Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Multilamellar Vesicles
2.2.2. Small-Angle X-ray Scattering and Wide-Angle X-ray Scattering
3. Results and Discussion
3.1. Effects of BDQ on the Structure of DMPC Bilayers
3.2. Effects of BDQ on the Structure of DMPC:CHOL Bilayers
3.3. Effects of BDQ on the Structure of DMPG Bilayers
3.4. Effects of BDQ on the Structure of TOCL Bilayers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dube, A.; Lemmer, Y.; Hayeshi, R.; Balogun, M.; Labuschagne, P.; Swai, H.; Kalombo, L. State of the art and future directions in nanomedicine for tuberculosis. Expert Opin. Drug Deliv. 2013, 10, 1725–1734. [Google Scholar] [CrossRef]
- World Health Orhanization. Global Tuberculosis Report; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Field, S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: Great promise or disappointment? Ther. Adv. Chronic Dis. 2015, 6, 170–184. [Google Scholar] [CrossRef]
- Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res. 2013, 3, 1–2. [Google Scholar] [CrossRef]
- Pinheiro, M.; Nunes, C.; Caio, J.M.; Moiteiro, C.; Lucio, M.; Brezesinski, G.; Reis, S. The influence of rifabutin on human and bacterial membrane models: Implications for its mechanism of action. J. Phys. Chem. B 2013, 117, 6187–6193. [Google Scholar] [CrossRef]
- Wesolowska, O.; Michalak, K.; Maniewska, J.; Hendrich, A.B. Giant unilamellar vesicles—A perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol. 2009, 56, 33–39. [Google Scholar] [CrossRef]
- Jelinek, R.; Kolusheva, S. Membrane interactions of host-defense peptides studied in model systems. Curr. Protein Pept. Sci. 2005, 6, 103–114. [Google Scholar] [CrossRef]
- Massey, J.B.; Pownall, H.J. Interaction of alpha-tocopherol with model human high-density lipoproteins. Biophys. J. 1998, 75, 2923–2931. [Google Scholar] [CrossRef]
- Sarangi, N.K.; Ayappa, K.G.; Basu, J.K. Complex dynamics at the nanoscale in simple biomembranes. Sci. Rep. 2017, 7, 11173. [Google Scholar] [CrossRef]
- Paradies, G.; Paradies, V.; De Benedictis, V.; Ruggiero, F.M.; Petrosillo, G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta 2014, 1837, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Mayette, J.; Rapoport, S.I.; Bazinet, R.P. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis. 2006, 5, 2. [Google Scholar] [CrossRef]
- Amenitsch, H.; Bernstorff, S.; Kriechbaum, M.; Lombardo, D.; Mio, H.; Rappolt, M.; Laggner, P. Performance and First Results of the ELETTRA High-Flux Beamline for Small-Angle X-ray Scattering. J. Appl. Crystallogr. 1997, 30, 872–876. [Google Scholar] [CrossRef]
- Blanton, T.N.; Huang, T.C.; Toraya, H.; Hubbard, C.R.; Robie, S.B.; Louër, D.; Göbel, H.E.; Will, G.; Raftery, T. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr. 2013, 10, 91–95. [Google Scholar] [CrossRef]
