Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Trabeculectomy
2.3. VF Assessment
2.4. OCT-A Imaging
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef]
- Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am. J. Ophthalmol. 1998, 126, 487–497. [Google Scholar]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef]
- Investigators, A. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar]
- Kass, M.A.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R.; Gordon, M.O. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 701–713. [Google Scholar] [CrossRef]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial. Arch. Ophthalmol. 2003, 121, 48–56. [Google Scholar] [CrossRef]
- Yanagi, M.; Kawasaki, R.; Wang, J.J.; Wong, T.Y.; Crowston, J.; Kiuchi, Y. Vascular risk factors in glaucoma: A review. Clin. Exp. Ophthalmol. 2011, 39, 252–258. [Google Scholar] [CrossRef]
- Deokule, S.; Vizzeri, G.; Boehm, A.; Bowd, C.; Weinreb, R.N. Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J. Glaucoma 2010, 19, 293–298. [Google Scholar] [CrossRef]
- Logan, J.; Rankin, S.; Jackson, A. Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br. J. Ophthalmol. 2004, 88, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Wei, E.; Wang, X.; Zhang, X.; Morrison, J.C.; Parikh, M.; Lombardi, L.H.; Gattey, D.M.; Armour, R.L.; Edmunds, B. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014, 121, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef]
- Akagi, T.; Iida, Y.; Nakanishi, H.; Terada, N.; Morooka, S.; Yamada, H.; Hasegawa, T.; Yokota, S.; Yoshikawa, M.; Yoshimura, N. Microvascular density in glaucomatous eyes with hemifield visual field defects: An optical coherence tomography angiography study. Am. J. Ophthalmol. 2016, 168, 237–249. [Google Scholar] [CrossRef]
- Holló, G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur. J. Ophthalmol. 2016, 26, e42–e45. [Google Scholar] [CrossRef]
- Liu, L.; Jia, Y.; Takusagawa, H.L.; Pechauer, A.D.; Edmunds, B.; Lombardi, L.; Davis, E.; Morrison, J.C.; Huang, D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015, 133, 1045–1052. [Google Scholar] [CrossRef]
- Holló, G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J. Glaucoma 2017, 26, e7–e10. [Google Scholar] [CrossRef]
- Kim, J.-A.; Kim, T.-W.; Lee, E.J.; Girard, M.J.; Mari, J.M. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4614–4621. [Google Scholar] [CrossRef] [Green Version]
- Lommatzsch, C.; Rothaus, K.; Koch, J.; Heinz, C.; Grisanti, S. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int. Ophthalmol. 2019, 39, 2583–2594. [Google Scholar] [CrossRef]
- Shin, J.W.; Sung, K.R.; Uhm, K.B.; Jo, J.; Moon, Y.; Song, M.K.; Song, J.Y. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5993–5999. [Google Scholar] [CrossRef] [Green Version]
- Zéboulon, P.; Lévêque, P.-M.; Brasnu, E.; Aragno, V.; Hamard, P.; Baudouin, C.; Labbé, A. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: An optical coherence tomography angiography study. J. Glaucoma 2017, 26, 466–472. [Google Scholar] [CrossRef]
- Verma, S.; Nongpiur, M.E.; Atalay, E.; Wei, X.; Husain, R.; Goh, D.; Perera, S.A.; Aung, T. Visual Field Progression in Patients with Primary Angle-Closure Glaucoma Using Pointwise Linear Regression Analysis. Ophthalmology 2017, 124, 1065–1071. [Google Scholar] [CrossRef]
- Ehrnrooth, P.; Puska, P.; Lehto, I.; Laatikainen, L. Progression of visual field defects and visual loss in trabeculectomized eyes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 741–747. [Google Scholar] [CrossRef]
- Kotecha, A.; Spratt, A.; Bunce, C.; Garway-Heath, D.F.; Khaw, P.T.; Viswanathan, A. Optic disc and visual field changes after trabeculectomy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4693–4699. [Google Scholar] [CrossRef]
