Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Study Protocol
2.2. Cardiac and Autonomic Measures
2.3. Statistical Analysis
3. Results
3.1. Clinical Symptoms of Autonomic Imbalance
3.2. Hemodynamic Parameters Assessment
3.3. Baroreflex Sensitivity, Heart Rate, and Blood Pressure Variability Analysis
3.4. Association of Cardiovascular and Autonomic Measures with MS Clinical Outcomes
3.5. Association of Cardiovascular and Autonomic Measures with MG Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danikowski, K.M.; Jayaraman, S.; Prabhakar, B.S. Regulatory T cells in multiple sclerosis and myasthenia gravis. J. Neuroinflamm. 2017, 14, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stüve, O.; Zettl, U. Neuroinflammation of the central and peripheral nervous system: An update. Clin. Exp. Immunol. 2014, 175, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Gilhus, N.E.; Tzartos, S.; Evoli, A.; Palace, J.; Burns, T.M.; Verschuuren, J.J.G.M. Myasthenia gravis. Nat. Rev. Dis. Primer. 2019, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Kataria, H.; Hart, C.G.; Alizadeh, A.; Cossoy, M.; Kaushik, D.K.; Bernstein, C.N.; Marrie, R.A.; Yong, V.W.; Karimi-Abdolrezaee, S. Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain 2021, 12, 162–185. [Google Scholar] [CrossRef] [PubMed]
- Kaegi, C.; Wuest, B.; Schreiner, J.; Steiner, U.C.; Vultaggio, A.; Matucci, A.; Crowley, C.; Boyman, O. Systematic Review of Safety and Efficacy of Rituximab in Treating Immune-Mediated Disorders. Front. Immunol. 2019, 10, 1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltsatou, A.; Fotiou, D.; Tsiptsios, D.; Orologas, A. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis. BBA Clin. 2015, 3, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Tsiptsios, D.; Fotiou, D.F.; Haidich, A.B.; Brozou, G.C.; Nakou, M.; Giantselidis, C.; Karlovasitou, A.; Fotiou, F. Evaluation of pupil mobility in patients with myasthenia gravis. Electromyogr. Clin. Neurophysiol. 2008, 48, 209–218. [Google Scholar]
- Elnazeir, M.; Narayanan, S.; Badugu, P.; Hussain, A.; Tareen, T.; Hernandez, A.R.; Liu, W.; Palade, A.E.; Brown, M.E. Myasthenia Gravis Masquerading as an Idiopathic Unilateral Facial Paralysis (Bell's Palsy)-A Very Rare and Unique Clinical Find. Front. Neurol. 2020, 11, 709. [Google Scholar] [CrossRef]
- Xiong, L.; Leung, T.W.H. Autonomic dysfunction in neurological disorders. Aging 2019, 11, 1903–1904. [Google Scholar] [CrossRef]
- Habek, M. Immune and autonomic nervous system interactions in multiple sclerosis: Clinical implications. Clin. Auton. Res. 2019, 29, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Cygankiewicz, I.; Zareba, W. Chapter 31—Heart rate variability. In Handbook of Clinical Neurology Autonomic Nervous System; Buijs, R.M., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 379–393. [Google Scholar]
- Shukla, G.; Gupta, S.; Goyal, V.; Singh, S.; Srivastava, A.; Behari, M. Abnormal sympathetic hyper-reactivity in patients with myasthenia gravis: A prospective study. Clin. Neurol. Neurosurg. 2013, 115, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Flachenecker, P.; Reiners, K.; Krauser, M.; Wolf, A.; Toyka, K.V. Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult. Scler. J. 2001, 7, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015, 74, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Göbel, K.; Ruck, T.; Meuth, S.G. Cytokine signaling in multiple sclerosis: Lost in translation. Mult. Scler. 2018, 24, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Uzawa, A.; Kanai, T.; Kawaguchi, N.; Oda, F.; Himuro, K.; Kuwabara, S. Changes in inflammatory cytokine networks in myasthenia gravis. Sci. Rep. 2016, 6, 25886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benarroch, E.E. Autonomic nervous system and neuroimmune interactions. New insights and clinical implications. Neurology 2019, 92, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Zila, I.; Mokra, D.; Kopincova, J.; Kolomaznik, M.; Javorka, M.; Calkovska, A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol. Res. 2017, 66, S139–S145. [Google Scholar] [CrossRef]
- Gatta, V.; Mengod, G.; Reale, M.; Tata, A.M. Possible Correlation between Cholinergic System Alterations and Neuro/Inflammation in Multiple Sclerosis. Biomedicines 2020, 8, 153. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leray, E.; Yaouanq, J.; Le Page, E.; Coustans, M.; Laplaud, D.; Oger, J.; Edan, G. Evidence for a two-stage disability progression in multiple sclerosis. Brain 2010, 133, 1900–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Definitions for a Standardised, Quantified Neurological Examinationand Assessment of Kurtzke‘s Functional Systems and ExpandedDisability Status Scale in Multiple Sclerosis. Available online: www.neurostatus.net/media/specimen/Definitions_0410-2_s.pdf (accessed on 12 March 2021).
