrossRef] [Green Version]
- Gist, K.M.; Kaufman, J.; da Cruz, E.M.; Friesen, R.H.; Crumback, S.L.; Linders, M.; Edelstein, C.; Altmann, C.; Palmer, C.; Jalal, D.; et al. A Decline in Intraoperative Renal Near-Infrared Spectroscopy Is Associated with Adverse Outcomes in Children Following Cardiac Surgery. Pediatr. Crit. Care Med. 2016, 17, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, B.; Bole, I.; Patel, V.; Brown, D.L. Clinical Outcomes of Remote Ischemic Preconditioning Prior to Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lu, X.; Mao, Z.; Kang, H.; Liu, H.; Pan, L. The diagnostic accuracy of urinary [TIMP-2] [IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine 2017, 96. [Google Scholar] [CrossRef]
Variables | RIPC Group (n = 41) | Control Group (n = 40) | Standardized Difference (95% Confidence Interval) |
---|---|---|---|
Demographic data | |||
Age, y | 63 (52–72) | 64 (56–69) | 0.47 (−0.12 to 0.91) |
Female, n (%) | 13 (31.7) | 13 (32.5) | 0.02 (−0.42 to 0.45) |
Body mass index, kg/m2 | 25.0 (23.3–26.4) | 24.0 (21.1–26.6) | 0.31 (−0.13 to 0.75) |
Baseline medical status | |||
Hypertension, n | 15 (36.6) | 15 (37.5) | 0.02 (−0.42 to 0.45) |
Diabetes mellitus, n | 9 (22.0) | 6 (15.0) | 0.18 (−0.26 to 0.62) |
Hypercholesterolemia, n | 9 (22.0) | 2 (5.0) | 0.51 (0.07 to 0.96) |
Coronary artery disease, n | 3 (7.3) | 0 (0) | 0.40 (−0.04 to 0.84) |
Cerebrovascular accident, n | 1 (2.4) | 0 (0) | 0.22 (−0.21 to 0.66) |
Arrhythmia, n | 1 (2.4) | 1 (2.5) | 0.00 (−0.43 to 0.44) |
Chronic obstructive pulmonary disease, n | - | - | - |
Asthma, n | 1 (2.4) | 1 (2.5) | 0.00 (−0.43 to 0.44) |
ASA physical status classification (1/2/3), n | 16 (39.0)/23 (56.1)/ 2 (4.9) | 21 (52.5)/20 (50.0)/0 (0) | 0.37 (−0.07 to 0.81) |
Radiocontrast administration within one month, n | 11 (26.8) | 13 (32.5) | 0.12 (−0.31 to 0.56) |
Number of antihypertensive agents, n | 0 (0–1) | 0 (0–1) | 0.38 (−0.10 to 0.85) |
Angiotensin-converting enzymes, n | 1 (2.6) | 0 (0) | 0.23 (−0.21 to 0.67) |
Smoking, pack year | 0 (0–0) | 0 (0–0) | 0.32 (−0.12 to 0.76) |
Baseline laboratory findings | |||
Hemoglobin, g/dL | 14.1 (13.0–15.1) | 14.2 (13.0–15.2) | 0.11 (−0.33 to 0.55) |
Serum albumin, g/dL | 4.4 (4.2–4.5) | 4.6 (4.3–4.7) | 0.40 (−0.04 to 0.84) |
Total cholesterol, mg/dL | 168 (153–217) | 188 (167–219) | 0.34 (−0.097 to 0.78) |
Blood glucose, mg/dL | 102 (96–122) | 105 (96–122) | 0.03 (−0.40 to 0.47) |
Hemoglobin A1c | 5.7 (5.4–6.5) | 5.5 (5.3–5.9) | 0.31 (−0.17 to 0.80) |
Erythrocyte sedimentation rate | 12.0 (6.8–23.5) | 10.5 (4.0–17.5) | 0.42 (−0.04 to 0.88) |
Surgical parameters | |||
Surgery type, n | |||
