Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm
Abstract
:1. Introduction
2. The Cytokine Storm
3. Pulmonary Fibrosis
4. Coagulopathy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maniaci, A.; Iannella, G.; Vicini, C.; Pavone, P.; Nunnari, G.; Falsaperla, R.; Di Mauro, P.; Ferlito, S.; Cocuzza, S. A Case of COVID-19 with Late-Onset Rash and Transient Loss of Taste and Smell in a 15-Year-Old Boy. Am. J. Case Rep. 2020, 21, e925813. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Kow, C.S.; Hasan, S.S. The Effect of Tocilizumab on Mortality in Hospitalized Patients with COVID-19: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Pharmacol. 2021, 77, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Dettelbach, H.R.; Aviado, D.M. Clinical Pharmacology of Pentoxifylline with Special Reference to Its Hemorrheologic Effect for the Treatment of Intermittent Claudication. J. Clin. Pharmacol. 1985, 25, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J. Thorac. Oncol. 2020, 15, 700–704. [Google Scholar] [CrossRef]
- Channappanavar, R.; Fehr, A.R.; Vijay, R.; Mack, M.; Zhao, J.; Meyerholz, D.K.; Perlman, S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 2016, 19, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic Implications of IL-6 Blockade for Cytokine Storm. Immunotherapy 2016, 8, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, L.; Ye, L.; Li, B.; Gao, B.; Zeng, Y.; Kong, L.; Fang, X.; Zheng, H.; Wu, Z.; et al. Up-Regulation of IL-6 and TNF-α Induced by SARS-Coronavirus Spike Protein in Murine Macrophages via NF-ΚB Pathway. Virus Res. 2007, 128, 1–8. [Google Scholar] [CrossRef]
- Mokra, D.; Mokry, J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int. J. Mol. Sci. 2021, 22, 1929. [Google Scholar] [CrossRef]
- Giorgi, M.; Cardarelli, S.; Ragusa, F.; Saliola, M.; Biagioni, S.; Poiana, G.; Naro, F.; Massimi, M. Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19? Int. J. Mol. Sci. 2020, 21, 5338. [Google Scholar] [CrossRef]
- Milne, G.R.; Palmer, T.M. Anti-Inflammatory and Immunosuppressive Effects of the A2A Adenosine Receptor. Sci. World J. 2011, 11, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A. A2A Adenosine Receptor Agonists and Their Potential Therapeutic Applications. An Update. Curr. Med. Chem. 2018, 25, 3597–3612. [Google Scholar] [CrossRef] [PubMed]
- Deree, J.; Martins, J.; de Campos, T.; Putnam, J.G.; Loomis, W.H.; Wolf, P.; Coimbra, R. Pentoxifylline Attenuates Lung Injury and Modulates Transcription Factor Activity in Hemorrhagic Shock. J. Surg. Res. 2007, 143, 99–108. [Google Scholar] [CrossRef]
- Ardizzoia, A.; Lissoni, P.; Tancini, G.; Paolorossi, F.; Crispino, S.; Villa, S.; Barni, S. Respiratory Distress Syndrome in Patients with Advanced Cancer Treated with Pentoxifylline: A Randomized Study. Support. Care Cancer 1993, 1, 331–333. [Google Scholar] [CrossRef]
- Li, Q.; Hu, X.; Sun, R.; Tu, Y.; Gong, F.; Ni, Y. Resolution Acute Respiratory Distress Syndrome through Reversing the Imbalance of Treg/Th17 by Targeting the CAMP Signaling Pathway. Mol. Med. Rep. 2016, 14, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, V.; Hernandez-Ramírez, C.; Oliva-Perez, E.A.; Sanchez-Martinez, C.O.; Pimentel-Gonzalez, J.F.; Molina-Sanchez, J.R.; Jimenez-Villalba, Y.Z.; Chavez-Alderete, J.; Loza-Mejia, M.A. Pentoxyfilline decreases serum LDH levels and increases lymphocyte count in COVID-19 patients: Results from an external pilot study. Int. Immunopharmacol. 2020, 90, 107209. [Google Scholar] [CrossRef] [PubMed]
- Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J. Preliminary Predictive Criteria for COVID-19 Cytokine Storm. Ann. Rheum. Dis. 2021, 80, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Fathi, N.; Rezaei, N. Lymphopenia in COVID-19: Therapeutic Opportunities. Cell Biol. Int. 2020, 44, 1792–1797. [Google Scholar] [CrossRef]
- Liao, Y.-C.; Liang, W.-G.; Chen, F.-W.; Hsu, J.-H.; Yang, J.-J.; Chang, M.-S. IL-19 Induces Production of IL-6 and TNF-α and Results in Cell Apoptosis Through TNF-α. J. Immunol. 2002, 169, 4288–4297. [Google Scholar] [CrossRef] [Green Version]
- Schietinger, A.; Greenberg, P.D. Tolerance and Exhaustion: Defining Mechanisms of T Cell Dysfunction. Trends Immunol. 2014, 35, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.L.; Ripps, C.S.; Lewis, M.L. Elevated Lactate Dehydrogenase Values in Patients with Pneumocystis Carinii Pneumonia. Chest 1988, 93, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Van Krugten, M.; Cobben, N.A.M.; Lamers, R.J.S.; Van Dieijen-Visser, M.P.; Wagenaar, S.S.; Wouters, E.F.M.; Drent, M. Serum LDH: A Marker of Disease Activity and Its Response to Therapy in Idiopathic Pulmonary Fibrosis. Neth. J. Med. 1996, 48, 220–222. [Google Scholar] [CrossRef]
- Deremee, R.A. Serum Lactic Dehydrogenase Activity and Diffuse Interstitial Pneumonitis. JAMA 1968, 204, 1193–1195. [Google Scholar] [CrossRef]
- Murthy, P.K.; Sivashanmugam, K.; Kandasamy, M.; Subbiah, R.; Ravikumar, V. Repurposing of Histone Deacetylase Inhibitors: A Promising Strategy to Combat Pulmonary Fibrosis Promoted by TGF-β Signalling in COVID-19 Survivors. Life Sci. 2021, 266, 118883. [Google Scholar] [CrossRef]
- Gulati, A.; Lakhani, P. Interstitial Lung Abnormalities and Pulmonary Fibrosis in COVID-19 Patients: A Short-Term Follow-up Case Series. Clin. Imaging 2021, 77, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Udwadia, Z.; Koul, P.; Richeldi, L. Post-COVID Lung Fibrosis: The Tsunami That Will Follow the Earthquake. Lung India 2021, 38, 41. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Prakash, J.; Bhattacharya, P.K.; Priye, S. Post-COVID-19 Pulmonary Fibrosis: A Lifesaving Challenge. Indian J. Crit. Care Med. 2021, 25, 104–105. [Google Scholar] [CrossRef]
- Schwensen, H.F.; Borreschmidt, L.K.; Storgaard, M.; Redsted, S.; Christensen, S.; Madsen, L.B. Fatal Pulmonary Fibrosis: A Post-COVID-19 Autopsy Case. J. Clin. Pathol. 2021, 74, 400–402. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Xiong, Y.; Fan, Y.; Zhou, Y.; Zhu, W. Correlation of Autopsy Pathological Findings and Imaging Features from 9 Fatal Cases of COVID-19 Pneumonia. Medicine 2021, 100, e25232. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.S.; Balogun, S.A.; Williams, O.T.; Ojo, O.S. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med. 2020, 2020, 6175964. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Benitez, N.E.; Laffey, J.G.; Parotto, M.; Spieth, P.M.; Villar, J.; Zhang, H.; Slutsky, A.S. Mechanical Ventilation-Associated Lung Fibrosis in Acute Respiratory Distress Syndrome: A Significant Contributor to Poor Outcome. Anesthesiology 2014, 121, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.; Balestro, E.; Aliberti, S.; Cocconcelli, E.; Biondini, D.; Della Casa, G.; Sverzellati, N.; Maher, T.M. Pulmonary Fibrosis Secondary to COVID-19: A Call to Arms? Lancet Respir. Med. 2020, 8, 750–752. [Google Scholar] [CrossRef]
- George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary Fibrosis and COVID-19: The Potential Role for Antifibrotic Therapy. Lancet Respir. Med. 2020, 8, 807–815. [Google Scholar] [CrossRef]
