Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choung, P.-H. A new osteotomy for the correction of mandibular prognathism: Techniques and rationale of the intraoral vertico-sagittal ramus osteotomy. J. Cranio-Maxillofac. Surg. 1992, 20, 153–162. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, T.-J.; Jeon, J.-H. Unilateral intraoral vertical ramus osteotomy and sagittal split ramus osteotomy for the treatment of asymmetric mandibles. J. Korean Assoc. Oral Maxillofac. Surg. 2015, 41, 102. [Google Scholar] [CrossRef][Green Version]
- Kuroda, S.; Sugawara, Y.; Yamashita, K.; Mano, T.; Takano-Yamamoto, T. Skeletal Class III oligodontia patient treated with titanium screw anchorage and orthognathic surgery. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 730–738. [Google Scholar] [CrossRef]
- Eriksen, E.S.; Wisth, P.; Løes, S.; Moen, K. Skeletal and dental stability after intraoral vertical ramus osteotomy: A long-term follow-up. Int. J. Oral Maxillofac. Surg. 2017, 46, 72–79. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Wang, R.; Wong, N.S.M.; Li, D.T.S.; Au, S.W.; Choi, W.S.; Su, Y.-X. Surgical morbidities of sagittal split ramus osteotomy versus intraoral vertical ramus osteotomy for the correction of mandibular prognathism: A randomized clinical trial. Int. J. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Ueki, K.; Hashiba, Y.; Marukawa, K.; Okabe, K.; Nakagawa, K.; Alam, S.; Yamamoto, E. Evaluation of bone formation after sagittal split ramus osteotomy with bent plate fixation using computed tomography. J. Oral Maxillofac. Surg. 2009, 67, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Ra’ed, M.; Al-Khen, M. Skeletal relapse after mandibular setback in bi max surgery: Intraoral vertical ramus versus bilateral sagittal split osteotomies. J. Maxillofac. Oral Surg. 2014, 13, 471–477. [Google Scholar]
- Reyneke, J.P.; Ferretti, C. Intraoperative diagnosis of condylar sag after bilateral sagittal split ramus osteotomy. Br. J. Oral Maxillofac. Surg. 2002, 40, 285–292. [Google Scholar] [CrossRef]
- Mitsukawa, N.; Morishita, T.; Saiga, A.; Kubota, Y.; Omori, N.; Akita, S.; Satoh, K. Dislocation of temporomandibular joint: Complication of sagittal split ramus osteotomy. J. Craniofac. Surg. 2013, 24, 1674–1675. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K. Complications associated with orthognathic surgery. J. Korean Assoc. Oral Maxillofac. Surg. 2017, 43, 3. [Google Scholar] [CrossRef] [PubMed]
- Catherine, Z.; Breton, P.; Bouletreau, P. Condylar resorption after orthognathic surgery: A systematic review. Rev. Stomatol. Chir. Maxillo-Fac. Chir. Orale 2016, 117, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.E.; Lee, N.-K.; Jang, M.-J.; Jo, D.-W.; Yun, P.-Y.; Kim, Y.-K. Comparative evaluation of the sliding plate technique for fixation of a sagittal split ramus osteotomy: Finite element analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, e148–e152. [Google Scholar] [CrossRef]
- Politi, M.; Toro, C.; Costa, F.; Polini, F.; Robiony, M. Intraoperative awakening of the patient during orthognathic surgery: A method to prevent the condylar sag. J. Oral Maxillofac. Surg. 2007, 65, 109–114. [Google Scholar] [CrossRef]
- Lee, C.-H.; Cho, S.-W.; Kim, J.-W.; Ahn, H.-J.; Kim, Y.-H.; Yang, B.-E. Three-dimensional assessment of condylar position following orthognathic surgery using the centric relation bite and the ramal reference line: A retrospective clinical study. Medicine 2019, 98, e14931. [Google Scholar] [CrossRef] [PubMed]
