Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Results
2.1. Culture-Negative TB in a Peru Cohort Study
2.2. Selection of Smear-Positive Culture-Negative Study Samples
2.3. Lipid-Dependent Mtb Culture of Sm+/Cx− Sputum Samples
2.4. Gycerol Sensitivity
2.5. Phenotype-Associated Mutations
2.6. Drug Resistance
3. Discussion
4. Methods
4.1. Ethics
4.2. Carbon-Source Growth Experiments
4.3. Phenotypic Drug Susceptibility Tests
4.4. DNA Extraction
4.5. Sequencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFB | acid-fast bacilli |
AMK | amikacin |
CM | capreomycin |
CPX | ciprofloxacin |
CS | cycloserine |
Cx | culture |
DR | drug resistant |
DS | drug susceptible |
EMB | ethambutol |
ETH | ethionamide |
HHC | household contacts |
INH | Isoniazid |
KM | kanamycin |
LFX | levofloxacin |
LJ | Lowenstein–Jensen medium |
LTFU | lost to follow-up |
MDR | multidrug-resistant TB |
MGIT | mycobacterial growth incubator tube |
MIC | minimal inhibitory concentrations |
monoR | mono drug resistant |
Mtb | Mycobacterium tuberculosis |
OD | optic density |
(p)DST | (phenotypic) drug-sensitivity testing |
PZA | pyrazinamide |
RIF | rifampicin |
Sm | smear |
SM | streptomycin |
SNP | single-nucleotide polymorphisms |
TB | tuberculosis |
Tx | treatment |
WGS | whole-genome sequencing |
References
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Nguyen, M.-V.H.; Levy, N.S.; Ahuja, S.D.; Trieu, L.; Proops, D.C.; Achkar, J.M. Factors Associated With Sputum Culture-Negative vs Culture-Positive Diagnosis of Pulmonary Tuberculosis. JAMA Netw. Open 2019, 2, e187617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Public Health England. Tuberculosis in England: 2018 (Presenting Data to End of 2017); Public Health England: London, UK, 2018.
- Centers for Disease Control and Prevention (CDC). Reported Tuberculosis in the United States, 2017; CDC: Atlanta, GA, USA, 2018.
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, 853–867. [Google Scholar] [CrossRef]
- Kendall, E.A.; Kamoga, C.; Kitonsa, P.J.; Nalutaaya, A.; Salvatore, P.; Robsky, K.; Nakasolya, O.; Mukiibi, J.; Isooba, D.; Cattamanchi, A.; et al. Empiric treatment of pulmonary TB in the Xpert era: Correspondence of sputum culture, Xpert MTB/RIF, and clinical diagnoses. PLoS ONE 2019, 14, e0220251. [Google Scholar] [CrossRef] [PubMed]
- Chengalroyen, M.D.; Beukes, G.M.; Gordhan, B.G.; Streicher, E.; Churchyard, G.; Hafner, R.; Warren, R.; Otwombe, K.; Martinson, N.; Kana, B.D. Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am. J. Respir. Crit. Care Med. 2016, 194, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- McAulay, K.; Saito, K.; Warrier, T.; Walsh, K.F.; Mathurin, L.D.; Royal-Mardi, G.; Lee, M.H.; Ocheretina, O.; Pape, J.W.; Fitzgerald, D.W.; et al. Differentially detectable mycobacterium tuberculosis cells in sputum from treatment-naive subjects in Haiti and their proportionate increase after initiation of treatment. MBio 2018, 9, e02192-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Warrier, T.; Somersan-Karakaya, S.; Kaminski, L.; Mi, J.; Jiang, X.; Park, S.; Shigyo, K.; Gold, B.; Roberts, J.; et al. Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc. Natl. Acad. Sci. USA 2017, 114, E4832–E4840. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tan, S.; Huang, L.; Abramovitch, R.; Rohde, K.H.; Zimmerman, M.D.; Yancheng, L.; Dartois, V.; VanderVen, B.; Russell, D.G. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 2016, 213, 809–825. [Google Scholar] [CrossRef] [Green Version]
