Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Echocardiographic Analysis
2.3. Cardiac Rehabilitation Program
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Population
3.2. Follow-Up Echocardiography
3.3. Echocardiographic Variables of Diastolic Dysfunction
3.4. Adverse Clinical Outcomes during the Follow-Up Period
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takagi, K.; Kimmoun, A.; Sato, N.; Mebazaa, A. Management of Acute Heart Failure during an Early Phase. Int. J. Heart Fail. 2020, 2, 91–110. [Google Scholar] [CrossRef]
- Abreu, A. Cardiac rehabilitation after acute myocardial infarction: Still insufficient referral! Int. J. Cardiol. 2018, 261, 28–29. [Google Scholar] [CrossRef]
- Chun, K.H.; Kang, S.M. Cardiac Rehabilitation in Heart Failure. Int. J. Heart Fail. 2021, 3, 1–14. [Google Scholar] [CrossRef]
- Leggett, L.E.; Hauer, T.; Martin, B.J.; Aggarwal, S.; Arena, R.; Austford, L.D.; Meldrum, D.; Ghali, W.; Knudtson, M.L.; Norris, C.M.; et al. Optimizing Value From Cardiac Rehabilitation: A Cost-Utility Analysis Comparing Age, Sex, and Clinical Subgroups. Mayo Clin. Proc. 2015, 90, 1011–1120. [Google Scholar] [CrossRef]
- Anderson, L.; Oldridge, N.; Thompson, D.R.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2016, 67, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, L.J.; Taylor, R.S. Cardiac rehabilitation for people with heart disease: An overview of Cochrane systematic reviews. Int. J. Cardiol. 2014, 177, 348–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, N.; Haluska, B.; Jeffriess, L.; Marwick, T.H. Exercise training in systolic and diastolic dysfunction: Effects on cardiac function, functional capacity, and quality of life. Am. Heart J. 2007, 153, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Bilinska, M.; Kosydar-Piechna, M.; Gasiorowska, A.; Mikulski, T.; Piotrowski, W.; Nazar, K.; Piotrowicz, R. Influence of dynamic training on hemodynamic, neurohormonal responses to static exercise and on inflammatory markers in patients after coronary artery bypass grafting. Circ. J. 2010, 74, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Gates, P.E.; Tanaka, H.; Graves, J.; Seals, D.R. Left ventricular structure and diastolic function with human ageing. Relation to habitual exercise and arterial stiffness. Eur. Heart J. 2003, 24, 2213–2220. [Google Scholar] [CrossRef]
- Di Nora, C.; Guidetti, F.; Livi, U.; Antonini-Canterin, F. Role of Cardiac Rehabilitation after Ventricular Assist Device Implantation. Heart Fail. Clin. 2021, 17, 273–278. [Google Scholar] [CrossRef]