- Hirjak, D.; Dvoranova, B.; Reyneke, J.; Machon, M.; Neff, A. Condylar position and mandibular function after bilateral sagittal split osteotomy. Bratisl. Lek. Listy 2020, 121, 379–385. [Google Scholar] [PubMed]
- Kawase-Koga, Y.; Fujii, Y.; Ikehata, M.; Ikehata, N.; Kono, M.; Kimoto, A.; Watanabe, M.; Chikazu, D. Usefulness of early plate removal in patients with occlusal discrepancies after sagittal split ramus osteotomy. J. Craniofac. Surg. 2018, 29, 900–903. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, J.-C.; Jeong, C.-G.; Cheon, K.-J.; Cho, S.-W.; Park, I.-Y.; Yang, B.-E. The accuracy and stability of the maxillary position after orthognathic surgery using a novel computer-aided surgical simulation system. BMC Oral Health 2019, 19, 18. [Google Scholar] [CrossRef]
- Valls-Ontañón, A.; Ascencio-Padilla, R.; Vela-Lasagabaster, A.; Sada-Malumbres, A.; Haas-Junior, O.; Masià-Gridilla, J.; Hernández-Alfaro, F. Relevance of 3D virtual planning in predicting bony interferences between distal and proximal fragments after sagittal split osteotomy. Int. J. Oral Maxillofac. Surg. 2020, 49, 1020–1028. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, J.-C.; Cheon, K.-J.; Cho, S.-W.; Kim, Y.-H.; Yang, B.-E. Computer-aided surgical simulation for yaw control of the mandibular condyle and its actual application to orthognathic surgery: A one-year follow-up study. Int. J. Environ. Res. Public Health 2018, 15, 2380. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Marukawa, K.; Shimada, M.; Nakagawa, K.; Yamamoto, E. Change in condylar long axis and skeletal stability following sagittal split ramus osteotomy and intraoral vertical ramus osteotomy for mandibular prognathia. J. Oral Maxillofac. Surg. 2005, 63, 1494–1499. [Google Scholar] [CrossRef]
- Ohba, S.; Yoshida, M.; Kohara, H.; Kawasaki, T.; Minamizato, T.; Koga, T.; Nakatani, Y.; Wanatabe, E.; Nakao, N.; Yoshida, N. Short lingual osteotomy without fixation: A new strategy for mandibular osteotomy known as “physiological positioning”. Br. J. Oral Maxillofac. Surg. 2014, 52, e9–e13. [Google Scholar] [CrossRef]
- Yamaji, T.; Ando, K.; Wolf, S.; Augat, P.; Claes, L. The effect of micromovement on callus formation. J. Orthop. Sci. 2001, 6, 571–575. [Google Scholar] [CrossRef]
- Claes, L.; Augat, P.; Suger, G.; Wilke, H.J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 1997, 15, 577–584. [Google Scholar] [CrossRef]
- Baldini, N.; Cenni, E.; Ciapetti, G.; Granchi, D.; Savarino, L. Bone repair and regeneration. In Bone Repair Biomaterials; Elsevier: Amsterdam, The Netherlands, 2009; pp. 69–105. [Google Scholar]
- Karanxha, L.; Rossi, D.; Hamanaka, R.; Giannì, A.B.; Baj, A.; Moon, W.; Del Fabbro, M.; Romano, M. Accuracy of splint vs splintless technique for virtually planned orthognathic surgery: A voxel-based three-dimensional analysis. J. Cranio-Maxillofac. Surg. 2021, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.; Paranhos, L.; da Silva, R.; Herval, Á.; Blumenberg, C.; Zanetta-Barbosa, D. Accuracy of orthognathic surgery with customized titanium plates–Systematic review. J. Stomatol. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Kwon, T.-G. Accuracy and reliability of three-dimensional computer-assisted planning for orthognathic surgery. Maxillofac. Plast. Reconstr. Surg. 2018, 40, 14. [Google Scholar] [CrossRef]
- Ingawale, S.; Goswami, T. Temporomandibular joint: Disorders, treatments, and biomechanics. Ann. Biomed. Eng. 2009, 37, 976–996. [Google Scholar] [CrossRef]
