Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Multimodal Supervised Exercise Training Program
2.3. Measures
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Training Characteristics
3.3. Walking Performance
3.4. Walking Performance and Gender Subgroup Analysis
3.5. Vascular Parameters
3.6. Vascular Parameters and Gender Subgroup Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fowkes, F.G.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; de Carlo, M.; Debusa, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Rev. Esp. Cardiol. 2018, 71, 111. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Greenland, P.; Liu, K.; Guralnik, J.M.; Criqui, M.H.; Dolan, N.C.; Chan, C.; Celic, L.; Pearce, W.H.; Schneider, J.R.; et al. Leg symptoms in peripheral arterial disease: Associated clinical characteristics and functional impairment. JAMA 2001, 286, 1599–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Fried, L.; Simonsick, E.; Ling, S.; Guralnik, J.M. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: The women’s health and aging study. Circulation 2000, 101, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Ferrucci, L.; Liu, K.; Guralnik, J.M.; Tian, L.; Liao, Y.; Criqui, M.H. Leg symptom categories and rates of mobility decline in peripheral arterial disease. J. Am. Geriatr. Soc. 2010, 58, 1256–1262. [Google Scholar] [CrossRef] [Green Version]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsater, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48 (Suppl. 102), 1–79. [Google Scholar] [CrossRef] [Green Version]
- Spronk, S.; Bosch, J.L.; den Hoed, P.T.; Veen, H.F.; Pattynama, P.M.; Hunink, M.G. Intermittent claudication: Clinical effectiveness of endovascular revascularization versus supervised hospital-based exercise training—Randomized controlled trial. Radiology 2009, 250, 586–595. [Google Scholar] [CrossRef]
- Fakhry, F.; Rouwet, E.V.; den Hoed, P.T.; Hunink, M.G.; Spronk, S. Long-term clinical effectiveness of supervised exercise therapy versus endovascular revascularization for intermittent claudication from a randomized clinical trial. Br. J. Surg. 2013, 100, 1164–1171. [Google Scholar] [CrossRef]
- Lane, R.; Harwood, A.; Watson, L.; Leng, G.C. Exercise for intermittent claudication. Cochrane Database Syst. Rev. 2017, 12, Cd000990. [Google Scholar] [CrossRef] [Green Version]
- Parmenter, B.J.; Dieberg, G.; Phipps, G.; Smart, N.A. Exercise training for health-related quality of life in peripheral artery disease: A systematic review and meta-analysis. Vasc. Med. 2015, 20, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Keo, H.; Grob, E.; Guggisberg, F.; Widmer, J.; Baumgartner, I.; Schmid, J.P.; Kalka, C.; Saner, H. Long-term effects of supervised exercise training on walking capacity and quality of life in patients with intermittent claudication. Vasa 2008, 37, 250–256. [Google Scholar] [CrossRef]
- Menard, J.R.; Smith, H.E.; Riebe, D.; Braun, C.M.; Blissmer, B.; Patterson, R.B. Long-term results of peripheral arterial disease rehabilitation. J. Vasc. Surg. 2004, 39, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.W.; Katzel, L.I.; Sorkin, J.D.; Goldberg, A.P. Effects of long-term exercise rehabilitation on claudication distances in patients with peripheral arterial disease: A randomized controlled trial. J. Cardiopulm. Rehabil. 2002, 22, 192–198. [Google Scholar] [CrossRef]