Laparoscopic/Robot-assisted/Open | 8 (19.5)/21 (51.2)/ 12 (29.3) | 2 (5.0)/18 (45.0)/ 20 (50.0) | 0.56 (0.11 to 1.00) |
Clinical stage, n | |||
T1a/ T1b | 33 (80.5)/6 (14.6) | 34 (85.0)/6 (15.0) | - |
T2a/ T2b | 1(2.4)/- | -/- | |
T3a/ T3b / T3c | -/-/- | -/-/- | |
N 0/1 | 41/- | 40/- | - |
M 0/1 | 41/- | 40/- | - |
R.E.N.A.L. score | 5 (4–8) | 7 (5–8) | 0.35 (−0.09 to 0.79) |
Low (4–6) | 25 (61.0) | 17 (42.5) | 0.46 (0.02 to 0.91) |
Intermediate (7–9) | 16 (39.0) | 24 (60.0) | |
High (10–12) | - | - | |
Tumor maximal diameter, cm | 2.5 (2.0–3.4) | 2.2 (1.6–3.6) | 0.06 (−0.38 to 0.50) |
Tumor location (anterior/posterior/neither) | 14 (34.1)/20 (48.8)/ 7 (17.1) | 17 (42.5)/14 (35.0)/7 (17.5) | 0.28 (−0.16 to 0.72) |
Operation time, min | 100 (83–118) | 110 (83–128) | 0.04 (−0.39 to 0.48) |
Renal ischemic time, min | 17.0 (13.2–21.2) | 17.0 (12.5–21.6) | 0.01 (−0.44 to 0.45) |
Anesthesia time, min | 140 (115–160) | 145(115–165) | 0.14 (−0.30 to 0.57) |
Preoperative DTPA renal scan | |||
Left split function, % | 51 (47–53) | 50 (47–52) | 0.25 (−0.19 to 0.68) |
Left GFR, mL/min/1.73 m2 | 44 (31–53) | 43 (36–56) | 0.15 (−0.29 to 0.59) |
Right split function, % | 49 (47–53) | 50 (48–53) | 0.30 (−0.14 to 0.74) |
Right GFR, mL/min/1.73 m2 | 38 (33–50) | 49 (39–55) | 0.33 (−0.11 to 0.77) |
Total GFR, mL/min/1.73 m2 | 82 (65–104) | 93 (78–106) | 0.25 (−0.19 to 0.69) |
Normalized GFR, mL/min/1.73 m2 | 84 (66–102) | 86 (72–110) | 0.24 (−0.20 to 0.68) |
Bleeding and transfusion amount | |||
pRBC transfusion, n | - | - | - |
pRBC transfusion, unit | - | - | - |
FFP transfusion, unit | - | - | - |
Estimated blood loss, mL | 100 (50–200) | 150 (58–263) | 0.26 (−0.18 to 0.70) |
Anesthesia-related parameters | |||
Volatile anesthetics use, n | |||
Sevoflurane, n | 9 (22.0) | 9 (22.5) | 0.01 (−0.42 to 0.45) |
Desflurane, n | 32 (78.0) | 32 (80.0) | |
Crystalloid administration, mL | 800 (550–950) | 875 (678–1063) | 0.36 (−0.08 to 0.80) |
Colloid administration, mL | - | - | - |
Intraoperative urine output, mL | 100 (50–200) | 95 (50–155) | 0.39 (−0.05 to 0.83) |
Intraoperative arterial blood pressure | |||
Mean, mmHg | 85 (81–91) | 87 (78–94) | 0.10 (−0.34 to 0.53 |
Maximum, mmHg | 108 (102–118) | 112 (102–120) | 0.18 (−0.26 to 0.62) |
Minimum, mmHg | 67 (54–72) | 68 (62–74) | 0.40 (−0.05 to 0.83) |
Intraoperative ephedrine dose, mg | 5 (0–10) | 0 (0–5) | 0.19 (−0.25 to 0.62) |
Intraoperative phenylephrine dose, mcg | 0 (0–0) | 0 (0–0) | 0.17 (−0.27 to 0.61) |
Vasopressor infusion during surgery | 1 (2.4) | - | - |
Variables | RIPC Group (n = 41) | Control Group (n = 40) | p-Value | Difference in Medians (95% Confidence Interval) |
---|---|---|---|---|
Postoperative day one serum creatinine, mg/dL | 0.87 (0.72–1.03) | 0.92 (0.71–1.12) | 0.728 | 0.0 (−0.11 to 0.13) |
