Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ink-Syntheses
2.2. Printer and Parameters
2.3. Film Processing
2.4. Analysis
3. Results and Discussion
3.1. Precursor Systems
3.1.1. Decomposition Behavior
3.1.2. Wetting Behavior
3.1.3. Phase Formation
3.2. Inkjet Processing
3.2.1. Individual Printed Dots
3.2.2. Influence of the Printing Direction
3.3. Full Area Ink-Jet Printed BZY10 Films
3.4. Electrical and Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minh, N.Q. Ceramic fuel cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- Stambouli, A.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sust. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Wachsman, E.D.; Lee, K.T. Lowering the Temperature of Solid Oxide Fuel Cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E.; Pergolesi, D.; Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 2010, 39, 4355–4369. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Hernandez-Sanchez, R.; Haile, S.M. High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 2009, 21, 2755–2762. [Google Scholar] [CrossRef]
- Brett, D.J.L.; Atkinson, A.; Brandon, N.P.; Skinner, S.J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Evans, A.; Bieberle-Huetter, A.; Rupp, J.L.M.; Gauckler, L.J. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 2009, 194, 119–129. [Google Scholar] [CrossRef]
- Fabbri, E.; Bi, L.; Pergolesi, D.; Traversa, E. Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 2012, 24, 195–208. [Google Scholar] [CrossRef]
- Shao, Z.; Haile, S.M.; Ahn, J.; Ronney, P.D.; Zhan, Z.; Barnett, S.A. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 2005, 435, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Hibino, T.; Hashimoto, A.; Inoue, T.; Tokuno, J.; Yoshida, S.; Sano, M. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 2000, 288, 2031–2033. [Google Scholar] [CrossRef] [PubMed]
- Steele, B. Materials for IT-SOFC stacks: 35 years R&D: The inevitability of gradualness? Solid State Ionics 2000, 134, 3–20. [Google Scholar]
- Kreuer, K.D.; Adams, S.; Münch, W.; Fuchs, A.; Klock, U.; Maier, J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 2001, 145, 295–306. [Google Scholar] [CrossRef]
- Bohn, H.G.; Schober, T. Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 2000, 83, 768–772. [Google Scholar] [CrossRef]
- Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000, 138, 91–98. [Google Scholar] [CrossRef]
- Nowick, A.; Du, Y. High-temperature protonic conductors with perovskite-related structures. Solid State Ionics 1995, 77, 137–146. [Google Scholar] [CrossRef]
- Iwahara, H.; Yajima, T.; Hibino, T.; Ozaki, K.; Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 1993, 61, 65–69. [Google Scholar] [CrossRef]
- Stevenson, D.; Jiang, N.; Buchanan, R.; Henn, F. Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics 1993, 62, 279–285. [Google Scholar] [CrossRef]
- Slade, R.C.; Singh, N. Systematic examination of hydrogen ion conduction in rare-earth doped barium cerate ceramics. Solid State Ionics 1991, 46, 111–115. [Google Scholar] [CrossRef]
- De Souza, E.C.C.; Muccillo, R. Properties and applications of perovskite proton conductors. Mater. Res. 2010, 13, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Etsell, T.H.; Flengas, S.N. Electrical properties of solid oxide electrolytes. Chem. Rev. 1970, 70, 339–376. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Kreuer, K.D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 1999, 125, 285–302. [Google Scholar] [CrossRef]
- Han, D.; Kishida, K.; Inui, H.; Uda, T. Substantial appearance of origin of conductivity decrease in Y-doped BaZrO3 due to Ba-deficiency. RSC Adv. 2014, 4, 31589–31593. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Blanc, F.; Okuyama, Y.; Buannic, L.; Lucio-Vega, J.C.; Grey, C.P.; Haile, S.M. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 2013, 12, 647–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.; Kishida, K.; Shinoda, K.; Inui, H.; Uda, T. A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. J. Mater. Chem. A 2013, 1, 3027–3033. [Google Scholar] [CrossRef]