- Pavasini, R.; Cardelli, L.S.; Piredda, A.; Tonet, E.; Campana, R.; Vitali, F.; Cimaglia, P.; Maietti, E.; Caglioni, S.; Morelli, C.; et al. Diastolic dysfunction, frailty and prognosis in elderly patients with acute coronary syndromes. Int. J. Cardiol. 2021, 327, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Freimark, D.; Adler, Y.; Feinberg, M.S.; Regev, T.; Rotstein, Z.; Eldar, M.; Motro, M.; Schwammenthal, E. Impact of left ventricular filling properties on the benefit of exercise training in patients with advanced chronic heart failure secondary to ischemic or nonischemic cardiomyopathy. Am. J. Cardiol. 2005, 95, 136–140. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology /American College of Cardiology /American Heart Association /World Heart Federation Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Milani, R.V. Benefits of cardiac rehabilitation and exercise training. Chest 2000, 117, 5–7. [Google Scholar] [CrossRef]
- Giannuzzi, P.; Temporelli, P.L.; Corra, U.; Gattone, M.; Giordano, A.; Tavazzi, L. Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction: Results of the Exercise in Left Ventricular Dysfunction (ELVD) trial. Circulation 1997, 96, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, D.Y.; Lee, D.W. The impact of early regular cardiac rehabilitation program on myocardial function after acute myocardial infarction. Ann. Rehabil. Med. 2011, 35, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Wuthiwaropas, P.; Bellavia, D.; Omer, M.; Squires, R.W.; Scott, C.G.; Pellikka, P.A. Impact of cardiac rehabilitation exercise program on left ventricular diastolic function in coronary artery disease: A pilot study. Int. J. Cardiovasc. Imaging 2013, 29, 777–785. [Google Scholar] [CrossRef]
- Sandri, M.; Kozarez, I.; Adams, V.; Mangner, N.; Hollriegel, R.; Erbs, S.; Linke, A.; Mobius-Winkler, S.; Thiery, J.; Kratzsch, J.; et al. Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: The Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction Study. Eur. Heart J. 2012, 33, 1758–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadruz, W.; Shah, A.M.; Solomon, S.D. Diastolic Dysfunction and Hypertension. Med. Clin. N. Am. 2017, 101, 7–17. [Google Scholar] [CrossRef]
- Cheng, S.; Lam, C.; Shah, A.; Claggett, B.; Desai, A.; Hilkert, R.J.; Izzo, J.; Oparil, S.; Pitt, B.; Solomon, S.D. Age and the effectiveness of anti-hypertensive therapy on improvement in diastolic function. J. Hypertens. 2014, 32, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Douglas, P.S. The left atrium: A biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J. Am. Coll. Cardiol. 2003, 42, 1206–1207. [Google Scholar] [CrossRef] [Green Version]