- JJaretzki, A.; Barohn, R.J.; Ernstoff, R.M.; Kaminski, H.J.; Keesey, J.C.; Penn, A.S.; Sanders, D.B. Myasthenia gravis: Recommendations for clinical research standards. Task force of the medical scientific advisory board of the myasthenia gravis foundation of America. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment clinical autonomic testing report of the therapeutics and technology subcommittee of the American Academy of Neurology. Neurology 1996, 46, 873–880. [Google Scholar]
- Schwalm, T. Modern Tilt Table Testing and Non-Invasive Monitoring. Traditional and Innovative Applications in Theory and Practice; ABW Wissenschaftsverlag GmbH: Berlin, Germany, 2006. [Google Scholar]
- Fortin, J.; Klinger, T.; Wagner, C.; Sterner, H.; Madritsch, C.; Grüllenberger, R.; Hacker, A.; Habenbacher, W.; Skrabal, F. The task force monitor—A non-invasive beat-to beat monitor for hemodynamic and autonomic function of the human body. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998; pp. 63–151. [Google Scholar]
- Schlögl, A.; Flotzinger, D.; Pfurtscheller, G. Adaptive Autoregressive Modeling used for Single-trial EEG Classification—Verwendung eines Adaptiven Autoregressiven Modells für die Klassifikation von Einzeltrial-EEG-Daten. Biomed. Tech. 1997, 42, 162–167. [Google Scholar] [CrossRef]
- Gratze, G.; Fortin, J.; Holler, A.; Grasenick, K.; Pfurtscheller, G.; Wach, P.; Schönegger, J.; Kotanko, P.; Skrabal, F. A software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Comput. Biol Med. 1998, 28, 121–142. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Hear. J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Parati, G.; Di Rienzo, M.; Mancia, G. How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. J. Hypertens. 2000, 18, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Malik, M. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart. J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- NIST/SEMATECH e-Handbook of Statistical Methods. Available online: http://www.itl.nist.gov/div898/handbook (accessed on 15 March 2021).
- Grassi, G.; Seravalle, G.; Mancia, G. Sympathetic activation in cardiovascular disease: Evidence, clinical impact and therapeutic implications. Eur. J. Clin. Investig. 2015, 45, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolić, A.; Perić, S.; Nišić, T.; Popović, S.; Ilić, M.; Stojanović, V.R.; Lavrnić, D. The presence of dysautonomia in different subgroups of myasthenia gravis patients. J. Neurol. 2014, 261, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Călin, C.; Savu, O.; Dumitru, D.; Ghiorghiu, I.; Călin, A.; Capraru, C.; Popescu, B.A.; Croitoru, M.; Vîlciu, C.; Ginghină, C. Cardiac involvement in myasthenia gravis--is there a specific pattern? Rom. J. Intern. Med. 2009, 47, 179–189. [Google Scholar] [PubMed]
- Kato, T.; Hirose, S.; Kumagai, S.; Ozaki, A.; Matsumoto, S.; Inoko, M. Electrocardiography as the First Step for the Further Examination of Cardiac Involvement in Myasthenia Gravis. BioMed. Res. Int. 2016, 2016, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Shivamurthya, P.; Parkerb, M.W. Cardiac manifestations of myasthenia gravis: A systematic review. IJC Metab. Endocr. 2014, 5, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Romi, F.; Skeie, G.O.; Gilhus, N.E.; Aarli, J.A. Striational antibodies in myasthenia gravis: Reactivity and possible clinical significance. Arch. Neurol. 2005, 62, 442–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardiac Dysfunction in Myasthenic Crisis. Available online: http://oaji.net/articles/2015/1626-1445873445.pdf. (accessed on 15 March 2021).