- Lechowicz, K.; Drożdżal, S.; Machaj, F.; Rosik, J.; Szostak, B.; Zegan-Barańska, M.; Biernawska, J.; Dabrowski, W.; Rotter, I.; Kotfis, K. COVID-19: The Potential Treatment of Pulmonary Fibrosis Associated with SARS-CoV-2 Infection. J. Clin. Med. 2020, 9, 1917. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.J.; Yang, J.C.; Wang, M.Y.; Chen, C.; Luo, G.X.; He, W.F. Advances in the Research of Mechanism of Pulmonary Fibrosis Induced by Corona Virus Disease 2019 and the Corresponding Therapeutic Measures. Zhonghua Shao Shang Za Zhi 2020, 36, E006. [Google Scholar] [CrossRef]
- Fernandez, I.E.; Eickelberg, O. The Impact of TGF-β on Lung Fibrosis: From Targeting to Biomarkers. Proc. Am. Thorac. Soc. 2012, 9, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-X.; Song, X.; Ma, X.-Q.; Hao, C.-X.; Huang, J.-J.; Yang, W.-H. Investigation into Molecular Mechanisms and High-Frequency Core TCM for Pulmonary Fibrosis Secondary to COVID-19 Based on Network Pharmacology and Data Mining. Ann. Palliat. Med. 2021, 10, 3960–3975. [Google Scholar] [CrossRef]
- Cheresh, P.; Kim, S.J.; Tulasiram, S.; Kamp, D.W. Oxidative Stress and Pulmonary Fibrosis. Biochim. Biophys. Acta 2013, 1832, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Otoupalova, E.; Smith, S.; Cheng, G.; Thannickal, V.J. Oxidative Stress in Pulmonary Fibrosis. Compr. Physiol. 2020, 10, 509–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Lee, S.; Yang, Y.; Bedi, P.; Chou, S.Y. Pentoxifylline Protects against Loss of Function and Renal Interstitial Fibrosis in Chronic Experimental Partial Ureteral Obstruction. Pathophysiology 2018, 25, 419–425. [Google Scholar] [CrossRef]
- Lin, S.L.; Chen, R.H.; Chen, Y.M.; Chiang, W.C.; Lai, C.F.; Wu, K.D.; Tsai, T.J. Pentoxifylline Attenuates Tubulointerstitial Fibrosis by Blocking Smad3/4-Activated Transcription and Profibrogenic Effects of Connective Tissue Growth Factor. J. Am. Soc. Nephrol. 2005, 16, 2702–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Xiong, M.; Xia, Y.F.; Cui, N.J.; Lu, R.B.; Deng, L.; Lin, Y.H.; Rong, T.H. Studies on Pentoxifylline and Tocopherol Combination for Radiation-Induced Heart Disease in Rats. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Kaidar-Person, O.; Marks, L.B.; Jones, E.L. Pentoxifylline and Vitamin E for Treatment or Prevention of Radiation-Induced Fibrosis in Patients with Breast Cancer. Breast J. 2018, 24, 816–819. [Google Scholar] [CrossRef]
- Lee, J.G.; Shim, S.; Kim, M.J.; Myung, J.K.; Jang, W.S.; Bae, C.H.; Lee, S.J.; Kim, K.M.; Jin, Y.W.; Lee, S.S.; et al. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis. BioMed Res. Int. 2017, 2017, 1279280. [Google Scholar] [CrossRef]
- Hung, K.Y.; Huang, J.W.; Chiang, C.K.; Tsai, T.J. Preservation of Peritoneal Morphology and Function by Pentoxifylline in a Rat Model of Peritoneal Dialysis: Molecular Studies. Nephrol. Dial. Transplant. 2008, 23, 3831–3840. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.C.; Yen, C.J.; Chen, Y.M.; Shyu, R.S.; Tsai, T.J.; Lee, P.H.; Hsieh, B.S. Pentoxifylline Inhibits Human Peritoneal Mesothelial Cell Growth and Collagen Synthesis: Effects on TGF-β. Kidney Int. 2000, 57, 2626–2633. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.C.; Lai, M.N.; Chien, C.T.; Hung, K.Y.; Tsai, C.C.; Tsai, T.J.; Hsieh, B.S. Effects of Pentoxifylline on Peritoneal Fibroblasts and Silica-Induced Peritoneal Fibrosis. Perit. Dial. Int. 2003, 23, 228–236. [Google Scholar] [CrossRef]
- El-Lakkany, N.; Seif el-Din, S.; Ebeid, F. The Use of Pentoxifylline as Adjuvant Therapy with Praziquantel Downregulates Profibrogenic Cytokines, Collagen Deposition and Oxidative Stress in Experimental Schistosomiasis Mansoni. Exp. Parasitol. 2011, 129, 152–157. [Google Scholar] [CrossRef]
