Influence of Peripheral Transluminal Angioplasty Alongside Exercise Training on Oxidative Stress and Inflammation in Patients with Peripheral Arterial Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Preparation of Blood Samples
2.3. Measurement of Leukocyte Oxidative Burst by Chemiluminescence
2.4. Clinical Chemistry Parameters
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Analysis of ROS Production
3.3. Analysis of ABI, Absolute Claudication Distance and Initial Claudication Distance
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, R. Atherosclerosis is an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Ohman, E.M.; Hirsch, A.T.; Ikeda, Y.; Mas, J.L. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 2006, 295, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, A.T.; Haskal, Z.J.; Hertzer, N.R.; Bakal, C.W.; Creager, M.A.; Halperin, J.L.; White, R.A. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower ex-tremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients with Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006, 113, e463–e654. [Google Scholar] [PubMed] [Green Version]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 2007, 45, S5–S67. [Google Scholar]
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Dopheide, J.F.; Scheer, M.; Doppler, C.; Obst, V.; Stein, P.; Vosseler, M.; Abegunewardene, N.; Gori, T.; Münzel, T.; Daiber, A.; et al. Change of walking distance in intermittent claudication: Impact on inflammation, oxidative stress and mononuclear cells: A pilot study. Clin. Res. Cardiol. 2015, 104, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Steven, S.; Daiber, A.; Dopheide, J.F.; Münzel, T.; Espinola-Klein, C. Peripheral artery disease, redox signaling, oxidative stress-Basic and clinical aspects. Redox Biol. 2017, 12, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Dopheide, J.F.; Obst, V.; Doppler, C.; Radmacher, M.C.; Scheer, M.; Radsak, M.P.; Espinola-Klein, C. Phenotypic characterisation of pro-inflammatory monocytes and dendritic cells in peripheral arterial disease. Thromb. Haemost. 2012, 108, 1198–1207. [Google Scholar] [CrossRef]
- Dopheide, J.F.; Doppler, C.; Scheer, M.; Obst, V.; Radmacher, M.C.; Radsak, M.P.; Espinola-Klein, C. Critical limb ischaemia is characterised by an increased production of whole blood reactive oxygen species and expression of TREM-1 on neutrophils. Atherosclerosis 2013, 229, 396–403. [Google Scholar] [CrossRef]
- Aboyans, V. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mes-enteric, renal, upper and lower extremity arteries Endorsed by: The European Stroke Organization (ESO)The Task Force for the Diagno-sis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar]
- Malgor, R.D.; Alahdab, F.; Elraiyah, T.A.; Rizvi, A.Z.; Lane, M.A.; Prokop, L.J.; Phung, O.J.; Farah, W.; Montori, V.; Conte, M.S.; et al. A systematic review of treatment of intermittent claudication in the lower extremities. J. Vasc. Surg. 2015, 61, 54S–73S. [Google Scholar] [CrossRef] [Green Version]
- Fakhry, F.; Spronk, S.; van der Laan, L.; Wever, J.J.; Teijink, J.A.; Hoffmann, W.H.; Hunink, M.M. Endovascular Revascularization and Supervised Exercise for Peripheral Artery Disease and Intermittent Claudication: A Randomized Clinical Trial. JAMA 2015, 314, 1936–1944. [Google Scholar] [CrossRef]
- Dopheide, J.F.; Geissler, P.; Rubrech, J.; Trumpp, A.; Zeller, G.C.; Daiber, A.; Münzel, T.; Radsak, M.P.; Espinola-Klein, C. Influence of exercise training on proangiogenic TIE-2 monocytes and circulating angiogenic cells in patients with peripheral arterial disease. Clin. Res. Cardiol. 2016, 105, 666–676. [Google Scholar] [CrossRef]
- Manual of the MONICA Project (Manual on the Internet); World Health Organization: Geneva, Switzerland, 2000; Available online: http://www.ktl.fi/publications/monica/manual/index.htm (accessed on 20 October 2021).