- Owe, F.J.; Davidson, E.S.; Eide, G.E. Left ventricular long axis function in myasthenia gravis. J. Neurol. 2008, 255, 1777–1784. [Google Scholar]
- Benjamin, R.N.; Aaron, S.; Sivadasan, A.; Devasahayam, S.; Sebastin, A.; Alexander, M. The Spectrum of Autonomic Dysfunction in Myasthenic Crisis. Ann. Indian Acad. Neurol. 2018, 21, 42–48. [Google Scholar] [CrossRef]
- Kocabas, Z.U.; Kizilay, F.; Basarici, I.; Uysal, H. Evaluation of cardiac autonomic functions in myasthenia gravis. Neurol. Res. 2018, 40, 405–412. [Google Scholar] [CrossRef]
- Vernino, S.; Hopkins, S.; Wang, Z. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy. Auton. Neurosci. 2009, 146, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handara, G.; Hetsch, F.J.A.; Jüttner, R.; Schick, A.; Haupt, C.; Rathjen, F.G.; Kröger, S. The role of agrin, Lrp4 and MuSK during dendritic arborization and synaptogenesis in cultured embryonic CNS neurons. Dev. Biol. 2019, 445, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Daniels, M.P. The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem. Int. 2012, 61, 848–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakatsani, A.; Marichal, N.; Urban, S.; Kalamakis, G.; Ghanem, A.; Schick, A.; Zhang, Y.; Conzelmann, K.K.; Rüegg, M.A.; Berninger, B.; et al. Neuronal LRP4 regulates synapse formation in the developing CNS. Development 2017, 144, 4604–4615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racosta, J.M.; Kimpinski, K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin. Auton. Res. 2016, 26, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Studer, V.; Rocchi, C.; Motta, C.; Lauretti, B.; Perugini, J.; Brambilla, L.; Centonze, D. Heart rate variability is diferentially altered in multiple sclerosis: Implications for acute. worsening and progressive disability. Mult. Scler. J. Exp. Transl. Clin. 2017, 3. [Google Scholar] [CrossRef]
- Marrosu, F.; Maleci, A.; Cocco, E.; Puligheddu, M.; Barberini, L.; Marrosu, M.G. Vagal nerve stimulation improves cerebellar tremor and dysphagia in multiple sclerosis. Mult. Scler. 2007, 13, 1200–1202. [Google Scholar] [CrossRef]
- Kass, R. Mindful Breathing Offers Relief for Myasthenia Gravis: A Case Report. Adv. Mind Body Med. 2019, 33, 22–25. [Google Scholar]
- Alcantara, J.; Plaugher, G.; Araghi, H.J. Chiropractic care of a pediatric patient with myasthenia gravis. J. Manip. Physiol. Ther. 2003, 26, 390–394. [Google Scholar] [CrossRef]
- Alcantara, J.; Steiner, D.M.; Plaugher, G.; Alcantara, J. Chiropractic management of a patient with myasthenia gravis and vertebral subluxations. J. Manip. Physiol. Ther. 1999, 22, 333–340. [Google Scholar] [CrossRef]