- Shigeeda, T.; Tomidokoro, A.; Araie, M.; Koseki, N.; Yamamoto, S. Long-term follow-up of visual field progression after trabeculectomy in progressive normal-tension glaucoma. Ophthalmology 2002, 109, 766–770. [Google Scholar] [CrossRef]
- Liu, C.; Umapathi, R.M.; Atalay, E.; Schmetterer, L.; Husain, R.; Boey, P.Y.; Aung, T.; Nongpiur, M.E. The Effect of Medical Lowering of Intraocular Pressure on Peripapillary and Macular Blood Flow as Measured by Optical Coherence Tomography Angiography in Treatment-naive Eyes. J. Glaucoma 2021, 30, 465–472. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Reddy, H.B.; Riyazuddin, M.; Dasari, S.; Palakurthy, M.; Puttaiah, N.K.; Rao, D.A.; Webers, C.A. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016, 171, 75–83. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, T.-W. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning. Ophthalmology 2015, 122, 2234–2242. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, T.-W.; Weinreb, R.N.; Kim, H. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology 2013, 120, 553–559. [Google Scholar] [CrossRef]
- Quigley, H.; Arora, K.; Idrees, S.; Solano, F.; Bedrood, S.; Lee, C.; Jefferys, J.; Nguyen, T.D. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2566–2577. [Google Scholar] [CrossRef] [Green Version]
- Kadziauskienė, A.; Jašinskienė, E.; Ašoklis, R.; Lesinskas, E.; Rekašius, T.; Chua, J.; Cheng, C.-Y.; Mari, J.M.; Girard, M.J.; Schmetterer, L. Long-term shape, curvature, and depth changes of the lamina cribrosa after trabeculectomy. Ophthalmology 2018, 125, 1729–1740. [Google Scholar] [CrossRef]
Variables | Total (n = 65) | Progression (n = 14) | Non-Progression (n = 51) | p-Value * |
---|---|---|---|---|
Age (years) | 54.8 ± 13.3 | 55.7 ± 13.5 | 54.6 ± 13.4 | 0.778 |
Sex, male/female | 38/27 | 8/6 | 30/21 | 0.911 |
Topical medications, n | 2.8 ± 0.6 | 2.6 ± 0.5 | 2.8 ± 0.6 | 0.322 |
Self-reported history of HTN, n (%) | 20 (30.8%) | 4 (28.6%) | 16 (31.4%) | 0.842 |
Self-reported history of DM, n (%) | 8 (12.3%) | 2 (14.3%) | 6 (11.8%) | 0.801 |
VF MD (dB) | −16.6 ± 7.9 | −13.8 ± 6.7 | −17.4 ± 8.1 | 0.137 |
IOP (mmHg) | 19.9 ± 8.4 | 20.5 ± 7.9 | 20.0 ± 9.2 | 0.860 |
SE (D) | −2.3 ± 3.1 | −3.0 ± 3.6 | −2.1 ± 2.9 | 0.301 |
Axial length (mm) | 24.9 ± 1.8 | 25.1 ± 1.8 | 24.9 ± 1.7 | 0.675 |
Central corneal thickness (μm) | 530.1 ± 45.5 | 513.1 ± 51.5 | 533.8 ± 43.8 | 0.195 |
Peripapillary VD (%) | 34.75 ± 5.85 | 34.25 ± 5.55 | 34.86 ± 5.98 | 0.780 |
Foveal VD (%) | 15.99 ± 6.46 | 15.45 ± 5.37 | 16.14 ± 6.77 | 0.728 |
Parafoveal VD (%) | 41.73 ± 4.99 | 39.77 ± 4.78 | 42.27 ± 4.96 | 0.098 |
Perifoveal VD (%) | 37.75 ± 3.80 | 36.25 ± 3.53 | 38.16 ± 3.80 | 0.096 |
RNFL thickness (μm) | 65.92 ± 8.83 | 66.23 ± 6.35 | 65.84 ± 9.41 | 0.889 |
GCC thickness (μm) | 69.59 ± 7.48 | 67.54 ± 5.22 | 70.12 ± 7.92 | 0.271 |
Variables, Mean ± SD [95% CI] | Total (n = 65) | Progression (n = 14) | Non-Progression (n = 51) | p-Value * |
---|---|---|---|---|
VF MD change rate (dB/year) | −0.49 ± 1.35 (−0.82, −0.15) | −2.46 ± 0.77 (−2.91, −2.01) | 0.06 ± 0.89 (−0.19, 0.30) | <0.001 * |
IOP reduction rate (mmHg/year) | −3.43 ± 4.56 (−4.56, −2.30) | −3.89 ± 4.13 (−6.28, −1.51) | −3.30 ± 4.70 (−4.63, −1.98) | 0.672 |
Peripapillary VD change rate (%/year) | −0.50 ± 2.17 (−1.04, 0.04) | −2.26 ± 2.67 (−3.81, −0.72) | −0.02 ± 1.74 (−0.51, 0.47) | <0.001 * |
Foveal VD change rate (%/year) | −0.28 ± 3.55 (−1.16, 0.60) | −1.62 ± 2.52 (−3.08, −0.17) | 0.09 ± 3.73 (−0.96, 1.13) | 0.054 |
Parafoveal VD change rate (%/year) | −0.80 ± 2.97 (−1.54, −0.07) | −1.59 ± 2.71 (−3.15, −0.02) | −0.59 ± 3.03 (−1.43, 0.26) | 0.267 |