- Tsang, T.S.; Abhayaratna, W.P.; Barnes, M.E.; Miyasaka, Y.; Gersh, B.J.; Bailey, K.R.; Cha, S.S.; Seward, J.B. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J. Am. Coll. Cardiol. 2006, 47, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Bombelli, M.; Facchetti, R.; Cuspidi, C.; Villa, P.; Dozio, D.; Brambilla, G.; Grassi, G.; Mancia, G. Prognostic significance of left atrial enlargement in a general population: Results of the PAMELA study. Hypertension 2014, 64, 1205–1211. [Google Scholar] [CrossRef] [Green Version]
- Ratanasit, N.; Karaketklang, K.; Chirakarnjanakorn, S.; Krittayaphong, R.; Jakrapanichakul, D. Left atrial volume as an independent predictor of exercise capacity in patients with isolated diastolic dysfunction presented with exertional dyspnea. Cardiovasc. Ultrasound 2014, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Moller, J.E.; Hillis, G.S.; Oh, J.K.; Seward, J.B.; Reeder, G.S.; Wright, R.S.; Park, S.W.; Bailey, K.R.; Pellikka, P.A. Left atrial volume: A powerful predictor of survival after acute myocardial infarction. Circulation 2003, 107, 2207–2212. [Google Scholar] [CrossRef] [Green Version]
- Beinart, R.; Boyko, V.; Schwammenthal, E.; Kuperstein, R.; Sagie, A.; Hod, H.; Matetzky, S.; Behar, S.; Eldar, M.; Feinberg, M.S. Long-term prognostic significance of left atrial volume in acute myocardial infarction. J. Am. Coll. Cardiol. 2004, 44, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, E.; Yamada, A.; Sugimoto, K.; Ito, Y.; Shiino, K.; Takada, K.; Iwase, M.; Ozaki, Y. Prognostic value of left atrial volume index in patents with first acute myocardial infarction. Eur. J. Echocardiogr 2011, 12, 440–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waggoner, A.D.; Faddis, M.N.; Gleva, M.J.; de las Fuentes, L.; Davila-Roman, V.G. Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance. J. Am. Coll. Cardiol. 2005, 46, 2244–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Ryden, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol. 2016, 23, 636–648. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 405) | No-CR Group (n = 225) | Insufficient-CR Group (n = 117) | CR Group (n = 63) | p Value |
---|---|---|---|---|---|
Age (year) + | 63.7 ± 11.7 | 65.2 ± 12.4 | 62.9 ± 11.2 | 61.4 ± 9.5 | 0.006 |
Male sex (%) | 300 (74.1%) | 164 (72.9%) | 90 (76.9%) | 46 (73.0%) | 0.706 |
BMI (kg/m2) | 24.0 ± 3.0 | 23.9 ± 3.3 | 24.1 ± 2.7 | 23.9 ± 3.0 | 0.747 |