- Antonino, D.; Teixeira, A.L.; Maia-Lopes, P.M.; Souza, M.C.; Sabino-Carvalho, J.L.; Murray, A.R.; Deuchars, J.; Vianna, L.C. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 2017, 10, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MG | RRMS | HC | p | |
---|---|---|---|---|
Number of subjects (n) | 23 | 23 | 30 | |
Sex (Male/Female) | 4/19 | 1/22 | 6/24 | 0.246 |
Age, years | 40.6 ± 11.0 | 39.9 ± 10.1 | 36.2 ± 7.7 | 0.199 |
Disease duration (years) (range) | 8.4 ± 7.8 (0–24) | 7.7 ± 5.7 (0.5–23) | 0.732 | |
Age of first symptoms (years) (range) | 32.2 ± 12.1 (12.0–59.0) | 32.2 ± 9.4 (20.0–58.0) | 0.989 | |
Type of MG | ||||
Ocular | 6 (26.1%) | |||
Generalized | 18 (78.3%) | |||
Seropositivity to AChR antibodies, n (%) | 17 (73.9%) | |||
Seropositivity to MuSK antibodies | 0 (0%) | |||
Double-seronegative MG | 6 (26.1%) | |||
Thymic pathology (%) | 13 (56.5%) | |||
Thymectomy, n (%) | 9 (39.1%) | |||
Thymoma | 1 (4.3%) | |||
Disease stage (MGFA), n (%) | ||||
Class I | 6 (26.1%) | |||
Class IIa | 11 (47.8%) | |||
Class IIIa | 6 (26.1%) | |||
Type of treatment | ||||
Cholinergic therapy | 23 (100%) | |||
Corticosteroids | 10 (43.5%) | |||
Immunosuppressive therapy | 9 (39.1%) | |||
IMDs | 10 (43.5%) | |||
Mean EDSS score (range) | 2.1 (0.5–6.0) |
Non-Motor Symptoms | MG | RRMS | p-Value | ||
---|---|---|---|---|---|
Present | Absent | Present | Absent | ||
n (%) | n (%) | n (%) | n (%) | ||
Orthostatic disorders | 13 (56.5%) | 10 (43.5%) | 17 (73.9%) | 6 (26.1%) | 0.215 |
Dizziness | 14 (60.9%) | 9 (39.1%) | 17 (73.9%) | 6 (26.1%) | 0.345 |
Sudden paleness | 11(47.8%) | 12 (52.2%) | 3 (13.0) | 20 (87.0%) | 0.013 * |
Arrhythmia episodes | 10 (43.5%) | 13 (56.5%) | 5 (21.7%) | 18 (78.3%) | 0.115 |
Vasomotor disorder | 4 (17.4%) | 19 (82.6%) | 2 (8.7%) | 21 (91.3%) | 0.381 |
Dry mouth/eyes | 16 (69.6%) | 7 (30.4%) | 9 (39.1%) | 14 (60.9%) | 0.025 * |
Thermoregulatory disorders | 15 (65.2%) | 8 (34.8%) | 6 (26.1%) | 17 (73.9%) | 0.010 * |
Stomach ache | 7 (30.4%) | 16 (69.6%) | 3 (13.6%) | 19 (86.4%) | 0.175 |
Constipation | 8 (34.8%) | 15 (65.2%) | 5 (21.7%) | 18 (78.3%) | 0.325 |
Diarrhoea | 9 (39.1%) | 14 (60.9%) | 0 (0%) | 23 (100%) | 0.001 ** |
Post-meal symptoms | 11 (47.8%) | 12 (52.2%) | 9 (39.1%) | 14 (60.9%) | 0.551 |
Urinary bladder dysfunctions | 10 (43.5%) | 13 (56.5%) | 5 (21.7%) | 18 (78.3%) | 0.115 |
Sexual dysfunction | 6 (26.1%) | 17 (73.9%) | 4 (17.4%) | 19 (82.6%) | 0.474 |
Pupillary disorders | 13 (56.5%) | 10 (43.5%) | 11 (47.8%) | 12 (52.2%) | 0.554 |
Anxiety | 8 (34.8%) | 15 (65.2%) | 2 (8.7%) | 21 (91.3%) | 0.031 * |