- McDermott, M.M.; Ferrucci, L.; Liu, K.; Guralnik, J.M.; Tian, L.; Kibbe, M.; Liao, Y.; Tao, H.; Criqui, M.H. Women with peripheral arterial disease experience faster functional decline than men with peripheral arterial disease. J. Am. Coll.Cardiol. 2011, 57, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.L.; Hevelone, N.; Rogers, S.O.; Bandyk, D.F.; Clowes, A.W.; Moneta, G.L.; Lipsitz, S.; Conte, M.S. Disparity in outcomes of surgical revascularization for limb salvage: Race and gender are synergistic determinants of vein graft failure and limb loss. Circulation 2009, 119, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Calanca, L.; Lanzi, S.; Ney, B.; Berchtold, A.; Mazzolai, L. Multimodal Supervised Exercise Significantly Improves Walking Performances Without Changing Hemodynamic Parameters in Patients With Symptomatic Lower Extremity Peripheral Artery Disease. Vasc. Endovascular. Surg. 2020. [Google Scholar] [CrossRef]
- Lanzi, S.; Boichat, J.; Calanca, L.; Aubertin, P.; Malatesta, D.; Mazzolai, L. Gait changes after supervised exercise training in patients with symptomatic lower extremity peripheral artery disease. Vasc. Med. 2021. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Treat-Jacobson, D.; McDermott, M.M.; Beckman, J.A.; Burt, M.A.; Creager, M.A.; Ehrman, J.K.; Gardner, A.W.; Mays, R.J.; Regensteiner, J.G.; Salisbury, D.L.; et al. Implementation of Supervised Exercise Therapy for Patients With Symptomatic Peripheral Artery Disease: A Science Advisory from the American Heart Association. Circulation 2019, 140, e700–e710. [Google Scholar] [CrossRef]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Liu, K.; Kibbe, M.R.; Ferrucci, L. Six-minute walk is a better outcome measure than treadmill walking tests in therapeutic trials of patients with peripheral artery disease. Circulation 2014, 130, 61–68. [Google Scholar] [CrossRef] [Green Version]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Ratliff, D.A.; Puttick, M.; Libertiny, G.; Hicks, R.C.; Earby, L.E.; Richards, T. Supervised exercise training for intermittent claudication: Lasting benefit at three years. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Guidon, M.; McGee, H. One-year effect of a supervised exercise programme on functional capacity and quality of life in peripheral arterial disease. Disabil. Rehabil. 2013, 35, 397–404. [Google Scholar] [CrossRef]
- Fakhry, F.; Spronk, S.; van der Laan, L.; Wever, J.J.; Teijink, J.A.; Hoffmann, W.H.; Smits, T.M.; van Brussel, J.P.; Stultiens, G.N.; Derom, A.; et al. Endovascular Revascularization and Supervised Exercise for Peripheral Artery Disease and Intermittent Claudication: A Randomized Clinical Trial. JAMA 2015, 314, 1936–1944. [Google Scholar] [CrossRef]
- McDermott, M.M.; Kibbe, M.R.; Guralnik, J.M.; Ferrucci, L.; Criqui, M.H.; Domanchuk, K.; Tian, L.; Zhao, L.; Li, L.; Patel, K.; et al. Durability of Benefits From Supervised Treadmill Exercise in People With Peripheral Artery Disease. J. Am. Heart Assoc. 2019, 8, e009380. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Tian, L.; Zhao, L.; Polonsky, T.S.; Kibbe, M.R.; Criqui, M.H.; Zhang, D.; Conte, M.S.; Domanchuk, K.; et al. Comparing 6-minute walk versus treadmill walking distance as outcomes in randomized trials of peripheral artery disease. J. Vasc. Surg. 2020, 71, 988–1001. [Google Scholar] [CrossRef]