Cardiovascular risk factors | |||||
HTN (%) + | 191 (47.2%) | 118 (52.4%) | 52 (44.4%) | 21 (33.3%) | 0.021 |
DM (%) | 127 (31.4%) | 79 (35.1%) | 33 (28.2%) | 15 (23.8%) | 0.159 |
Dyslipidemia (%) | 18 (4.4%) | 9 (4.0%) | 7 (6.0%) | 2 (3.2%) | 0.722 |
Smoking (%) | 159 (39.5%) | 86 (38.6%) | 49 (41.9%) | 24 (38.1%) | 0.415 |
Prior MI (%) | 29 (7.2%) | 20 (8.9%) | 1 (1.3%) | 8 (7.9%) | 0.251 |
Ischemic heart disease (%) | 37 (9.1%) | 23 (10.2%) | 10 (8.5%) | 4 (6.3%) | 0.619 |
Family history (%) | 17 (4.1%) | 8 (3.5%) | 6 (5.1%) | 3 (4.8%) | 0.782 |
Symptom to ER time (h) | 4.7 ± 5.2 | 4.8 ± 5.1 | 4.3 ± 5.1 | 5.0 ± 6.0 | 0.615 |
Clinical presentation | 0.223 | ||||
NSTEMI (%) | 161 (39.8%) | 95 (42.2%) | 47 (40.2%) | 19 (30.2%) | |
STEMI (%) | 244 (60.2%) | 130 (57.8%) | 70 (59.8%) | 44 (69.8%) | |
Killip class III/IV (%) * | 20 (4.9%) | 17 (7.6%) | 0 (0%) | 3 (4.8%) | 0.009 |
SBP (mm Hg) | 136.5 ± 28.8 | 134.5 ± 29.7 | 141.0 ± 28.1 | 135.4 ± 26.6 | 0.132 |
DBP (mm Hg) *,$ | 80.6 ± 17.2 | 79.1 ± 17.3 | 84.9 ± 17.0 * | 78.1 ± 15.9 $ | 0.011 |
HR (/min) | 79.1 ± 20.3 | 80.0 ± 21.6 | 79.2 ± 18.5 | 75.7 ± 18.7 | 0.376 |
Chemistry | |||||
TC (mg/dL) | 179.1 ± 43.0 | 177.0 ± 45.1 | 179.9 ± 40.5 | 184.9 ± 40.1 | 0.428 |
LDL (mg/dL) | 117.4 ± 38.0 | 116.5 ± 40.2 | 119.5 ± 36.9 | 116.8 ± 32.0 | 0.684 |
HDL (mg/dL) | 44.9 ± 11.7 | 44.9 ± 12.3 | 44.8 ± 11.3 | 45.1 ± 10.3 | 0.888 |
Cr (mg/dL) | 1.07 ± 1.17 | 1.12 ± 1.12 | 1.06 ± 1.36 | 0.90 ± 0.30 | 0.396 |
CK-MB (U/L) | 2024.9 ± 2135.8 | 1893.9 ± 2095.4 | 2194.2 ± 2296.0 | 2181.1 ± 1966.5 | 0.132 |
Troponin-I (ng/L) | 46.8 ± 60.6 | 42.3 ± 59.6 | 50.0 ± 60.2 | 57.6 ± 64.0 | 0.058 |
Echocardiographic findings | |||||
LVESD (mm) | 34.5 ± 7.4 | 34.8 ± 7.8 | 34.5 ± 6.7 | 33.3 ± 7.0 | 0.416 |
LVEDD (mm) | 47.7 ± 6.6 | 47.7 ± 7.0 | 48.2 ± 5.9 | 46.6 ± 6.9 | 0.299 |
LVESV (mL) | 51.1 ± 24.6 | 52.2 ± 27.1 | 51.8 ± 22.1 | 49.7 ± 19.3 | 0.841 |
LVEDV (mL) | 95.6 ± 32.3 | 95.8 ± 34.3 | 96.3 ± 31.5 | 93.3 ± 25.9 | 0.883 |
LVEF (%) | 47.4 ± 10.6 | 47.0 ± 11.5 | 47.9 ± 9.3 | 47.6 ± 9.4 | 0.986 |
WMSI | 1.54 ± 0.39 | 1.55 ± 0.42 | 1.51 ± 0.35 | 1.52 ± 0.32 | 0.850 |
LA diameter (mm) | 37.6 ± 5.7 | 37.8 ± 6.1 | 37.8 ± 5.7 | 36.4 ± 4.1 | 0.090 |
LAVI (mL/m2) | 35.4 ± 16.2 | 37.0 ± 17.1 | 34.5 ± 16.6 | 31.4 ± 9.7 | 0.084 |
Mitral E velocity (cm/s) | 68.4 ± 22.1 | 68.5 ± 22.6 | 70.3 ± 23.9 | 64.5 ± 16.1 | 0.253 |
Mitral A velocity (cm/s) | 78.1 ± 21.0 | 80.1 ± 21.5 | 76.1 ± 20.8 | 75.0 ± 19.4 | 0.084 |
Mitral E/A ratio | 0.92 ± 0.41 | 0.90 ± 0.40 | 0.98 ± 0.47 | 0.90 ± 0.27 | 0.366 |