- Pinheiro, M.; Nunes, C.; Caio, J.M.; Moiteiro, C.; Brezesinski, G.; Reis, S. Interactions of N’-acetyl-rifabutin and N’-butanoyl-rifabutin with lipid bilayers: A synchrotron X-ray study. Int. J. Pharm. 2013, 453, 560–568. [Google Scholar] [CrossRef]
- Eisenblatter, J.; Winter, R. Pressure effects on the structure and phase behavior of DMPC-gramicidin lipid bilayers: A synchrotron SAXS and 2H-NMR spectroscopy study. Biophys. J. 2006, 90, 956–966. [Google Scholar] [CrossRef]
- Pentak, D. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC. Thermochim. Acta 2014, 584, 36–44. [Google Scholar] [CrossRef]
- Neves, A.R.; Nunes, C.; Amenitsch, H.; Reis, S. Effects of resveratrol on the structure and fluidity of lipid bilayers: A membrane biophysical study. Soft Matter 2016, 12, 2118–2126. [Google Scholar] [CrossRef]
- Pereira-Leite, C.; Nunes, C.; Lima, J.L.; Reis, S.; Lucio, M. Interaction of celecoxib with membranes: The role of membrane biophysics on its therapeutic and toxic effects. J. Phys. Chem. B 2012, 116, 13608–13617. [Google Scholar] [CrossRef]
- Pinheiro, M.; Pereira-Leite, C.; Arede, M.; Nunes, C.; Caio, J.M.; Moiteiro, C.; Giner-Casares, J.J.; Lucio, M.; Brezesinski, G.; Camacho, L.; et al. Evaluation of the structure-activity relationship of rifabutin and analogs: A drug-membrane study. ChemPhysChem 2013, 14, 2808–2816. [Google Scholar] [CrossRef]
- Clarke, J.A.; Heron, A.J.; Seddon, J.M.; Law, R.V. The diversity of the liquid ordered (Lo) phase of phosphatidylcholine/cholesterol membranes: A variable temperature multinuclear solid-state NMR and X-ray diffraction study. Biophys. J. 2006, 90, 2383–2393. [Google Scholar] [CrossRef]
- Lamy-Freund, M.T.; Riske, K.A. The peculiar thermo-structural behavior of the anionic lipid DMPG. Chem. Phys. Lipids 2003, 122, 19–32. [Google Scholar] [CrossRef]
- Duarte, E.L.; Oliveira, T.R.; Alves, D.S.; Micol, V.; Lamy, M.T. On the interaction of the anthraquinone barbaloin with negatively charged DMPG bilayers. Langmuir 2008, 24, 4041–4049. [Google Scholar] [CrossRef]
- Spinozzi, F.; Paccamiccio, L.; Mariani, P.; Amaral, L.Q. Melting regime of the anionic phospholipid DMPG: New lamellar phase and porous bilayer model. Langmuir 2010, 26, 6484–6493. [Google Scholar] [CrossRef]
- Pan, J.; Cheng, X.; Sharp, M.; Ho, C.S.; Khadka, N.; Katsaras, J. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter 2015, 11, 130–138. [Google Scholar] [CrossRef]
- Sankaram, M.B.; Powell, G.L.; Marsh, D. Effect of acyl chain composition on salt-induced lamellar to inverted hexagonal phase transitions in cardiolipin. Biochim. Biophys. Acta 1989, 980, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Belosludtsev, K.N.; Penkov, N.V.; Tenkov, K.S.; Talanov, E.Y.; Belosludtseva, N.V.; Agafonov, A.V.; Stepanova, A.E.; Starinets, V.S.; Vashchenko, O.V.; Gudkov, S.V.; et al. Interactions of anti-tuberculosis drug bedaquilin with artificial membranes and rat erythrocytes. Chem. Biol. Interact. 2019, 299, 8–14. [Google Scholar] [CrossRef]