Parameter | Supine | Tlt | Delta (Change Baseline-Tilt) | ||||||
---|---|---|---|---|---|---|---|---|---|
MG | MS | HC | MG | MS | HC | MG | MS | HC | |
HR (n/1) | 64.6 ± 1.7 | 64.4 ± 1.6 | 66.8 ± 1.5 | 76.8 ± 2.3 | 78.4 ± 2.2 | 81.4 ± 1.9 | 12.2 ± 1.5 | 13.9 ± 1.5 | 14.6 ± 1.3 |
sBP (mmHg) | 112.8 ± 2.6 | 109.8 ± 2.4 | 111.9 ± 2.2 | 123.6 ± 2.8 | 124.1 ± 2.6 | 125.0 ± 2.4 | 10.7 ± 2.5 | 14.1 ± 2.4 | 13.1 ± 2.2 |
dBP (mmHg) | 71.6 ± 1.8 | 69.4 ± 1.7 | 73.4 ± 1.6 | 86.9 ± 2.3 | 89.4 ± 2.2 | 88.7 ± 2.0 | 15.3 ± 1.9 | 19.4 ± 1.8 | 15.3 ± 1.6 |
mBP (mmHg) | 88.7 ± 2.0 | 86.5 ± 1.9 | 90.1 ± 1.8 | 101.8 ± 2.3 | 104.1 ± 2.2 | 104.1 ± 2.0 | |||
SI (mL/m2) | 51.4 ± 2.9 | 58.3 ± 2.7 | 56.3 ± 2.5 | 37.9 ± 1.5 | 39.6 ± 1.4 | 41.0 ± 1.3 | −13.5 ± 2.2 | −18.1 ± 2.1 | −15.3 ± 1.9 |
CI (l/min/m2) | 3.3 ± 0.2 | 3.7 ± 0.2 | 3.7 ± 0.2 | 2.9 ± 0.1 * | 3.1 ± 0.1 | 3.3 ± 0.1 | −0.4 ± 0.2 | −0.6 ± 0.2 | −0.4 ± 0.1 |
TPRI (dyn·s·m2/cm5) | 2270.8 ± 147.5 | 1981.6 ± 141.0 | 1977.5 ± 127.8 | 2885.1 | 2790.3 | 2600.5 | 614.3 ± 136.7 | 752.4 ± 130.6 | 623.0 ± 118.4 |
LVWI (mmHg·L/min·m2) | 3.8 ± 0.2 * | 4.2 ± 0.2 | 4.5 ± 0.2 | 3.8 ± 0.2 ** | 4.3 ± 0.2 | 4.6 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.2 |
LVET (ms) | 315.9 ± 2.8 | 323.0 ± 2.8 | 318.4 ± 2.5 | 284.6 ± 3.8 | 286.2 ± 3.8 | 279.5 ± 3.3 | −31.2 ± 3.3 | −36.7 ± 3.3 | −38.9 ± 2.9 |
TFC (1/Ω) | 27.9 ± 1.2 * | 28.3 ± 1.4 * | 32.7 ± 1.2 | 25.7 ± 1.3 | 25.8 ± 1.3 | 29.9 ± 1.1 | −2.2 ± 0.2 | −2.6 ± 0.2 | −2.8 ± 0.2 |
Parameter | Supine | Tlt | Delta (Change Baseline-Tilt) | ||||||
---|---|---|---|---|---|---|---|---|---|
MG | RRMS | HC | MG | RRMS | HC | MG | RRMS | HC | |
LFnu-RRI (%) | 60.3 ± 3.3 | 59.5 ± 3.1 | 57.6 ± 2.8 | 75.5 ± 3.1 | 75.8 ± 3.1 | 72.2 ± 2.7 | 17.9 ± 3.2 | 15.6 ± 3.0 | 14.9 ± 2.7 |
HFnu-RRI (%) | 39.7 ± 3.3 | 40.5 ± 3.1 | 42.4 ± 2.8 | 24.5 ± 5.8 | 24.2 ± 5.8 | 34.3 ± 5.1 | −17.9 ± 6.2 | −15.6 ± 5.9 | −8.5 ± 5.2 |
LF-RRI (ms2) | 593.0 ± 126.7 | 873.8 ± 121.1 | 726.4 ± 109.8 | 493.3 ± 186.0 | 486.5 ± 186.0 | 748.4 ± 162.8 | −99.7 ± 115.6 | −436.1 ± 110.4 * | 28.3 ± 96.7 |
HF-RRI (ms2) | 497.1 ± 160.2 | 751.0 ± 153.1 | 604.6 ± 138.8 | 166.8.1 ± 237.1 * | 132.5 ± 237.1 | 266.1 ± 207.6 | −330.3 ± 144.5 | −621.5 ± 138.1 | −338.3 ± 120.9 |
PSD-RRI (ms2) | 2607.1 ± 675.2 | 2235.8 ± 645.2 | 1730.7 ± 584.8 | 1711.5 ± 460.5 | 805.2 ± 460.5 | 1285.1 ± 403.2 | −896.4 ± 600.8 | −1480.4 ± 574 * | −434.1 ± 503 |
LF/HF-RRI (n/1) | 2.3 ± 0.4 | 2.0 ± 0.3 | 1.8 ± 0.3 | 6.2 ± 08 * | 4.8 ± 0.8 | 3.9 ± 0.7 | 4.4 ± 0.7 * | 2.5 ± 0.7 | 2.1 ± 0.6 |
LF/HF (n/1) | 1.6 ± 0.3 | 1.4 ± 0.2 | 1.4 ± 0.2 | 4.1 ± 0.6 | 3.2 ± 0.6 | 2.8 ± 0.5 | 2.8 ± 0.5 | 1.6 ± 0.4 | 1.4 ± 0.4 |