Mitral annular e’ velocity (cm/s) | 6.0 ± 2.1 | 5.9 ± 2.2 | 6.3 ± 1.9 | 6.4 ± 1.8 | 0.084 |
Mitral annular a’ velocity (cm/s) | 8.7 ± 2.2 | 8.6 ± 2.4 | 8.6 ± 2.1 | 9.1 ± 2.0 | 0.480 |
E/e’ ratio | 12.3 ± 6.2 | 13.0 ± 7.3 | 12.0 ± 4.7 | 10.8 ± 3.9 + | 0.103 |
TR Vmax (m/s) | 2.6 ± 0.4 | 2.6 ± 0.4 | 2.6 ± 0.4 | 2.5 ± 0.4 | 0.327 |
Culprit vessels | (n = 400) | 0.095 | |||
LMCA | 10 (2.5%) | 5 (1.3%) | 1 (0.9%) | 4 (6.3%) | |
LAD | 198 (49.4%) | 102 (46.1%) | 68 (58.1%) | 28 (44.2%) | |
LCX | 66 (16.5%) | 35 (16.0%) | 19 (16.2%) | 12 (19.0%) | |
RCA | 126 (31.6%) | 78 (35.6%) | 29 (24.8%) | 19 (30.2%) | |
Pre-TIMI grade | (n = 400) | 0.046 | |||
TIMI 0 | 211 (52.8%) | 119 (54.1%) | 54 (46.2%) | 38 (60.3%) | |
TIMI I | 25 (6.3%) | 15 (6.8%) | 6 (5.1%) | 4 (6.3%) | |
TIMI II | 42 (10.2%) | 23 (10.2%) | 9 (7.7%) | 10 (15.9%) | |
TIMI III | 121 (30.3%) | 62 (28.2%) | 48 (41.0%) | 11 (17.5%) | |
Post-TIMI grade | (n = 400) | 0.468 | |||
TIMI I | 1 (0.3%) | 1 (0.5%) | 0 (0%) | 0 (0%) | |
TIMI II | 14 (3.5%) | 9 (4.1%) | 5 (4.3%) | 0 (0%) | |
TIMI III | 385 (96.3%) | 210 (95.9%) | 112 (95.7%) | 63 (100.0%) | |
Complete revascularization (%) | 385 (96.3%) | 210 (95.9%) | 112 (95.7%) | 63 (100.0%) | 0.468 |
No-CR Group (n = 225) | Insufficient-CR Group (n = 117) | CR Group (n = 63) | p Value * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | p-Value | Baseline | Follow-Up | p-Value | Baseline | Follow-Up | p-Value | ||
LVESD (mm) | 34.8 ± 7.8 | 35.9 ± 18.1 | 0.658 | 34.5 ± 6.7 | 33.8 ± 7.4 | 0.208 | 33.3 ± 7.0 | 33.3 ± 7.4 | 0.705 | 0.445 |
LVEDD (mm) | 47.7 ± 7.0 | 48.5 ± 7.1 | 0.042 | 48.2 ± 5.9 | 48.8 ± 6.2 | 0.620 | 46.6 ± 6.9 | 47.6 ± 8.1 | 0.080 | 0.613 |
LVESV (mL) | 52.2 ± 27.1 | 49.2 ± 26.4 | 0.020 | 51.8 ± 22.1 | 47.2 ± 24.2 | 0.006 | 49.7 ± 19.3 | 46.0 ± 24.9 | 0.020 | 0.621 |
LVEDV (mL) | 95.8 ± 34.3 | 94.8 ± 32.3 | 0.837 | 96.3 ± 31.5 | 93.2 ± 30.2 | 0.308 | 93.3 ± 25.9 | 95.6 ± 30.0 | 0.546 | 0.903 |
LVEF (%) | 47.0 ± 11.5 | 51.0 ± 12.1 | <0.001 | 47.9 ± 9.3 | 52.0 ± 10.5 | <0.001 | 47.6 ± 9.4 | 53.9 ± 11.0 | <0.001 | 0.233 |
LA diameter (mm) | 37.8 ± 6.1 | 38.2 ± 6.3 | 0.138 | 37.8 ± 5.7 | 38.0 ± 5.2 | 0.936 | 36.4 ± 4.1 | 37.1 ± 4.7 | 0.310 | 0.273 |
LAVI (mL/m2) | 37.0 ± 17.1 | 35.1 ± 19.2 | 0.001 | 34.5 ± 16.6 | 31.6 ± 14.2 | 0.027 | 31.4 ± 9.7+ | 29.4 ± 10.6 | 0.049 | 0.079 |
Mitral E velocity (cm/s) | 68.5 ± 22.6 | 63.4 ± 20.1 | 0.023 | 70.3 ± 23.9 | 64.7 ± 26.0 | 0.006 | 64.5 ± 16.1 | 61.6 ± 16.6 | 0.192 | 0.574 |
Mitral A velocity (cm/s) | 80.1 ± 21.5 | 75.9 ± 22.8 | 0.005 | 76.1 ± 20.8 | 73.2 ± 20.5 | 0.019 | 75.0 ± 19.4 | 75.0 ± 17.5 | 0.795 | 0.338 |