Perifoveal VD change rate (%/year) | −0.72 ± 1.97 (−1.21, −0.23) | −1.16 ± 1.55 (−2.06, −0.27) | −0.60 ± 2.06 (−1.18, −0.02) | 0.350 |
RNFL thickness change rate (μm/year) | −0.70 ± 3.82 (−1.66, 0.26) | −2.64 ± 3.80 (−4.93, −0.34) | −0.20 ± 3.70 (−1.25, 0.85) | 0.039 * |
GCC thickness change rate (μm/year) | 0.59 ± 3.51 (−0.31, 1.47) | 1.72 ± 3.52 (−0.41, 3.85) | 0.31 ± 3.49 (−0.67, 1.29) | 0.198 |
Variables, Mean ± SD | Total (n = 65) | Progression (n = 14) | Non-Progression (n = 51) | p-Value * | |
---|---|---|---|---|---|
VF MD (dB) | Pre-op | −16.62 ± 7.92 | −15.32 ± 5.91 | −17.19 ± 8.01 | <0.001 * |
Post-op 0.5yr | −16.88 ± 8.01 | −17.49 ± 7.23 | −16.47 ± 8.27 | ||
Post-op 1yr | −17.01 ± 7.81 | −18.88 ± 5.88 | −16.39 ± 8.06 | ||
Post-op 1.5yr | −16.98 ± 7.80 | −19.43 ± 6.75 | −16.44 ± 8.05 | ||
Post-op 2yr | −17.36 ± 8.16 | −20.07 ± 6.55 | −16.65 ± 8.10 | ||
IOP (mmHg) | Pre-op | 19.85 ± 8.42 | 20.50 ± 7.92 | 19.67 ± 8.62 | 0.789 |
Post-op 0.5yr | 11.55 ± 2.92 | 11.57 ± 2.53 | 11.55 ± 3.04 | ||
Post-op 1yr | 12.42 ± 2.97 | 12.71 ± 2.89 | 12.33 ± 3.01 | ||
Post-op 1.5yr | 12.78 ± 2.92 | 12.57 ± 2.82 | 12.84 ± 2.98 | ||
Post-op 2yr | 12.98 ± 2.87 | 12.71 ± 2.52 | 13.06 ± 2.98 | ||
Peripapillary VD (%) | Pre-op | 34.75 ± 5.85 | 34.36 ± 5.55 | 34.86 ± 5.98 | 0.001 * |
Post-op 0.5yr | 33.92 ± 6.33 | 31.13 ± 4.93 | 34.62 ± 6.51 | ||
Post-op 1yr | 35.79 ± 6.18 | 30.42 ± 3.89 | 36.24 ± 6.50 | ||
Post-op 1.5yr | 34.54 ± 6.62 | 31.18 ± 3.20 | 35.45 ± 6.96 | ||
Post-op 2yr | 32.27 ± 4.22 | 30.28 ± 3.01 | 32.47 ± 4.35 |
Variables | Univariable | Multivariable (p < 0.1 in Univariable) | ||
---|---|---|---|---|
B ± SD | p-Value * | B ± SD | p-Value * | |
Age (years) | 0.003 ± 0.013 | 0.814 | ||
SE (D) | 0.018 ± 0.055 | 0.739 | ||
Central corneal thickness (μm) | 0.005 ± 0.004 | 0.135 | ||
Baseline IOP (mmHg) | −0.001 ± 0.019 | 0.961 | ||
Baseline VF MD (dB) | −0.034 ± 0.021 | 0.112 | ||
Baseline peripapillary VD (%) | −0.013 ± 0.029 | 0.648 | ||
Baseline foveal VD (%) | −0.024 ± 0.026 | 0.369 | ||
Baseline parafoveal VD (%) | 0.009 ± 0.034 | 0.800 | ||
Baseline perifoveal VD (%) | 0.024 ± 0.045 | 0.586 | ||
Baseline RNFL thickness (μm) | −0.013 ± 0.019 | 0.499 | ||
Baseline GCC thickness (μm) | 0.022 ± 0.023 | 0.341 | ||
Postoperative IOP reduction rate (mmHg/year) | 0.011 ± 0.037 | 0.771 | ||
Postoperative peripapillary VD change rate (%/year) | 0.209 ± 0.074 | 0.006 | 0.186 ± 0.075 | 0.016 |
Postoperative foveal VD change rate (%/year) | 0.090 ± 0.046 | 0.057 | 0.065 ± 0.046 | 0.160 |
Postoperative parafoveal VD change rate (%/year) | 0.078 ± 0.056 | 0.175 | ||
Postoperative perifoveal VD change rate (%/year) | 0.059 ± 0.086 | 0.496 | ||
RNFL thickness change rate (μm/year) | 0.075 ± 0.044 | 0.098 | ||
GCC thickness change rate (μm/year) | −0.047 ± 0.048 | 0.335 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Sung, K.R.; Shin, J.W. Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy. J. Clin. Med. 2021, 10, 5862. https://doi.org/10.3390/jcm10245862
Yoon J, Sung KR, Shin JW. Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy. Journal of Clinical Medicine. 2021; 10(24):5862. https://doi.org/10.3390/jcm10245862
Chicago/Turabian StyleYoon, Jooyoung, Kyung Rim Sung, and Joong Won Shin. 2021. "Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy" Journal of Clinical Medicine 10, no. 24: 5862. https://doi.org/10.3390/jcm10245862
APA StyleYoon, J., Sung, K. R., & Shin, J. W. (2021). Changes in Peripapillary and Macular Vessel Densities and Their Relationship with Visual Field Progression after Trabeculectomy. Journal of Clinical Medicine, 10(24), 5862. https://doi.org/10.3390/jcm10245862