- Nimmo, C.; Shaw, L.P.; Doyle, R.; Williams, R.; Brien, K.; Burgess, C.; Breuer, J.; Balloux, F.; Pym, A.S. Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genom. 2019, 20, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shockey, A.C.; Dabney, J.; Pepperell, C.S. Effects of host, sample, and in vitro culture on genomic diversity of pathogenic mycobacteria. Front. Genet. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 2008, 105, 4376–4380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Elías, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 2005, 11, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Wilburn, K.M.; Fieweger, R.A.; VanderVen, B.C. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog. Dis. 2018, 76, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.N.; Takaki, K.; Connolly, L.E.; Wiedenhoft, H.; Winglee, K.; Humbert, O.; Edelstein, P.; Cosma, C.L.; Ramakrishnan, L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011, 145, 39–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garton, N.J.; Waddell, S.; Sherratt, A.L.; Lee, S.-M.; Smith, R.J.; Senner, C.; Hinds, J.; Rajakumar, K.; Adegbola, R.A.; Besra, G.; et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 2008, 5, e75. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.; Maamar, H.; Deb, C.; Sirakova, T.D.; Kolattukudy, P.E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011, 7, e1002093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, C.; Lee, C.M.; Dubey, V.S.; Daniel, J.; Abomoelak, B.; Sirakova, T.D.; Pawar, S.; Rogers, L.; Kolattukudy, P.E. A novel in vitro multiple-stress dormancy model for mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 2009, 4, e6077. [Google Scholar] [CrossRef] [Green Version]
- Becerra, M.C.; Huang, C.-C.; Lecca, L.; Bayona, J.; Contreras, C.; Calderon, R.; Yataco, R.; Galea, J.; Zhang, Z.; Atwood, S.; et al. Transmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: Prospective cohort study. BMJ 2019, 367, l5894. [Google Scholar] [CrossRef] [Green Version]
- Price, C.T.; Bukka, A.; Cynamon, M.; Graham, J.E. Glycine betaine uptake by the ProXVWZ ABC transporter contributes to the ability of Mycobacterium tuberculosis to initiate growth in human macrophages. J. Bacteriol. 2008, 190, 3955–3961. [Google Scholar] [CrossRef] [Green Version]
- Bellerose, M.M.; Baek, S.H.; Huang, C.C.; Moss, C.E.; Koh, E.I.; Proulx, M.K.; Smith, C.M.; Baker, R.E.; Lee, J.S.; Eum, S.; et al. Common Variants in the Glycerol Kinase Gene Reduce Tuberculosis Drug Efficacy. MBio 2019, 10, e00663-19. [Google Scholar] [CrossRef] [Green Version]
- Safi, H.; Gopal, P.; Lingaraju, S.; Ma, S.; Levine, C.; Dartois, V.; Yee, M.; Li, L.; Blanc, L.; Liang, H.H.; et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc. Natl. Acad. Sci. USA 2019, 116, 19665–19674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Lowenstein, E. Die zachtung der tuberkelbazillen aus dem stramenden blute. Zentralb. Bakteriol Parasitenkd. Infektionskr. Hyg. Agt. I Orig. 1931, 120, 127. [Google Scholar]
- Jensen, K.A. Rinzuchtung und typenbestimmung von tuberkelbazillentamen. Zentralb. Bakteriol Parasitenkd. Infektionskr. Hyg. Agt. I Orig. 1932, 125, 222. [Google Scholar]