- McDermott, M.M.; Ades, P.A.; Dyer, A.; Guralnik, J.M.; Kibbe, M.; Criqui, M.H. Corridor-based functional performance measures correlate better with physical activity during daily life than treadmill measures in persons with peripheral arterial disease. 2008, 48, 1231–1237.e1. J. Vasc. Surg. 2008, 48, 1231–1237.e1. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Liu, K.; Ferrucci, L.; Tian, L.; Guralnik, J.M.; Liao, Y.; Criqui, M.H. Decline in functional performance predicts later increased mobility loss and mortality in peripheral arterial disease. J. Am. Coll. Cardiol. 2011, 57, 962–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Domanchuk, K.; Liu, K.; Guralnik, J.M.; Tian, L.; Criqui, M.H.; Ferrucci, L.; Kibbe, M.; Jones, D.L.; Pearce, W.H.; et al. The Group Oriented Arterial Leg Study (GOALS) to improve walking performance in patients with peripheral arterial disease. Contemp. Clin. Trials 2012, 33, 1311–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, A.T.; Allison, M.A.; Gomes, A.S.; Corriere, M.A.; Duval, S.; Ershow, A.G.; Hiatt, W.R.; Karas, R.H.; Lovell, M.B.; McDermott, M.M.; et al. A call to action: Women and peripheral artery disease: A scientific statement from the American Heart Association. Circulation 2012, 125, 1449–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.W. Sex differences in claudication pain in subjects with peripheral arterial disease. Med. Sci. Sports Exerc. 2002, 34, 1695–1698. [Google Scholar] [CrossRef] [Green Version]
- Gommans, L.N.; Scheltinga, M.R.; van Sambeek, M.R.; Maas, A.H.; Bendermacher, B.L.; Teijink, J.A. Gender differences following supervised exercise therapy in patients with intermittent claudication. J. Vasc. Surg. 2015, 62, 681–688. [Google Scholar] [CrossRef]
- Manfredini, R.; Lamberti, N.; Manfredini, F.; Straudi, S.; Fabbian, F.; Borrego, M.A.R.; Basaglia, N.; Torres, J.M.C.; Soto, P.J.L. Gender Differences in Outcomes Following a Pain-Free, Home-Based Exercise Program for Claudication. J. Womens Health 2019, 28, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Dipnarine, K.; Barak, S.; Martinez, C.A.; Carmeli, E.; Stopka, C.B. Pain-free treadmill exercise for patients with intermittent claudication: Are there gender differences? Vascular 2016, 24, 304–314. [Google Scholar] [CrossRef]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Blevins, S.M. Diabetic women are poor responders to exercise rehabilitation in the treatment of claudication. J. Vasc. Surg. 2014, 59, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Casey, S.; Lanting, S.; Oldmeadow, C.; Chuter, V. The reliability of the ankle brachial index: A systematic review. J. Foot Ankle Res. 2019, 12, 39. [Google Scholar] [CrossRef]
- Álvaro-Afonso, F.J.; García-Morales, E.; Molines-Barroso, R.J.; García-Álvarez, Y.; Sanz-Corbalán, I.; Lázaro-Martínez, J.L. Interobserver reliability of the ankle-brachial index, toe-brachial index and distal pulse palpation in patients with diabetes. Diab. Vasc. Dis. Res. 2018, 15, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Candelaria, D.; Randall, S.; Ladak, L.; Gallagher, R. Health-related quality of life and exercise-based cardiac rehabilitation in contemporary acute coronary syndrome patients: A systematic review and meta-analysis. Qual. Life Res. 2020, 29, 579–592. [Google Scholar] [CrossRef]
- Luan, X.; Tian, X.; Zhang, H.; Huang, R.; Li, N.; Chen, P.; Wang, R. Exercise as a prescription for patients with various diseases. J. Sport Health Sci. 2019, 8, 422–441. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Nahab, F. Exercise for stroke prevention: The neglected prescription. Neurology 2017, 88, 342–343. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc. Med. 2017, 22, NP1–NP43. [Google Scholar] [CrossRef]