E/A ratio | 0.90 ± 0.40 | 0.94 ± 0.63 | 0.338 | 0.98 ± 0.47 | 0.95 ± 0.76 | 0.024 | 0.90 ± 0.27 | 0.88 ± 0.44 | 0.137 | 0.812 |
Mitral annular e’ velocity (cm/s) | 5.9 ± 2.2 | 5.9 ± 2.0 | 0.906 | 6.3 ± 1.9 | 6.1 ± 1.9 | 0.593 | 6.4 ± 1.8 | 6.8 ± 2.3 | 0.265 | 0.024 |
Mitral annular a’ velocity (cm/s) | 8.6 ± 2.4 | 8.6 ± 2.3 | 0.496 | 8.6 ± 2.1 | 9.0 ± 2.3 | 0.578 | 9.1 ± 2.0 | 9.5 ± 2.1 | 0.106 | 0.009 |
E/e’ ratio | 13.0 ± 7.3 | 12.0 ± 7.0 | 0.612 | 12.0 ± 4.7 | 11.1 ± 6.1 | 0.655 | 10.8 ± 3.9+ | 10.4 ± 5.7 | 0.999 | 0.009 |
TR Vmax (m/s) | 2.6 ± 0.4 | 2.7 ± 0.5 | 0.927 | 2.6 ± 0.4 | 2.6 ± 0.5 | 0.533 | 2.5 ± 0.4 | 2.5 ± 0.3 | 0.109 | 0.254 |
No-CR Group (n = 225) | Insufficient-CR Group (n = 117) | CR Group (n = 63) | p-Value | |
---|---|---|---|---|
Baseline | ||||
E/e’ ratio > 14 | 61 (27.1%) | 27 (23.1%) | 10 (15.9%) | 0.174 |
Septal e’ velocity < 7 cm/s | 135 (60.0%) | 70 (59.8%) | 37 (58.7%) | 0.983 |
LAVI > 34 mL/m2 | 108 (48.0%) | 48 (41.0%) | 23 (36.5%) | 0.191 |
TR Vmax > 2.8 m/s | 38 (16.9%) | 20 (17.1%) | 11 (17.5%) | 0.994 |
Total number | 1.52 | 1.41 | 1.29 | 0.358 |
Estimation of LV filling pressure | 0.408 | |||
Normal LV filling pressure | 92 (40.9%) | 53 (45.3%) | 27 (42.9%) | |
Grade 1 diastolic dysfunction | 77 (34.2%) | 38 (32.5%) | 27 (42.9%) | |
Grade 2 diastolic dysfunction | 53 (23.6%) | 25 (21.4%) | 9 (14.3%) | |
Grade 3 diastolic dysfunction | 3 (1.3%) | 1 (0.9%) | 0 (0%) | |
Follow-up | ||||
E/E’ ratio > 14 | 57 (25.3%) | 20 (17.1%) | 10 (15.9%) | 0.106 |
Septal e’ velocity < 7 cm/s | 139 (61.8%) | 74 (63.2%) | 32 (50.8%) | 0.222 |
LAVI > 34 mL/m2 | 92 (40.9%) | 41 (35.0%) | 15 (23.8%) + | 0.042 |
TR Vmax > 2.8 m/s | 49 (21.8%) | 19 (16.2%) | 9 (14.3%) | 0.270 |
Total number | 1.50 | 1.32 | 1.05 + | 0.017 |
Estimation of LV filling pressure | 0.083 | |||
Normal LV filling pressure | 112 (49.8%) | 59 (50.4%) | 41 (52.3%) | |
Grade 1 diastolic dysfunction | 54 (24.0%) | 37 (31.6%) | 13 (20.6%) | |
Grade 2 diastolic dysfunction | 46 (20.4%) | 19 (16.2%) | 6 (9.5%) | |
Grade 3 diastolic dysfunction | 13 (5.8%) | 2 (1.7%) | 3 (4.8%) |
Variable | Hazard Ratio | 95% Confidential Interval | p-Value |
---|---|---|---|
Univariate analysis | |||
Age (year) | 1.029 | 1.015–1.044 | <0.001 |
Male sex | 0.988 | 0.692–1.412 | 0.949 |
BMI (kg/m2) | 0.990 | 0.938–1.046 | 0.727 |
Killip class III/IV | 1.390 | 0.709–2.725 | 0.338 |
SBP (mmHg) | 1.005 | 0.999–1.010 | 0.095 |
DBP (mmHg) | 1.001 | 0.998–1.007 | 0.627 |
HR (/min) | 1.008 | 1.000–1.015 | 0.052 |