- Kanetsuna, F. Bactericidal effect of fatty acids on mycobacteria, with particular reference to the suggested mechanism of intracellular killing. Microbiol. Immunol. 1985, 29, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Weigel, K.; Soelberg, S.D.; Lakey, A.; Cangelosi, G.A.; Lee, K.-H.; Chung, J.-H.; Gao, D. Cryopreservation of Mycobacterium tuberculosis complex cells. J. Clin. Microbiol. 2012, 50, 3575–3580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessema, B.; Beer, J.; Emmrich, F.; Sack, U.; Rodloff, A.C. Rate of recovery of Mycobacterium tuberculosis from frozen acid-fast-bacillus smear-positive sputum samples subjected to long-term storage in Northwest Ethiopia. J. Clin. Microbiol. 2011, 49, 2557–2561. [Google Scholar] [CrossRef] [Green Version]
- Shleeva, M.; Goncharenko, A.; Kudykina, Y.; Young, D.; Young, M.; Kaprelyants, A. Cyclic amp-dependent resuscitation of dormant mycobacteria by exogenous free fatty acids. PLoS ONE 2013, 8, e82914. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.H.; Biermann, K.; Tandberg, S.; Hsu, T.; Jacobs, W.R. Genetic Manipulation of Mycobacterium tuberculosis. Curr. Protoc. Microbiol. 2007, 6, 10A.2.1–10A.2.21. [Google Scholar] [CrossRef]
- Ioerger, T.R.; Feng, Y.; Ganesula, K.; Chen, X.; Dobos, K.; Fortune, S.; Jacobs, W.R.; Mizrahi, V.; Parish, T.; Rubin, E.; et al. Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J. Bacteriol. 2010, 192, 3645–3653. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AFB | Baseline (n) | Post Tx Initiation (n) |
---|---|---|
− | 787 | Not relevant |
1–9 (scanty) | 223 | 564 |
+ | 50 | 143 |
++ | 16 | 32 |
+++ | 15 | 22 |
Total | 1091 | 760 |
Patient # | Resistance Profile Measured with pDST | Time pDST Sample Collection | Treatment Regimen |
---|---|---|---|
1 a | INH, RIF, EMB, SM, CM, KM | Study enrollment b | CPX, EMB, ETH, KM, PZA (months 0–4) |
AMK, EMB, LEVO (months 9–18) | |||
2 a | INH, RIF | Study enrollment | AMK, CS, EMB, ETH, LFX, PZA |
INH, RIF, EMB, PZA, SM | 2 months of treatment | ||
3 | - | - | unknown |
4 | - | - | INH, RIF, PZA, EMB |
5 | - | - | unknown |
6 | - | - | INH, RIF, PZA, EMB |
7 | - | - | INH, RIF, PZA, EMB |
8 | - | - | INH, RIF, PZA, EMB |
9 | - | - | INH, RIF, PZA, EMB |
10 | - | - | INH, RIF, PZA, EMB |
11 | - | - | INH, RIF, PZA, EMB |
12 | INH, RIF, PZA, EMB | ||
13 | Drug susceptible | Study enrollment | CPX, CS, EMB, ETH |
14 | - | - | INH, RIF, PZA, EMB |
15 a | INH, RIF, EMB, SM | Study enrollment | CS, EMB, ETH, LFX, PZA |
Patient # | Carbon Source Culture Data (OD (Days)) | DR-Associated SNPs a | Growth Phenotype | |
---|---|---|---|---|
Glycerol medium | Lipid medium | |||
1 a | 0.22 (28) | 0.31 (28) | rpoB[S450L]; katG[S315T]; gidB[V77A] | Glycerol-sensitive |
2 a | - | 0.14 (35) | rpoB[S450L]; katG[S315T]; embB[M306I]; gidB[P78L] | Glycerol-sensitive |
3 | - | 0.16 (49) | rpoB[S450L]; katG[S315T]; embB [G406A]; pncA [A172T] | Glycerol-sensitive |
4 b | - | 0.24 (28) | katG[S315T]; fabG1 * c-15t; ethA[S399 *]; gidB[G73A] | Lipid-dependent resuscitation |
5 | - | 0.12 (28) | fabG1 * t-8c | Lipid-dependent resuscitation |
6 | 0.17 (35) | 0.28 (28) | katG[S315T]; gidB[L79W] | Lipid-dependent resuscitation |
7 | - | 0.15 (50) c | no DR-SNPs | Lipid-dependent resuscitation |
8 b | - | 0.23 (50) c | no DR-SNPs | Lipid-dependent resuscitation |
9 | - | 0.25 (62) c | no DR-SNPs | Lipid-dependent resuscitation |
10 | - | 0.11 (33) | no DR-SNPs | Lipid-dependent resuscitation |
11 | - | No lipid-dependent growth | ||
12 | - | - | No lipid-dependent growth | |
13 | - | - | No lipid-dependent growth | |
14 | - | - | No lipid-dependent growth | |
15 a | - | - | No lipid-dependent growth |
# | Annotation | Gene Name | Mutation | Mutation Type | Product | Classification | Samples in Database with a.a. Variant (N) |
---|---|---|---|---|---|---|---|
1 | Rv1599* | hisD | A259V | non-synonymous | Probable histidinol dehydrogenase HisD (HDH) | intermediary metabolism and respiration | 0 |