- Yang, L.; Gordon, V.D.; Mishra, A.; Som, A.; Purdy, K.R.; Davis, M.A.; Tew, G.N.; Wong, G.C. Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes. J. Am. Chem. Soc. 2007, 129, 12141–12147. [Google Scholar] [CrossRef]
- Luevano-Martinez, L.A.; Forni, M.F.; dos Santos, V.T.; Souza-Pinto, N.C.; Kowaltowski, A.J. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim. Biophys. Acta 2015, 1847, 587–598. [Google Scholar] [CrossRef] [Green Version]
Sample (mol %) | T (°C) | dSAXS (Å) | ξ (Å) | ||
---|---|---|---|---|---|
DMPC | 10 | 64.5 ± 0.5 | 57.3 ± 0.5 | 697 ± 10 | 477 ± 10 |
37 | 62.3 ± 0.5 | - | 629 ± 10 | - | |
DMPC:BDQ | 10 | 65.8 ± 0.5 | 55.6 ± 0.5 | 798 ± 10 | 855 ± 10 |
37 | 64.1 ± 0.5 | - | 661 ± 10 | - |
Sample | T (°C) | dSAXS (Å) | ξ1 (Å) | ξ2 (Å) | |
---|---|---|---|---|---|
1st Peak | 2nd Peak | ||||
DMPC | 10 | 4.2 | 4.0 | 767 ± 10 | 233 ± 10 |
DMPC:BDQ | 10 | 4.2 | 4.1 | 967 ± 10 | 331 ± 10 |
Sample | T (°C) | dSAXS (Å) | ξ (Å) | ||
---|---|---|---|---|---|
DMPC:CHOL | 10 | 69.7 ± 0.5 | - | 966 ± 10 | - |
37 | 64.9 ± 0.5 | - | 861 ± 10 | - | |
DMPC:CHOL:BDQ | 10 | 69.5 ± 0.5 | - | 1342 ± 10 | - |
37 | 68.3 ± 0.5 | 66.1 | 731 ± 10 | 619 |
Sample | T (°C) | dSAXS (Å) | ξ1 (Å) | ξ2 (Å) | |
---|---|---|---|---|---|
1st Peak | 2nd Peak | ||||
DMPC:CHOL | 10 | 3.9 | - | 80 ± 10 | - |
DMPC:CHOL:BDQ | 10 | 3.9 | - | 113 ± 10 | - |
Sample | T (°C) | dSAXS (Å) | ξ (Å) |
---|---|---|---|
DMPG | 10 | 47.2 ± 0.5 | 314 ± 10 |
37 | 47.8 ± 0.5 | 331 ± 10 | |
DMPG:BDQ | 10 | 47.6 ± 0.5 | 185 ± 10 |
37 | 47.8 ± 0.5 | 370 ± 10 |
Sample | T (°C) | dSAXS (Å) | ξ1 (Å) | ξ2 (Å) | |
---|---|---|---|---|---|
1st Peak | 2nd Peak | ||||
DMPG | 10 | 4.03 | 3.86 | 132 ± 10 | 14 ± 10 |
DMPG:BDQ | 10 | 4.06 | 3.89 | 60 ± 10 | 45 ± 10 |
Sample (mol %) | T (°C) | dSAXS (Å) | ξ (Å) | ||||||
---|---|---|---|---|---|---|---|---|---|
TOCL | 10 | 60.3 ± 0.5 | - | - | - | 30 ± 10 | - | - | - |
37 | 104.1 ± 0.5 | - | - | - | 35 ± 10 | - | - | ||
TOCL:BDQ | 10 | 98.2 ± 0.5 | 71.4 ± 0.5 | 63.5 ± 0.5 | 51.8 ± 0.5 | 127 ± 10 | 776 ± 10 | 561 ± 10 | 137 ± 10 |
37 | 76.9 ± 0.5 | - | - | - | 24 ± 10 | - | - | - |
Sample | T (°C) | dSAXS (Å) | ξ1 (Å) | ξ2 (Å) |
---|---|---|---|---|
TOCL | 10 | NA | - | - |
TOCL:BDQ | 10 | 4.33 | 20 ± 10 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, M.; Amenitsch, H.; Reis, S. Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline. Membranes 2019, 9, 141. https://doi.org/10.3390/membranes9110141
Pinheiro M, Amenitsch H, Reis S. Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline. Membranes. 2019; 9(11):141. https://doi.org/10.3390/membranes9110141
Chicago/Turabian StylePinheiro, Marina, Heinz Amenitsch, and Salette Reis. 2019. "Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline" Membranes 9, no. 11: 141. https://doi.org/10.3390/membranes9110141
APA StylePinheiro, M., Amenitsch, H., & Reis, S. (2019). Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline. Membranes, 9(11), 141. https://doi.org/10.3390/membranes9110141