Next Article in Journal
Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology
Previous Article in Journal
Immobilization of Graphene Oxide on the Permeate Side of a Membrane Distillation Membrane to Enhance Flux
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Membranes 2018, 8(3), 64; https://doi.org/10.3390/membranes8030064

Electro-Conductive Composite Gold-Polyethersulfone-Ultrafiltration-Membrane: Characterization of Membrane and Natural Organic Matter (NOM) Filtration Performance at Different In-Situ Applied Surface Potentials

Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
*
Author to whom correspondence should be addressed.
Received: 28 June 2018 / Revised: 29 July 2018 / Accepted: 7 August 2018 / Published: 16 August 2018
Full-Text   |   PDF [3051 KB, uploaded 16 August 2018]   |  

Abstract

Next to the pore size distribution, surface charge is considered to be one main factor in the separation performance of ultrafiltration (UF) membranes. By applying an external surface potential onto an electro-conductive UF membrane, electrostatic induced rejection was investigated. This study introduces in a first part a relatively simple but yet not reported technology of membrane modification with direct current sputter deposition of ultrathin (15 nm) highly conductive gold layers. In a second part, characterization of the gold-coated UF flat sheet membrane with a molecular weight cut-off (MWCO) of 150 kDa is presented. Membrane parameters as contact angle (hydrophobicity), pure water permeability, MWCO, scanning electron microscopy imaging, zeta potential, surface conductivity and cyclic voltammetry of the virgin and the modified membrane are compared. Due to the coating, a high surface conductivity of 107 S m−1 was realized. Permeability of the modified membrane decreased by 40% but MWCO and contact angle remained almost unchanged. In a third part, cross-flow filtration experiments with negative charged Suwannee River Natural Organic Matter (SRNOM) are conducted at different cathodic and anodic applied potentials, different pH values (pH 4, 7, 10) and ionic strengths (0, 1, 10 mmol L−1). SRNOM rejection of not externally charged membrane was 28% in cross-flow and 5% in dead-end mode. Externally negative charged membrane (−1.5 V vs. Ag/AgCl) reached rejection of 64% which was close to the performance of commercial UF membrane with MWCO of 5 kDa. High ionic strengths or low pH of feed reduced the effect of electrostatic rejection. View Full-Text
Keywords: electro-conductive membrane; electro-enhanced rejection; surface charge; membrane characterization; electro-ultrafiltration; surface coating electro-conductive membrane; electro-enhanced rejection; surface charge; membrane characterization; electro-ultrafiltration; surface coating
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Mantel, T.; Benne, P.; Parsin, S.; Ernst, M. Electro-Conductive Composite Gold-Polyethersulfone-Ultrafiltration-Membrane: Characterization of Membrane and Natural Organic Matter (NOM) Filtration Performance at Different In-Situ Applied Surface Potentials. Membranes 2018, 8, 64.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Membranes EISSN 2077-0375 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top