Cardiac rehabilitation | |||
No-CR group | Reference | ||
Insufficient-CR group | 0.693 | 0.477–1.007 | 0.055 |
CR group | 0.606 | 0.367–1.000 | 0.049 |
STEMI | 0.790 | 0.575–1.084 | 0.145 |
Hypertension | 1.590 | 1.158–2.184 | 0.004 |
Diabetes | 1.675 | 1.215–2.309 | 0.002 |
Smoking | 0.819 | 0.566–1.185 | 0.290 |
Creatinine | 1.032 | 0.934–1.141 | 0.507 |
CK-MB | 1.000 | 1.000–1.000 | 0.723 |
Troponin-I | 0.999 | 0.997–1.002 | 0.620 |
Baseline LVESV (mL) | 1.000 | 0.993–1.006 | 0.884 |
Baseline LVEF (%) | 0.995 | 0.980–1.010 | 0.514 |
Baseline LAVI (mL/m2) | 1.013 | 1.004–1.022 | 0.004 |
Baseline E/e’ ratio | 1.047 | 1.025–1.069 | <0.001 |
Baseline TR Vmax (m/s) | 1.546 | 1.017–2.349 | 0.041 |
No. of baseline diastolic parameters | 1.210 | 1.060–1.382 | 0.005 |
Follow-up LVESV (mL) | 1.008 | 1.002–1.014 | 0.011 |
Follow-up LVEF (%) | 0.988 | 0.975–1.001 | 0.066 |
Follow-up LAVI (mL/m2) | 1.020 | 1.012–1.027 | <0.001 |
Follow-up E/e’ ratio | 1.032 | 1.014–1.051 | <0.001 |
Follow-up TR Vmax (m/s) | 2.216 | 1.568–3.132 | <0.001 |
No of follow-up diastolic parameters | 1.356 | 1.198–1.536 | <0.001 |
Multivariate analysis | |||
Age (year) | 1.035 | 1.018–1.052 | <0.001 |
SBP (mmHg) | 1.005 | 0.999–1.011 | 0.100 |
HR (/min) | 1.002 | 0.995–1.010 | 0.555 |
Hypertension | 1.228 | 0.869–1.736 | 0.245 |
Diabetes | 1.627 | 1.158–2.286 | 0.005 |
Follow-up LVESV (mL) | 0.999 | 0.992–1.007 | 0.883 |
Follow-up LVEF (%) | 0.995 | 0.984–1.006 | 0.374 |
Cardiac rehabilitation | |||
No-CR group | Reference | ||
Insufficient-CR group | 0.702 | 0.478–1.031 | 0.071 |
CR group | 0.738 | 0.440–1.237 | 0.249 |
No of follow-up diastolic parameters | 1.255 | 1.076–1.465 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, J.; Sun, B.J.; Jee, S.J.; Park, J.-H. Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction. J. Clin. Med. 2021, 10, 2088. https://doi.org/10.3390/jcm10102088
Lee J-H, Kim J, Sun BJ, Jee SJ, Park J-H. Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine. 2021; 10(10):2088. https://doi.org/10.3390/jcm10102088
Chicago/Turabian StyleLee, Jae-Hwan, Jungai Kim, Byung Joo Sun, Sung Ju Jee, and Jae-Hyeong Park. 2021. "Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction" Journal of Clinical Medicine 10, no. 10: 2088. https://doi.org/10.3390/jcm10102088
APA StyleLee, J.-H., Kim, J., Sun, B. J., Jee, S. J., & Park, J.-H. (2021). Effect of Cardiac Rehabilitation on Left Ventricular Diastolic Function in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine, 10(10), 2088. https://doi.org/10.3390/jcm10102088