- Treat-Jacobson, D.; McDermott, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K. Optimal Exercise Programs for Patients With Peripheral Artery Disease: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e10–e33. [Google Scholar] [CrossRef]
- Harwood, A.E.; Smith, G.E.; Cayton, T.; Broadbent, E.; Chetter, I.C. A Systematic Review of the Uptake and Adherence Rates to Supervised Exercise Programs in Patients with Intermittent Claudication. Ann. Vasc. Surg. 2016, 34, 280–289. [Google Scholar] [CrossRef]
- Lin, E.; Nguyen, C.H.; Thomas, S.G. Completion and adherence rates to exercise interventions in intermittent claudication: Traditional exercise versus alternative exercise—A systematic review. Eur. J. Prev. Cardiol. 2019, 26, 1625–1633. [Google Scholar] [CrossRef]
- van den Houten, M.M.L.; Hageman, D.; Gommans, L.N.M.; Kleijnen, J.; Scheltinga, M.R.M.; Teijink, J.A.W. The Effect of Supervised Exercise, Home Based Exercise and Endovascular Revascularisation on Physical Activity in Patients With Intermittent Claudication: A Network Meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 383–392. [Google Scholar] [CrossRef]
Number of Included Patients | 93 |
---|---|
Age, y (mean ± SE) | 65.0 ± 1.1 |
BMI, kg/m2 (mean ± SE) | 27.3 ± 0.5 |
Women, n (%) | 26 (28) |
Cardio-vascular Risk Factors | |
Type 2 diabetes mellitus, n (%) | 32 (34) |
Hypertension, n (%) | 67 (72) |
Smoking (current), n (%) | 45 (48) |
Smoking (former), n (%) | 38 (41) |
Smoking (never), n (%) | 10 (11) |
Hypercholesterolemia, n (%) | 72 (77) |
Family history of CVD, n (%) | 18 (19) |
Prior History of CVD | |
Cardiac, n (%) | 26 (28) |
Cerebrovascular, n (%) | 5 (5) |
Co-morbidities | |
Orthopaedic, n (%) | 35 (38) |
Cardiac disease, n (%) | 26 (28) |
Kidney disease, n (%) | 12 (13) |
Lung disease, n (%) | 14 (15) |
Other, n (%) | 16 (17) |
Stenosis Localization | |
Aorto-iliac, n (%) | 17 (18) |
Ilio-femoral, n (%) | 3 (3) |
Femoro-popliteal, n (%) | 63 (68) |
Distal, n (%) | 5 (5) |
Proximal-distal, n (%) | 5 (5) |
Prior arterial revascularization, n (%) | 54 (58) |
Ongoing Treatment | |
Antiagregant, n (%) | 84 (90) |
Antihypertensive, n (%) | 65 (70) |
Lipid lowering, n (%) | 67 (72) |
Anticoagulant, n (%) | 12 (13) |
Antidiabetic, n (%) | 31 (33) |
Pre | Post | 6-Month | 12-Month | p Value | |
---|---|---|---|---|---|
PFWD (m) a | 93.8 ± 7.9 | 230.1 ± 28.5 * | 334.5 ± 31.9 *,£ | 348.5 ± 30.7 *,# | ≤0.001 |
MWD (m) a | 284.5 ± 23.5 | 561.7 ± 46.5 * | 658.8 ± 40.2 * | 653.6 ± 37.2 * | ≤0.001 |
6MWD (m) | 410.6 ± 9.0 | 472.1 ± 9.7 * | 455.3 ± 7.2 * | 454.3 ± 6.2 * | ≤0.001 |
Women | Men | p-Value | |
---|---|---|---|
Age, y (mean ± SE) | 64.5 ± 2.3 | 65.2 ± 1.2 | 0.784 |
BMI, kg/m2 (mean ± SE) | 26.6 ± 1.1 | 27.6 ± 0.6 | 0.398 |
Walking Performance | |||
PFWD, m (mean ± SE) | 103.6 ± 18.4 | 89.9 ± 8.3 | 0.503 |
MWD, m (mean ± SE) | 313.0 ± 49.2 | 273.4 ± 26.5 | 0.483 |
6MWD, m (mean ± SE) | 403.7 ± 19.2 | 413.3 ± 10.2 | 0.660 |
Vascular Parameters | |||
ABI (mean ± SE) | 0.90 ± 0.05 | 0.79 ± 0.03 | 0.067 |
TBI (mean ± SE) | 0.64 ± 0.04 | 0.57 ± 0.02 | 0.109 |
TcPO2 supine, mmHg (mean ± SE) | 48.7 ± 2.0 | 47.8 ± 1.5 | 0.715 |
TcPO2 sitting, mmHg (mean ± SE) | 56.8 ± 2.2 | 59.5 ± 1.3 | 0.302 |
Cardio-Vascular Risk Factors | |||
Type 2 diabetes mellitus, n (%) | 5 (19) | 27 (40) | 0.055 |
Hypertension, n (%) | 18 (69) | 49 (73) | 0.707 |
Smoking (current), n (%) | 15 (58) | 30 (45) | 0.263 |
Smoking (former), n (%) | 8 (31) | 30 (45) | 0.218 |
Smoking (never), n (%) | 3 (11) | 7 (10) | 0.879 |
Hypercholesterolemia, n (%) | 21 (81) | 51 (76) | 0.630 |