- Epker, B.N.; Wylie, G.A. Control of the condylar-proximal mandibular segments after sagittal split osteotomies to advance the mandible. Oral Surg. Oral Med. Oral Pathol. 1986, 62, 613–617. [Google Scholar] [CrossRef]
- Ueki, K.; Moroi, A.; Sotobori, M.; Ishihara, Y.; Marukawa, K.; Takatsuka, S.; Yoshizawa, K.; Kato, K.; Kawashiri, S. A hypothesis on the desired postoperative position of the condyle in orthognathic surgery: A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Firoozei, G.; Shahnaseri, S.; Momeni, H.; Soltani, P. Evaluation of orthognathic surgery on articular disc position and temporomandibular joint symptoms in skeletal class II patients: A Magnetic Resonance Imaging study. J. Clin. Exp. Dent. 2017, 9, e976. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Marukawa, K.; Nakagawa, K.; Yamamoto, E. Condylar and temporomandibular joint disc positions after mandibular osteotomy for prognathism. J. Oral Maxillofac. Surg. 2002, 60, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Kawamura, A. Disc displacement and changes in condylar position. Dentomaxillofac. Radiol. 2013, 42, 84227642. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, L.G.; Handelman, C.S. Idiopathic condylar resorption: What should we do? Oral Maxillofac. Surg. Clin. 2020, 32, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Hadjidakis, D.J.; Androulakis, I.I. Bone remodeling. Ann. N. Y. Acad. Sci. 2006, 1092, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45. [Google Scholar] [CrossRef] [PubMed]





| Pt. No | Age | Sex | Diagnosis | Surgery | The Period from OGS to Screw Removal (Days) | Removal Site |
|---|---|---|---|---|---|---|
| Pt. 1 | 26 | M | Class III | LFI + SSRO | 24 | Both |
| Pt. 2 | 26 | F | Class III | LFI + SSRO | 30 | Both |
| Pt. 3 | 20 | F | Class III | LFI + SSRO | 30 | Both |
| Pt. 4 | 55 | F | Class III, FA | SSRO | 22 | Right |
| Pt. 5 | 22 | M | Class III | LFI + SSRO | 25 | Left |
| Pt. 6 | 18 | F | Class III, FA | LFI + SSRO | 24 | Both |
| Pt. 7 | 20 | F | Class III, FA | LFI + SSRO | 25 | Both |
| Pt. 8 | 20 | M | FA | LFI + SSRO | 22 | Both |
| T0 | T1 | T2 | H | p(1) | df | B (2) | |
|---|---|---|---|---|---|---|---|
| Mean ± SD | Mean ± SD | Mean ± SD | |||||
| AJS (mm) | 1.58 ± 0.25 | 3.16 ± 1.58 | 1.79 ± 0.79 | 15.11 | 0 | 2 | T1 > T0,T2 |
| PJS (mm) | 1.93 ± 0.64 | 3.93 ± 1.96 | 2.36 ± 1.30 | 10.16 | 0.01 | 2 | T1 > T0,T2 |
| SJS (mm) | 2.25 ± 0.86 | 4.63 ± 1.53 | 2.74 ± 1.38 | 18.74 | 0 | 2 | T1 > T0,T2 |
| Angle (°) | 11.08 ± 3.32 | 16.24 ± 4.71 | 12.90 ± 3.57 | 9.27 | 0.01 | 2 | T1 > T0 |
| Volume (mm3) | 683.5 ± 143.93 | 893.19 ± 181.11 | 722.64 ± 167.76 | 9.59 | 0.01 | 2 | T1 > T0,T2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.-S.; Byun, S.-H.; Cho, S.-W.; Park, I.-Y.; Yi, S.-M.; Kim, J.-C.; Yang, B.-E. Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. J. Clin. Med. 2021, 10, 1597. https://doi.org/10.3390/jcm10081597
Jang W-S, Byun S-H, Cho S-W, Park I-Y, Yi S-M, Kim J-C, Yang B-E. Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. Journal of Clinical Medicine. 2021; 10(8):1597. https://doi.org/10.3390/jcm10081597
Chicago/Turabian StyleJang, Won-Seok, Soo-Hwan Byun, Seoung-Won Cho, In-Young Park, Sang-Min Yi, Jong-Cheol Kim, and Byoung-Eun Yang. 2021. "Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery" Journal of Clinical Medicine 10, no. 8: 1597. https://doi.org/10.3390/jcm10081597
APA StyleJang, W.-S., Byun, S.-H., Cho, S.-W., Park, I.-Y., Yi, S.-M., Kim, J.-C., & Yang, B.-E. (2021). Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. Journal of Clinical Medicine, 10(8), 1597. https://doi.org/10.3390/jcm10081597