LFnu-dBP (%) | 44.5 ± 2.3 | 43.6 ± 2.2 | 47.0 ± 2.0 | 51.6 ± 2.7 | 51.8 ± 2.7 | 52.5 ± 2.4 | 7.6 ± 2.0 | 7.3 ± 2.0 | 6.0 ± 1.8 |
HFnu-dBP (%) | 10.5 ± 1.0 | 10.7 ± 1.0 | 11.1 ± 0.9 | 12.8 ± 1.3 | 10.5 ± 1.3 | 11.8 ± 1.1 | 0.0 ± 0.6 | −0.1 ± 0.6 | 0.8 ± 0.5 |
LF-dBP (mmHg2) | 4.2 ± 0.6 | 3.9 ± 0.6 | 4.2 ± 0.5 | 3.8 ± 0.5 | 4.2 ± 0.5 | 3.4 ± 0.5 | −0.7 ± 0.3 | −0.3 ± 0.3 | −0.6 ± 0.3 |
HF-dBP (mmHg2) | 0.9 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.2 | 0.8 ± 0.2 | 0.8 ± 0.2 | −0.4 ± 0.1 | −0.3 ± 0.1 | −0.1 ± 0.1 |
PSD-dBP (mmHg2) | 9.3 ± 1.2 | 9.2 ± 1.1 | 8.8 ± 1.0 | 7.5 ± 1.0 | 8.1 ± 1.0 | 6.7 ± 0.8 | −2.5 ± 0.5 | −1.9 ± 0.5 | −1.8 ± 0.5 |
LF/HF-dBP (n/1) | 5.3 ± 0.5 | 4.8 ± 0.5 | 5.1 ± 0.5 | 5.4 ± 0.7 | 5.8 ± 0.7 | 5.5 ± 0.6 | 0.5 ± 0.5 | 0.8 ± 0.5 | 0.4 ± 0.4 |
LFnu-sBP (%) | 41.3 ± 2.1 | 40.0 ± 2.0 | 41.8 ± 1.8 | 52.3 ± 2.8 | 51.8 ± 2.8 | 49.1 ± 2.4 | 11.0 ± 2.3 | 10.7 ± 2.3 | 8.5 ± 2.0 |
HFnu-sBP (%) | 14.5 ± 1.7 | 11.9 ± 1.7 | 13.0 ± 1.5 | 18.1 ± 1.9 | 13.8 ± 1.9 | 15.0 ± 1.7 | 1.6 ± 1.0 | 2.1 ± 1.0 | 2.6 ± 0.8 |
LF-sBP (mmHg2) | 6.7 ± 0.9 | 5.1 ± 0.9 | 5.5 ± 0.8 | 6.6 ± 1.1 | 6.4 ± 1.1 | 4.5 ± 0.9 | −0.4 ± 0.5 | −0.2 ± 0.5 | −0.8 ± 0.4 |
HF-sBP (mmHg2) | 2.1 ± 0.3 | 1.4 ± 0.3 | 1.7 ± 0.3 | 2.2 ± 0.3 | 1.3 ± 0.3 | 1.4 ± 0.3 | −0.5 ± 0.2 | −0.2 ± 0.2 | −0.2 ± 0.2 |
PSD-sBP (mmHg2) | 16.5 ± 2.1 | 13.4 ± 2.0 | 12.8 ± 1.9 | 12.3 ± 1.7 | 11.5 ± 1.7 | 9.2 ± 1.5 | −4.7 ± 0.9 | −3.6 ± 0.9 | −3.4 ± 0.9 |
LF/HF-sBP (n/1) | 4.0 ± 0.5 | 4.1 ± 0.4 | 4.0 ± 0.4 | 3.9 ± 0.5 | 5.0 ± 0.5 | 4.2 ± 0.5 | 2.8 ± 0.5 | 1.7 ± 0.5 | 1.5 ± 0.4 |
BRS (ms/mmHg) | 12.7 ± 2.2 * | 19.9 ± 2.1 | 19.9 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzepiński, Ł.; Zawadka-Kunikowska, M.; Newton, J.L.; Zalewski, P. Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis—A Pilot Study. J. Clin. Med. 2021, 10, 2173. https://doi.org/10.3390/jcm10102173
Rzepiński Ł, Zawadka-Kunikowska M, Newton JL, Zalewski P. Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis—A Pilot Study. Journal of Clinical Medicine. 2021; 10(10):2173. https://doi.org/10.3390/jcm10102173
Chicago/Turabian StyleRzepiński, Łukasz, Monika Zawadka-Kunikowska, Julia L. Newton, and Paweł Zalewski. 2021. "Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis—A Pilot Study" Journal of Clinical Medicine 10, no. 10: 2173. https://doi.org/10.3390/jcm10102173
APA StyleRzepiński, Ł., Zawadka-Kunikowska, M., Newton, J. L., & Zalewski, P. (2021). Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis—A Pilot Study. Journal of Clinical Medicine, 10(10), 2173. https://doi.org/10.3390/jcm10102173