Variables | RIPC Group (n = 41) | Control Group (n = 40) | p-Value | Difference in Medians or Risk (95% Confidence Interval) |
---|---|---|---|---|
Acute kidney injury, n | 5 (12.2) | 7 (17.5) | 0.502 | 0.66 (0.19 to 2.27) |
Length of hospital stay, days | 5 (5–5) | 5 (5–5) | 0.348 | 0 (0 to 0) |
Length of ICU stay, days | 0 (0–0) | 0 (0–0) | 0.554 | 0 (0 to 0) |
Postoperative pRBC transfusion, n | 1 (2.4) | 1 (2.4) | 0.999 | - |
Postoperative complications, n | 2 (4.9) | 3 (7.3) | 0.675 | 0.63 (0.10 to 4.00) |
Bleeding, n | 1 (2.4) | 2 (5.0) | - | - |
Wound dehiscence, n | - | 1 (2.5) | - | - |
Postoperative seizure, n | 1 (2.4) | - | - | - |
Clavien–Dindo classification, Grade 1/2/3/4/5 | 12(29.3)/1(2.4)/1(2.4) /-/- | 8(20.0)/1(2.5)/2(5) /-/- | 0.774 | 1.12 (0.44 to 2.83) |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Radiocontrast use within 1 month | 5.73 | 1.05–31.3 | 0.044 |
R.E.N.A.L. score | 2.37 | 1.25–4.52 | 0.009 |
Preoperative hemoglobin (mg/dL) | 2.11 | 1.17–3.80 | 0.013 |
Variables | Incidence of AKI | p-Value | Risk Difference (95% Confidence Interval) | |
---|---|---|---|---|
RIPC (n = 41) | Control (n = 40) | |||
Type of Partial Nephrectomy (n = 81) | ||||
Laparoscopic (n = 10) | 2/8 (25.0) | -/2 (0.0) | 0.999 | - |
Robot-assisted (n = 39) | 1/21 (4.8) | 3/18 (16.7) | 0.318 | 0.25 (0.02 to 2.65) |
Open (n = 32) | 2/12 (16.7) | 4/20 (20.0) | 0.999 | 0.80 (0.12 to 5.20) |
R.E.N.A.L. score | ||||
Low (4–6) (n = 40) | 1/25 (4.0) | -/15 (0.0) | 0.999 | - |
Intermediate (7–9) (n = 40) | 4/16 (25.0) | 7/24 (29.2) | 0.717 | 0.692 (0.15 to 3.3) |
High (10–12) (n = 0) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Hur, M.; Cho, H.; Bae, J.; Yoon, H.-K.; Lee, H.-J.; Jeong, Y.H.; Cho, Y.J.; Ku, J.H.; Kim, W.H. The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 1636. https://doi.org/10.3390/jcm10081636
Chung J, Hur M, Cho H, Bae J, Yoon H-K, Lee H-J, Jeong YH, Cho YJ, Ku JH, Kim WH. The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. Journal of Clinical Medicine. 2021; 10(8):1636. https://doi.org/10.3390/jcm10081636
Chicago/Turabian StyleChung, Jaeyeon, Min Hur, Hyeyeon Cho, Jinyoung Bae, Hyun-Kyu Yoon, Ho-Jin Lee, Young Hyun Jeong, Youn Joung Cho, Ja Hyeon Ku, and Won Ho Kim. 2021. "The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial" Journal of Clinical Medicine 10, no. 8: 1636. https://doi.org/10.3390/jcm10081636
APA StyleChung, J., Hur, M., Cho, H., Bae, J., Yoon, H.-K., Lee, H.-J., Jeong, Y. H., Cho, Y. J., Ku, J. H., & Kim, W. H. (2021). The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. Journal of Clinical Medicine, 10(8), 1636. https://doi.org/10.3390/jcm10081636