- Zabel, P.; Entzian, P.; Dalhoff, K.; Schlaak, M. Pentoxifylline in Treatment of Sarcoidosis. Am. J. Respir. Crit. Care Med. 1997, 155, 1665–1669. [Google Scholar] [CrossRef]
- Park, M.K.; Fontana, J.R.; Babaali, H.; Gilbert-McClain, L.I.; Stylianou, M.; Joo, J.; Moss, J.; Manganiello, V.C. Steroid-Sparing Effects of Pentoxifylline in Pulmonary Sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2009, 26, 121–131. [Google Scholar]
- Iba, T.; Connors, J.M.; Levy, J.H. The Coagulopathy, Endotheliopathy, and Vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef]
- Long, H.; Nie, L.; Xiang, X.; Li, H.; Zhang, X.; Fu, X.; Ren, H.; Liu, W.; Wang, Q.; Wu, Q. D-Dimer and Prothrombin Time Are the Significant Indicators of Severe COVID-19 and Poor Prognosis. BioMed Res. Int. 2020, 2020, 6159720. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation Abnormalities and Thrombosis in Patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Asakura, H.; Ogawa, H. COVID-19-Associated Coagulopathy and Disseminated Intravascular Coagulation. Int. J. Hematol. 2021, 113, 45–57. [Google Scholar] [CrossRef]
- Costello, R.A.; Nehring, S.M. Disseminated Intravascular Coagulation; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wool, G.D.; Miller, J.L. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology 2021, 88, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ozden, M.G.N.; Koksal, G.; Oz, H. Comparison of Antithrombin Iii and Pentoxifylline Treatments in Gram Negative Sepsis Patients Developing Disseminated Intravascular Coagulation. Medeni. Med. J. 2019, 34, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Aifantis, K.E.; Shrivastava, S.; Pelidou, S.H.; Ngan, A.H.W.; Baloyannis, S.I. Relating the Blood-Thinning Effect of Pentoxifylline to the Reduction in the Elastic Modulus of Human Red Blood Cells: An: In Vivo Study. Biomater. Sci. 2019, 7, 2545–2551. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.; Gunnarsson, M.; Berntorp, E.; Björkman, S.; Höglund, P. Effects of Pentoxifylline and Its Metabolites on Platelet Aggregation in Whole Blood from Healthy Humans. Eur. J. Pharmacol. 2008, 581, 290–295. [Google Scholar] [CrossRef]
- Ward, A.; Clissold, S.P. Pentoxifylline: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Its Therapeutic Efficacy. Drugs 1987, 34, 50–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, Y.J.; Mengi, S.A.; Arneja, A.S.; Dhalla, N.S. Therapeutic Potentials of Pentoxifylline for Treatment of Cardiovascular Diseases. Exp. Clin. Cardiol. 2004, 9, 103–111. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feret, W.; Nalewajska, M.; Wojczyński, Ł.; Witkiewicz, W.; Kłos, P.; Dziedziejko, V.; Pawlik, A. Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm. J. Clin. Med. 2021, 10, 5305. https://doi.org/10.3390/jcm10225305
Feret W, Nalewajska M, Wojczyński Ł, Witkiewicz W, Kłos P, Dziedziejko V, Pawlik A. Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm. Journal of Clinical Medicine. 2021; 10(22):5305. https://doi.org/10.3390/jcm10225305
Chicago/Turabian StyleFeret, Wiktoria, Magdalena Nalewajska, Łukasz Wojczyński, Wojciech Witkiewicz, Patrycja Kłos, Violetta Dziedziejko, and Andrzej Pawlik. 2021. "Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm" Journal of Clinical Medicine 10, no. 22: 5305. https://doi.org/10.3390/jcm10225305
APA StyleFeret, W., Nalewajska, M., Wojczyński, Ł., Witkiewicz, W., Kłos, P., Dziedziejko, V., & Pawlik, A. (2021). Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm. Journal of Clinical Medicine, 10(22), 5305. https://doi.org/10.3390/jcm10225305