- Shirpour, M.; Merkle, R.; Lin, C.T.; Maier, J. Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model. Phys. Chem. Chem. Phys. 2012, 14, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Shirpour, M.; Merkle, R.; Maier, J. Space charge depletion in grain boundaries of BaZrO3 proton conductors. Solid State Ionics 2012, 225, 304–307. [Google Scholar] [CrossRef]
- Iguchi, F.; Chen, C.; Yugami, H.; Kim, S. Direct evidence of potential barriers at grain boundaries in Y-doped BaZrO3 from dc-bias dependence measurements. J. Mater. Chem. 2011, 21, 6517–6523. [Google Scholar] [CrossRef]
- Giannici, F.; Shirpour, M.; Longo, A.; Martorana, A.; Merkle, R.; Maier, J. Long-range and short-range structure of proton-conducting Y:BaZrO3. Chem. Mater. 2011, 23, 2994–3002. [Google Scholar] [CrossRef]
- Kjølseth, C.; Fjeld, H.; Prytz, Ø.; Dahl, P.I.; Estournès, C.; Haugsrud, R.; Norby, T. Space charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3−δ. Solid State Ionics 2010, 181, 268–275. [Google Scholar] [CrossRef]
- Babilo, P.; Uda, T.; Haile, S.M. Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 2007, 22, 1322–1330. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.; Jang, D.Y.; Choi, S.M.; Kim, B.; Lee, J.; Son, J.; Shim, J.H. Influence of background oxygen pressure on film properties of pulsed laser deposited Y:BaZrO3. Thin Solid Films 2014, 552, 24–31. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Mat. 2010, 9, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.H.; Gür, T.M.; Prinz, F.B. Proton conduction in thin film yttrium-doped barium zirconate. Appl. Phys. Lett. 2008, 92, 253115. [Google Scholar] [CrossRef]
- Sygnatowicz, M.; Snure, M.; Tiwari, A. Proton conducting BaZr0.8Y0.2O3-x thin films by pulsed laser deposition technique. J. Cryst. Growth. 2008, 310, 3590–3595. [Google Scholar] [CrossRef]
- Ito, N.; Iijima, M.; Kimura, K.; Iguchi, S. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J. Power Sources 2005, 152, 200–203. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, Y.; An, J.; Shim, J.H.; Gür, T.M.; Prinz, F.B. Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO3 films. Thin Solid Films 2013, 539, 166–169. [Google Scholar] [CrossRef]
- Shim, J.H.; Park, J.S.; An, J.; Gür, T.M.; Kang, S.; Prinz, F.B. Intermediate-Temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem. Mater. 2009, 21, 3290–3296. [Google Scholar] [CrossRef]
- Rørvik, P.M.; Haavik, C.; Griesche, D.; Schneller, T.; Lenrick, F.; Wallenberg, L.R. Chemical solution deposition of thin films for protonic ceramic fuel cells. Solid State Ionics 2014, 262, 852–855. [Google Scholar] [CrossRef]
- Schneller, T.; Schober, T. Chemical solution deposition prepared dense proton conducting Y-doped BaZrO3 thin films for SOFC and sensor devices. Solid State Ionics 2003, 164, 131–136. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: Berlin, Germany, 2013. [Google Scholar]
- Piqué, A.; Chrisey, D.B. Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Teng, K.; Vest, R. Metallization of solar cells with ink jet printing and silver metallo-organic inks. IEEE Trans. Compon. Hybrids. Manuf. 1988, 11, 291–297. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 2007, 515, 7706–7711. [Google Scholar] [CrossRef]
- Curtis, C.J.; Miedaner, A.; Rivkin, T.; Alleman, J.; Schulz, D.L.; Ginley, D.S. Direct write metallizations for Ag and Al. Mater. Res. Soc. Symp. Proc. 2000, 624, 59–64. [Google Scholar] [CrossRef]