- Gardner, A.W.; Poehlman, E.T. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA 1995, 274, 975–980. [Google Scholar] [CrossRef]
- Daiber, A.; Oelze, M.; August, M.; Wendt, M.; Sydow, K.; Wieboldt, H.; Kleschyov, A.L.; Munzel, T. Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012. Free Radic. Res. 2004, 38, 259–269. [Google Scholar] [CrossRef]
- Daiber, A.; August, M.; Baldus, S.; Wendt, M.; Oelze, M.; Sydow, K.; Kleschyov, A.L.; Munzel, T. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radic. Biol. Med. 2004, 36, 101–111. [Google Scholar] [CrossRef]
- Stocker, R.; Keaney, J.F. New insights on oxidative stress in the artery wall. J. Thromb. Haemost. 2005, 3, 1825–1834. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Daiber, A. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Walsh, M.E. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 69, e71–e126. [Google Scholar] [CrossRef]
- Dopheide, J.F.; Rubrech, J.; Trumpp, A.; Geissler, P.; Zeller, G.C.; Schnorbus, B.; Schmidt, F.; Gori, T.; Münzel, T.; Espinola-Klein, C. Supervised exercise training in peripheral arterial disease increases vascular shear stress and profunda femoral artery diameter. Eur. J. Prev. Cardiol. 2016, 24, 178–191. [Google Scholar] [CrossRef]
- Haselmayer, P.; Grosse-Hovest, L.; Von Landenberg, P.; Schild, H.; Radsak, M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007, 110, 1029–1035. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Vincent, K.R.; Taylor, A.G. Effects of Alpha-Lipoic Acid Supplementation in Peripheral Arterial Disease: A Pilot Study. J. Altern. Complement. Med. 2007, 13, 577–584. [Google Scholar] [CrossRef]
- Gardner, A.; Montgomery, P.S.; Zhao, Y.D.; Ungvari, Z.; Csiszar, A.; Sonntag, W.E. Endothelial Cell Inflammation and Antioxidant Capacity are Associated with 6-Minute Walk Performance in Patients with Symptomatic Peripheral Artery Disease. Angiology 2017, 69, 416–423. [Google Scholar] [CrossRef] [PubMed]
Controls (n = 20) | PTA (n = 21) | p Value | |
---|---|---|---|
Age (years) | 68.00 (60.00; 76.00) | 63.00 (58.50; 76.00) | 0.51 |
Gender (male) (%) | 13(65.00) | 12 (57.14) | 0.75 |
Hyperlipidemia (%) | 9 (45.00) | 8 (38.10) | 0.76 |
Diabetes mellitus (%) | 7 (35.00) | 9 (42.86) | 0.75 |
CAD (%) | 6 (30.00) | 4 (19.05) | 0.48 |
Family history (%) | 14 (70.00) | 14 (66.67) | 1.00 |
Active smoking (%) | 8 (40.00) | 10 (47.62) | 0.37 |
Former smoking (%) | 12 (60.00) | 10 (47.62) | |
Never smoking (%) | 0 | 1 (4.76) | |
Pack-years | 47.00 (31.00; 67.25) | 52.50 (37.50; 60.00) | 0.71 |
Aspirin (%) | 16 (80.00) | 15 (71.43) | 0.72 |
Clopidogrel (%) | 1 (5.00) | 3 (14.29) | 0.61 |
Marcumar (%) | 0 | 0 | |
NOAK (%) | 1 (5.00) | 3 (14.29) | 0.61 |
ACE-inhibitors/AT1-blocker (%) | 16 (80.00) | 12 (57.14) | 0.18 |
Statin treatment (%) | 15 (75.00) | 18 (85.71) | 0.45 |
BMI (kg/m2) | 27.40 (24.90; 30.30) | 28.10 (25.10; 29.70) | 0.74 |
Controls (n = 20) | PTA (n = 21) | p Value | |
---|---|---|---|
Glucose (mg/dL) | 100.00 (91.25; 124.75) | 111.00 (92.50; 178.00) | 0.24 |
HbA1c (%) | 5.85 (5.63; 6.50) | 6.0 0(5.70; 7.80) | 0.33 |
Triglycerides (mg/dL) | 157.50 (89.50; 275.75) | 150.00 (109.00; 184.00) | 0.49 |
Total cholesterol (mg/dL) | 207.00 (147.00; 232.25) | 172.00 (155.50; 197.50) | 0.27 |
LDL cholesterol (mg/dL) | 121.50 (65.25; 160.0) | 93.00 (73.00; 112.50) | 0.42 |
HDL cholesterol (mg/dL) | 47.50 (40.25; 55.00) | 48.00 (40.00; 62.50) | 0.22 |
Fibrinogen (mg/dL) | 347.00 (312.00; 395.75) | 363.00 (310.00; 391.50) | 0.38 |
CRP (mg/dL) | 2.15 (0.93; 2.90) | 1.40 (0.77; 3.85) | 0.97 |
Leucocytes/nL | 7.85 (6.11; 9.03) | 7.87 (6.73; 9.38) | 0.89 |