Family history of CVD, n (%) | 5 (19) | 13 (19) | 0.985 |
Prior History of CVD | |||
Cardiac, n (%) | 7 (27) | 19 (28) | 0.890 |
Cerebrovascular, n (%) | 1 (4) | 4 (6) | 0.684 |
Co-morbidities | |||
Orthopaedic, n (%) | 14 (54) | 21 (31) | 0.044 |
Cardiac disease, n (%) | 6 (23) | 20 (30) | 0.514 |
Kidney disease, n (%) | 4 (15) | 8 (12) | 0.657 |
Lung disease, n (%) | 5 (19) | 9 (13) | 0.483 |
Other, n (%) | 6 (23) | 10 (15) | 0.350 |
Prior arterial revascularization, n (%) | 11 (42) | 43 (64) | 0.055 |
Ongoing Treatment | |||
Antiagregant, n (%) | 22 (85) | 62 (93) | 0.168 |
Antihypertensive, n (%) | 17 (65) | 48 (72) | 0.555 |
Lipid lowering, n (%) | 19 (73) | 48 (72) | 0.890 |
Anticoagulant, n (%) | 4 (15) | 8 (12) | 0.657 |
Antidiabetic, n (%) | 5 (19) | 26 (39) | 0.072 |
Pre | Post | 6-Month | 12-Month | Group Effect | Time Effect | Time × Group Effect | ||
---|---|---|---|---|---|---|---|---|
PFWD (m) | Men | 89.9 ± 8.3 | 186.8 ± 20.6 * | 321.8 ± 35.1 *,£ | 312.3 ± 24.4 *,# | 0.329 | ≤0.001 | 0.458 |
Women | 103.6 ± 18.4 | 341.6 ± 84.3 * | 367.2 ± 70.1 *,£ | 441.7 ± 88.9 *,# | ||||
MWD (m) | Men | 273.4 ± 26.5 | 511.1 ± 48.3 * | 629.8 ± 42.5 * | 632.0 ± 38.6 * | 0.427 | ≤0.001 | 0.529 |
Women | 313.0 ± 49.2 | 692.3 ± 107.9 * | 733.6 ± 93.4 * | 709.4 ± 88.7 * | ||||
6MWD (m) | Men | 413.3 ± 10.2 | 468.7 ± 10.9 * | 453.5 ± 9.2 * | 455.0 ± 7.0 * | 0.999 | ≤0.001 | 0.392 |
Women | 403.7 ± 19.2 | 480.7 ± 20.3 * | 460.1 ± 9.6 * | 452.4 ± 12.9 * |
Pre | Post | 6-Month | 12-Month | p Value | |
---|---|---|---|---|---|
ABI | 0.82 ±0.02 | 0.81 ± 0.02 | 0.87 ± 0.02 # | 0.85 ± 0.02 | 0.014 |
TBI | 0.59 ± 0.02 | 0.63 ± 0.02 $ | 0.66 ± 0.01 * | 0.68 ± 0.02 *,¤ | ≤0.001 |
TcPO2 supine (mmHg) | 48.1 ± 1.2 | 50.7 ± 1.2 | 50.4 ± 0.9 | 53.6 ± 0.6 *,£ | 0.001 |
TcPO2 sitting (mmHg) | 58.7 ± 1.1 | 61.1 ± 1.3 | 59.6 ± 1.0 | 64.0 ± 0.6 *,£ | ≤0.001 |
Pre | Post | 6-Month | 12-Month | Group Effect | Time Effect | Time × Group Effect | ||
---|---|---|---|---|---|---|---|---|
ABI | Men | 0.79 ± 0.03 | 0.79 ± 0.02 | 0.87 ± 0.02 | 0.82 ± 0.02 | 0.075 | 0.128 | 0.200 |
Women | 0.90 ± 0.05 | 0.86 ± 0.04 | 0.88 ± 0.04 | 0.90 ± 0.04 | ||||
TBI | Men | 0.57 ± 0.02 | 0.62 ± 0.02 | 0.67 ± 0.02 * | 0.67 ± 0.02 # | 0.476 | ≤0.001 | 0.058 |
Women | 0.64 ± 0.04 | 0.65 ± 0.04 | 0.64 ± 0.03 * | 0.69 ± 0.04 # | ||||
TcPO2 supine (mmHg) | Men | 47.8 ± 1.5 | 52.5 ± 1.4 | 51.8 ± 0.9 | 54.4 ± 0.7 $,£ | 0.030 | 0.007 | 0.065 |
Women | 48.7 ± 2.0 | 46.2 ± 2.6 | 46.8 ± 1.9 | 51.8 ± 1.0 $,£ | ||||
TcPO2 sitting (mmHg) | Men | 59.5 ± 1.3 | 62.4 ± 1.5 | 61.2 ± 0.9 | 64.9 ± 0.7 #,¤ | 0.005 | 0.001 | 0.663 |
Women | 56.8 ± 2.2 | 57.7 ± 2.5 | 55.4 ± 2.4 | 61.7 ± 1.0 #,¤ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ney, B.; Lanzi, S.; Calanca, L.; Mazzolai, L. Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. J. Clin. Med. 2021, 10, 2057. https://doi.org/10.3390/jcm10102057
Ney B, Lanzi S, Calanca L, Mazzolai L. Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Journal of Clinical Medicine. 2021; 10(10):2057. https://doi.org/10.3390/jcm10102057
Chicago/Turabian StyleNey, Barbara, Stefano Lanzi, Luca Calanca, and Lucia Mazzolai. 2021. "Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease" Journal of Clinical Medicine 10, no. 10: 2057. https://doi.org/10.3390/jcm10102057
APA StyleNey, B., Lanzi, S., Calanca, L., & Mazzolai, L. (2021). Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Journal of Clinical Medicine, 10(10), 2057. https://doi.org/10.3390/jcm10102057