- Habas, S.E.; Platt, H.A.S.; van Hest, M.F.A.M.; Ginley, D.S. Low-cost inorganic solar cells: From ink to printed device. Chem. Rev. 2010, 110, 6571–6594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.; Zhao, Y.; Sun, X.; Wen, Y.; Guo, Y.; Gao, X.; Di, C.; Yu, G.; Liu, Y. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436–440. [Google Scholar]
- Arias, A.C.; MacKenzie, J.D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 2010, 110, 3–24. [Google Scholar] [CrossRef]
- Perelaer, J.; Smith, P.J.; Mager, D.; Soltman, D.; Volkman, S.K.; Subramanian, V.; Korvink, J.G.; Schubert, U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010, 20, 8446–8453. [Google Scholar] [CrossRef]
- Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 2008, 47, 4070–4098. [Google Scholar] [CrossRef]
- vanOsch, T.; Perelaer, J.; de’Laat, A.; Schubert, U. Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 2008, 20, 343–345. [Google Scholar] [CrossRef]
- Tekin, E.; Smith, P.J.; Schubert, U.S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008, 4, 703–713. [Google Scholar] [CrossRef]
- Mei, J.; Lovell, M.; Mickle, M. Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans. Electron. Packag. Manufact. 2005, 28, 265–273. [Google Scholar]
- Sirringhaus, H.; Kawase, T.; Friend, R.H.; Shimodan, T.; Inbasekaran, M.; Wu, W.; Woo, E.P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126. [Google Scholar] [CrossRef]
- Mosiadz, M.; Tomov, R.; Hopkins, S.; Martin, S.G.; Hardeman, D.; Holzapfel, B.; Glowacki, B. Inkjet printing of Ce0.8Gd0.2O2 thin films on Ni-5%W flexible substrates. J. Sol-Gel Sci. Technol. 2010, 54, 154–164. [Google Scholar] [CrossRef]
- Cloet, V.; Cordero-Cabrera, M.C.; Mouganie, T.; Glowacki, B.A.; Falter, M.; Holzapfel, B.; Engell, J.; Bäcker, M.; Van Driessche, I. Sol-gel ink-jet printing technique for synthesis of buffer layers for coated conductors. Adv. Sci. Techn. 2006, 47, 153–158. [Google Scholar] [CrossRef]
- Vilardell, M.; Granados, X.; Ricart, S.; Van Driessche, I.; Palau, A.; Puig, T.; Obradors, X. Flexible manufacturing of functional ceramic coatings by inkjet printing. Thin Solid Films. 2013, 548, 489–497. [Google Scholar] [CrossRef]
- Feys, J.; Vermeir, P.; Lommens, P.; Hopkins, S.C.; Granados, X.; Glowacki, B.A.; Bäcker, M.; Reich, E.; Ricard, S.; Holzapfel, B.; et al. Ink-jet printing of YBa2Cu3O7 superconducting coatings and patterns from aqueous solutions. J. Mater. Chem. 2012, 22, 3717–3726. [Google Scholar] [CrossRef]
- List, F.; Kodenkandath, T.; Rupich, M. Fabrication of filamentary YBCO coated conductor by inkjet printing. IEEE Trans. Appl. Supercond. 2007, 17, 3355–3358. [Google Scholar] [CrossRef]
- Duckworth, R.; Paranthaman, M.; Bhuiyan, M.S.; List, F.A.; Gouge, M. AC losses in YBCO coated conductor with inkjet filaments. IEEE Trans. Appl. Supercond. 2007, 17, 3159–3162. [Google Scholar] [CrossRef]
- Bathurst, S.P.; Kim, S.G. Axiomatic design of a drop on demand deposition process for sol-gel PZT. In Proceedings of the 8th International Conference on Axiomatic Design, Campus de Caparica, Portugal, 24–26 September 2014; pp. 183–186. [Google Scholar]
- Wang, T.; Derby, B. Ink-jet printing and sintering of PZT. J. Am. Ceram. Soc. 2005, 88, 2053–2058. [Google Scholar] [CrossRef]
- Okamura, S.; Takeuchi, R.; Shiosaki, T. Fabrication of ferroelectric Pb(Zr,Ti)O3 thin films with various Zr/Ti ratios by ink-jet printing. Jpn. J. Appl. Phys. 2002, 41, 6714–6717. [Google Scholar] [CrossRef]
- Matavz, A.; Frunza, R.C.; Drnovsek, A.; Bobnar, V.; Malic, B. Inkjet printing of uniform dielectric oxide structures from sol-gel inks by adjusting the solvent composition. J. Mater. Chem. C 2016, 4, 5634–5641. [Google Scholar] [CrossRef]
- Wagata, H.; Gallage, R.; Yoshimura, M.; Matsushita, N. Patterning of BaTiO3 by inkjet deposition using a precursor solution. Mater. Sci. Eng. B. 2009, 161, 146–150. [Google Scholar] [CrossRef]