Monocytes (%) | 6.60 (5.80; 8.00) | 6.60 (5.85; 7.35) | 0.82 |
Monocytes/mL | 4.78 (4.02; 6.15) × 105 | 5.35 (4.25; 5.78) × 105 | 0.80 |
PMN (%) | 61.60 (55.70; 67.40) | 61.10 (53.15; 64.25) | 0.56 |
PMN/mL | 3.93 (3.20; 5.41) × 106 | 4.27 (3.16; 5.33) × 106 | 0.87 |
Admission | Follow-Up | p Value | |
---|---|---|---|
Controls | |||
Basal 20 min | 66.80 (42.10; 108.60) | 35.10 (19.80; 68.70) | 0.02 |
PDBU 20 min | 42,349.10 (28,463.20; 58,558.10) | 30,313.10 (21,131.60; 46,581.10) | 0.05 |
PTA | |||
Basal 20 min | 57.10 (27.30; 94.10) | 20.30 (15.20; 38.70) | 0.002 |
PDBU 20 min | 32,115.50 (23,013.70; 51,576.00) | 25,915.70 (17,244.30; 34,027.10) | 0.09 |
a. ABI, ACD and ICD at Baseline and after Follow-Up. | |||
---|---|---|---|
Controls (n = 20) | PTA (n = 21) | p Value | |
Ankle–brachial index (ABI) (m) | 0.84 (0.63;0.96) | 0.58 (0.50;0.75) | 0.003 |
Ankle–brachial index (ABI) FU (m) | 0.73 (0.57; 0.86) | 0.90 (0.75; 1.00) | 0.047 |
Absolute claudication distance (m) | 266.50 (123.75; 300.00) | 90.00 (73.50; 135.50) | 0.001 |
Absolute claudication distance FU (m) | 300.00(180.00;300.00) | 300.00 (138.50; 300.00) | 0.42 |
Initial claudication distance (m) | 115.00 (64.50; 235.00) | 60.00 (42.50; 93.00) | 0.03 |
Initial claudication distance FU (m) | 200.00 (117.00; 300.00) | 200.00 (105.00; 300.00) | 0.84 |
b. ABI, ACD and ICD at Baseline and after Follow-Up in the PTA Group. | |||
Baseline | Follow-Up | p Value | |
Ankle–brachial index (ABI) (m) | 0.58 (0.50;0.75) | 0.90 (0.75; 1.00) | 0.001 |
Absolute claudication distance (m) | 90.00 (73.50; 135.50) | 300.00 (138.50; 300.00) | 0.001 |
Initial claudication distance (m) | 60.00 (42.50; 93.00) | 200.00 (105.00; 300.00) | <0.0001 |
c. ABI, ACD and ICD at Baseline and after Follow-Up in the Control Group. | |||
Baseline | Follow-Up | p Value | |
Ankle–brachial index (ABI) (m) | 0.84 (0.63;0.96) | 0.73 (0.57; 0.86) | 0.13 |
Absolute claudication distance (m) | 266.50 (123.75; 300.00) | 300.00 (180.00;300.00) | 0.04 |
Initial claudication distance (m) | 115.00 (64.50; 235.00) | 200.00 (117.00; 300.00) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koppe-Schmeißer, F.; Schwaderlapp, M.; Schmeißer, J.; Dopheide, J.F.; Münzel, T.; Daiber, A.; Espinola-Klein, C. Influence of Peripheral Transluminal Angioplasty Alongside Exercise Training on Oxidative Stress and Inflammation in Patients with Peripheral Arterial Disease. J. Clin. Med. 2021, 10, 5851. https://doi.org/10.3390/jcm10245851
Koppe-Schmeißer F, Schwaderlapp M, Schmeißer J, Dopheide JF, Münzel T, Daiber A, Espinola-Klein C. Influence of Peripheral Transluminal Angioplasty Alongside Exercise Training on Oxidative Stress and Inflammation in Patients with Peripheral Arterial Disease. Journal of Clinical Medicine. 2021; 10(24):5851. https://doi.org/10.3390/jcm10245851
Chicago/Turabian StyleKoppe-Schmeißer, Franziska, Melanie Schwaderlapp, Julian Schmeißer, Jörn F. Dopheide, Thomas Münzel, Andreas Daiber, and Christine Espinola-Klein. 2021. "Influence of Peripheral Transluminal Angioplasty Alongside Exercise Training on Oxidative Stress and Inflammation in Patients with Peripheral Arterial Disease" Journal of Clinical Medicine 10, no. 24: 5851. https://doi.org/10.3390/jcm10245851
APA StyleKoppe-Schmeißer, F., Schwaderlapp, M., Schmeißer, J., Dopheide, J. F., Münzel, T., Daiber, A., & Espinola-Klein, C. (2021). Influence of Peripheral Transluminal Angioplasty Alongside Exercise Training on Oxidative Stress and Inflammation in Patients with Peripheral Arterial Disease. Journal of Clinical Medicine, 10(24), 5851. https://doi.org/10.3390/jcm10245851