1 | Rv3854c a | ethA | L48F | non-synonymous | Monooxygenase EthA | intermediary metabolism and respiration | 0 |
1 | Rv0092 a | ctpA | S678P | non-synonymous | Cation transporter P-type ATPase a CtpA | cell wall and cell processes | 0 |
1 | Rv2576c | - | T103I | non-synonymous | Possible conserved membrane protein | cell wall and cell processes | 0 |
2 | Rv3151 | nuoG | L40P | non-synonymous | Probable NADH dehydrogenase I (chain G) NuoG (NADH-ubiquinone oxidoreductase chain G) | intermediary metabolism and respiration | 0 |
2 | Rv2931 a | ppsA | P955H | non-synonymous | Phenolpthiocerol synthesis type-I polyketide synthase | lipid metabolism | 0 |
2 | g > a Rv2304c-Rv2305 | intergenic | - | ||||
6 | Rv3513c | fadD18 | C17R | non-synonymous | Probable fatty-acid-CoA ligase FadD18 (fragment) (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase) | lipid metabolism | 10 |
6 | Rv3550 a | echA20 | G109A | non-synonymous | Probable enoyl-CoA hydratase EchA20 | lipid metabolism | 0 |
6 | Rv0758 | phoR | A279T | non-synonymous | Possible two component system response sensor kinase membrane associated PhoR | regulatory proteins | 17 (15 patients) |
6 | Rv2793c | truB | A105T | non-synonymous | Probable tRNA pseudouridine synthase B TruB | information pathways | 2 |
6 | Rv1410c b | - | Q301H | non-synonymous | Aminoglycosides/tetracycline-transport integral membrane protein | cell wall and cell processes | 0 |
6 | Rv1287 b | - | V43I | non-synonymous | Conserved hypothetical protein | conserved hypotheticals | 0 |
6 | Rv2402 | - | G600G | synonymous | Conserved protein | conserved hypotheticals | - |
6 | Rv3087 | - | 23bp del aa 403 | Indel (frameshift) | Possible triacylglycerol synthase (diacylglycerol acyltransferase) | lipid metabolism | - |
6 | Rv1959c | parE1 | Q12H | non-synonymous | Possible toxin ParE1 | virulence, detoxification, adaptation | 0 |
6 | Rv3861 | - | R63H | non-synonymous | Hypothetical protein | conserved hypotheticals | 0 |
6 | Rv0326 | D101D | synonymous | Hypothetical protein | Unknown | - | |
6 | Rv1721c | VapB12 | D48E | non-synonymous | Possible antitoxin VapB12 | virulence, detoxification, adaptation | 0 |
6 | Rv0236c c | aftD | F21L | non-synonymous | Possible arabinofuranosyltransferase AftD | cell wall and cell processes | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesman, A.W.; Baek, S.-H.; Huang, C.-C.; Kim, Y.-M.; Cho, S.-N.; Ioerger, T.R.; Barreda, N.N.; Calderon, R.; Sassetti, C.M.; Murray, M.B. Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. J. Clin. Med. 2021, 10, 3249. https://doi.org/10.3390/jcm10153249
Mesman AW, Baek S-H, Huang C-C, Kim Y-M, Cho S-N, Ioerger TR, Barreda NN, Calderon R, Sassetti CM, Murray MB. Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. Journal of Clinical Medicine. 2021; 10(15):3249. https://doi.org/10.3390/jcm10153249
Chicago/Turabian StyleMesman, Annelies W., Seung-Hun Baek, Chuan-Chin Huang, Young-Mi Kim, Sang-Nae Cho, Thomas R. Ioerger, Nadia N. Barreda, Roger Calderon, Christopher M. Sassetti, and Megan B. Murray. 2021. "Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis" Journal of Clinical Medicine 10, no. 15: 3249. https://doi.org/10.3390/jcm10153249
APA StyleMesman, A. W., Baek, S.-H., Huang, C.-C., Kim, Y.-M., Cho, S.-N., Ioerger, T. R., Barreda, N. N., Calderon, R., Sassetti, C. M., & Murray, M. B. (2021). Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. Journal of Clinical Medicine, 10(15), 3249. https://doi.org/10.3390/jcm10153249