- Komatsu, A.; Hoshina, T.; Kunej, S.; Takeda, H.; Tsurumi, T. Fabrication of BaTiO3 films on Si substrate by inkjet printing. Key Eng. Mater. 2011, 485, 187–190. [Google Scholar] [CrossRef]
- Kaydanova, T.; Miedaner, A.; Curtis, C.; Alleman, J.; Perkins, J.D.; Ginley, D.S.; Sengupta, L.; Zhang, X.; He, S.; Chiu, L. Direct inkjet printing of composite thin barium strontium titanate films. J. Mater. Res. 2003, 18, 2820–2825. [Google Scholar] [CrossRef]
- Tellier, J.; Malic, B.; Kuscer, D.; Trefalt, G.; Kosec, M. Ink-jet printing of In2O3/ZnO two-dimensional structures from solution. J. Am. Ceram. Soc. 2011, 94, 2834–2840. [Google Scholar] [CrossRef]
- Rivkin, T.; Curtis, C.; Miedaner, A.; Perkins, J.; Alleman, J.; Ginley, D. Direct write processing for photovoltaic cells. In Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002; pp. 1326–1329. [Google Scholar]
- Van Driessche, I.; Feys, J.; Hopkins, S.C.; Lommens, P.; Granados, X.; Glowacki, B.A.; Ricart, S.; Holzapfel, B.; Vilardell, V.; Kirchner, A.; et al. Chemical solution deposition using ink-jet printing for YBCO coated conductors. Supercond. Sci. Technol. 2012, 25, 065017. [Google Scholar] [CrossRef]
- El-Toni, A.M.; Yamaguchi, T.; Shimizu, Y.; Fujishiro, Y.; Awano, M. Development of a dense electrolyte thin film by the ink-jet printing technique for a porous LSM substrate. J. Am. Ceram. Soc. 2008, 91, 346–349. [Google Scholar] [CrossRef]
- Young, D.; Sukeshini, A.; Cummins, R.; Xiao, H.; Rottmayer, M.; Reitz, T. Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. J. Power Sources 2008, 184, 191–196. [Google Scholar] [CrossRef]
- Sukeshini, M.A.; Cummins, R.; Reitz, T.L.; Miller, R.M. Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication. J. Am. Ceram. Soc. 2009, 92, 2913–2919. [Google Scholar] [CrossRef]
- Yashiro, N.; Usui, T.; Kikuta, K. Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs. J. Eur. Ceram. Soc. 2010, 30, 2093–2098. [Google Scholar] [CrossRef]
- Tomov, R.I.; Krauz, M.; Jewulski, J.; Hopkins, S.C.; Kluczowski, J.R.; Glowacka, D.M.; Glowacki, B.A. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J. Power Sources 2010, 195, 7160–7167. [Google Scholar] [CrossRef]
- Wang, C.; Tomov, R.I.; Kumar, R.V.; Glowacki, B.A. Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications. J. Mater. Sci. 2011, 46, 6889–6896. [Google Scholar] [CrossRef]
- Wang, C.; Hopkins, S.C.; Tomov, R.I.; Kumar, R.V.; Glowacki, B.A. Optimisation of CGO suspensions for inkjet-printed SOFC electrolytes. J. Eur. Ceram. Soc. 2012, 32, 2317–2324. [Google Scholar] [CrossRef]
- Schneller, T.; Halder, S.; Waser, R.; Pithan, C.; Dornseiffer, J.; Shiratori, Y.; Houben, L.; Vyshnavi, N.; Majumder, S.B. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions. J. Mater. Chem. 2011, 21, 7953–7965. [Google Scholar] [CrossRef]
- Fabbri, E.; Pergolesi, D.; Licoccia, S.; Traversa, E. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-δ fuel cell electrolytes? Solid State Ionics 2010, 181, 1043–1051. [Google Scholar] [CrossRef]
- Sazinas, R.; Einarsrud, M.-A.; Grande, T. Toughening of Y-doped BaZrO3 proton conducting electrolytes by hydration. J. Mater. Chem. A 2017, 5, 5846–5857. [Google Scholar] [CrossRef]
- Ricote, S.; Bonanos, N.; Caboche, G. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9-x)ZrxY0.1O(3-δ). Solid State Ionics 2009, 180, 990–997. [Google Scholar] [CrossRef]
- Schober, T.; Bohn, H. Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95. Solid State Ionics 2000, 127, 351–360. [Google Scholar] [CrossRef]
- Gorelov, V.P.; Balakireva, V.B. Synthesis and properties of high density protonic solid electrolyte BaZr0.9Y0.1O3-α. Russ. J. Electrochem. 2009, 45, 476–482. [Google Scholar] [CrossRef]
- Iguchi, F.; Tsurui, T.; Sata, N.; Nagao, Y.; Yugami, H. The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 2009, 180, 563–568. [Google Scholar] [CrossRef]
- Duval, S.B.C.; Holtappels, P.; Vogt, U.F.; Pomjakushina, E.; Conder, K.; Stimming, U.; Graule, T. Electrical conductivity of the proton conductor BaZr0.9Y0.1O3-δ obtained by high temperature annealing. Solid State Ionics 2007, 178, 1437–1441. [Google Scholar] [CrossRef]
- Iguchi, F.; Sata, N.; Tsurui, T.; Yugami, H. Microstructures and grain boundary conductivity of BaZr1-xYxO3 (x = 0.05, 0.10, 0.15) ceramics. Solid State Ionics 2007, 178, 691–695. [Google Scholar] [CrossRef]
- Hudish, G.; Manerbino, A.; Coors, W.G.; Ricote, S. Chemical expansion in BaZr0.9-xCexY0.1O3-δ (x = 0 and 0.2) upon hydration determined by high-temperature X-ray diffraction. J. Am. Ceram. Soc. 2018, 101, 1298–1309. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R. Chemical modifications of Pb(Zr0.3,Ti0.7)O3 precursor solutions and their influence on the morphological and electrical properties of the resulting thin films. J. Sol-Gel Sci. Technol. 2007, 42, 337–352. [Google Scholar] [CrossRef]
- Hasenkox, U.; Hoffmann, S.; Waser, R. Influence of precursor chemistry on the formation of MTiO3 (M=Ba, Sr) ceramic thin films. J. Sol-Gel Sci. Technol. 1998, 12, 67–79. [Google Scholar] [CrossRef]
- Schwartz, R.W.; Boyle, T.J.; Lockwood, S.J.; Sinclair, M.B.; Dimos, D.; Buchheit, C.D. Sol-gel processing of PZT thin films a review of the state-of-the-art and process optimization strategies. Int. Ferroelectrics 1995, 7, 259–277. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Fromm, J.E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 1984, 28, 322–333. [Google Scholar] [CrossRef]
- Reis, N.; Ainsley, C.; Derby, B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 2005, 97, 094903. [Google Scholar] [CrossRef]
- Engels, J.; Griesche, D.; Waser, R.; Schneller, T. Thin film proton conducting membranes for micro-solid oxide fuel cells by chemical solution deposition. Thin Solid Films 2017, 636, 446–457. [Google Scholar] [CrossRef]
- Iguchi, F.; Sata, N.; Yugami, H. Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC. J. Mater. Chem. 2010, 20, 6265–6270. [Google Scholar] [CrossRef]
- Ricote, S.; Bonanos, N.; Manerbino, A.; Sullivan, N.P.; Coors, W.G. Effects of the fabrication process on the grain-boundary resistance in BaZr0.9Y0.1O3-δ. J. Mater. Chem. A 2014, 2, 16107–16115. [Google Scholar] [CrossRef]
- Gerstl, M.; Navickas, E.; Friedbacher, G.; Kubel, F.; Ahrens, M.; Fleig, J. The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers. Solid State Ionics 2011, 185, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Lee, Y.; Kim, K.J.; Choi, G.M. Effects of Fabrication Conditions on the Crystallinity, Barium Deficiency, and BaZr0.8Y0.2O3-δ Films Grown by Pulsed Laser Deposition. Fuel Cells 2015, 15, 408–415. [Google Scholar] [CrossRef]
Ink Type | v (m/s) 1 | dOf (m) | ρ (kg/m3) | η (Pa s) 2 | γ (N/m) | Re | We | Oh−1 = Z |
---|---|---|---|---|---|---|---|---|
1 (con-BZY) | 3.3 | 35 × 10−6 | 1001 | 1.80 × 10−3 | 27.43 × 10−3 | 64.23 | 13.91 | 17.22 |
2 (µ-E-BZY) | 3.8 | 35 × 10−6 | 946 | 1.32 × 10−3 | 27.40 × 10−3 | 95.32 | 17.45 | 22.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneller, T.; Griesche, D. Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices. Membranes 2019, 9, 131. https://doi.org/10.3390/membranes9100131
Schneller T, Griesche D. Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices. Membranes. 2019; 9(10):131. https://doi.org/10.3390/membranes9100131
Chicago/Turabian StyleSchneller, Theodor, and David Griesche. 2019. "Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices" Membranes 9, no. 10: 131. https://doi.org/10.3390/membranes9100131
APA StyleSchneller, T., & Griesche, D. (2019). Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices. Membranes, 9(10), 131. https://doi.org/10.3390/membranes9100131