Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review
Abstract
:1. Introduction
2. Zero-Dimensional (0D) Fillers
2.1. Si-Based Materials
2.2. Metal Oxides Materials
2.2.1. TiO2-Based Nanocomposite Membranes
2.2.2. Other Metal Oxides
3. One-Dimensional (1D) Fillers
3.1. Carbon Nanotubes (CNTs)
3.2. Polymeric Nanofibers
4. Two-Dimensional (2D) Nanofillers
4.1. Graphene and Derivates
4.1.1. Pristine Graphene Nanosheets
4.1.2. GO Nanosheets
4.1.3. Functionalized GO Nanosheets
4.1.4. Porous GO Nanosheets
4.1.5. Graphene Oxide as Scaffolds for Other Nanoparticles
4.2. Molybdenum Disulfide (MoS2)
5. Conclusions and Perspective
- development of new additives with high CO2 adsorption capacity and low bending energy, good dispersion property and low cost;
- functionalization of the existing nanofillers to increase the solubility of the active penetrants in the hybrid matrix, and to maximize the compatibility between the two phases in the membrane for a defect-free coating;
- synthesis of new 2D fillers with precise size sieving effect by engineering design the sheets and distance;
- using 2D materials as hosts to disperse MOFs and other nanoparticles with high CO2 adsorption capacity to immobilize the nanoparticles that tends to aggregate;
- improving the alignment of the nanofillers to control membrane morphology for better separation performances.
Acknowledgments
Conflicts of Interest
Abbreviations
6-FDA | 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride |
6F-PAI | Hexafluorinated poly(amide-imide) |
APTES | (3-Aminopropyl)triethoxysilane |
BTDA | 3,3′,4,4′-benzophenone tetracarboxylic dianhydride |
BPPO | Brominated poly(2,6-diphenyl-1,4-phenylene oxide) |
CCS | Carbon capture and storage |
CNT | Carbon nanotubes |
DA | Dopamine |
DAPI | Diaminophenylindane |
GO | Graphene Oxide |
GPU | Gas Permeation Unit |
HFBAA | 4,4-(hexafluoroisopropylidene) diphenylazide |
MDI | MDI |
MMM | Mixed Matrix Membranes |
MOF | Metal Organic Frameworks |
MWCNT | Multi-walled carbon nanotubes |
P84 | Co-polyimide BTDA-TDI/MDI |
PANI | Polyaniline |
PBNPI | poly(bisphenol A-co-4-nitrophthalic anhydride-co-1,3-phenylene diamine) |
PBT | poly(butylene terephthalate) |
PEA | Polyetheramide |
PEBAX | Crosslinked polyether block amide (Crosslinked) |
PEI | Polyetherimide |
PEG | Polyethylene glycol |
PES | Polyethersulfone |
PIM | Polymers of Intrinsic Microporosity |
PMMA | Poly(methyl methacrylate) |
PMP | Poly(4-methyl-2-pentyne) |
POSS | Polyhedral Oligomeric Silsesquioxane |
PSU | Polysulfone |
PTGMP | Poly(1-trimethylgermyl-1-propyne) |
PTMSP | Poly(1-trimethylsilyl-1-propyne) |
PVA | Polyvinyl alcohol |
PVAc | Polyvinyl acetate |
PVAm | Polyvinyl amine |
SPEEK | Sulfonated Poly(Ether Ether Ketone) |
SWCNT | Single-walled carbon nanotubes |
TDI | Methylphenylene-diamine |
TEMPO | [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation |
XRD | X-Ray Diffraction |
ZIF | Zeolitic imidazolate framework |
References
- World Meteorological Organization (WMO). WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2015; World Meteorological Organization: Geneva, Switzerland, 2016; Volume 12, Available online: https://reliefweb.int/report/world/wmo-greenhouse-gas-bulletin-state-greenhouse-gases-atmosphere-based-global-observations (accessed on 8 May 2018).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Ho, W.S.W.; Sirkar, K.K. Membrane Handbook; Springer: New York, NY, USA, 1992; ISBN 1461535484. [Google Scholar]
- Rafiq, S.; Deng, L.; Hägg, M.-B. Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO2 Capture—A Review. ChemBioEng Rev. 2016, 3, 68–85. [Google Scholar] [CrossRef]
- Ansaloni, L.; Deng, L. Advances in polymer-inorganic hybrids as membrane materials. In Recent Developments in Polymer Macro, Micro and Nano Blends; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081004272. [Google Scholar]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Dechnik, J.; Gascon, J.; Doonan, C.; Janiak, C.; Sumby, C.J. New directions for mixed-matrix membranes. Angew. Chemie Int. Ed. 2017. [Google Scholar] [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- Barrer, R.M. Diffusion and permeation in heterogeneous media. In Diffusion in Polymer; Academic Press: New York, NY, USA, 1968; ISBN 0121970507. [Google Scholar]
- Merkel, T.C.; He, Z.; Pinnau, I.; Freeman, B.D.; Meakin, P.; Hill, A.J. Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 2003, 36, 6844–6855. [Google Scholar] [CrossRef]
- Moaddeb, M.; Koros, W.J. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J. Membr. Sci. 1997, 125, 143–163. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C. Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)-silica nanocomposite membranes for gas separation. Chem. Eng. J. 2012, 188, 199–209. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mehdi Talakesh, M.; Ghalei, B.; Shafiei, M. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. J. Membr. Sci. 2013, 427, 21–29. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Mosayebi Behbahani, R. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem. Eng. Res. Des. 2017, 117, 177–189. [Google Scholar] [CrossRef]
- Ogbole, E.O.; Lou, J.; Ilias, S.; Desmane, V. Influence of surface-treated SiO2 on the transport behavior of O2 and N2 through polydimethylsiloxane nanocomposite membrane. Sep. Purif. Technol. 2017, 175, 358–364. [Google Scholar] [CrossRef]
- Kim, J.; Fu, Q.; Xie, K.; Scofield, J.M.P.; Kentish, S.E.; Qiao, G.G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. J. Membr. Sci. 2016, 515, 54–62. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer-inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Yu, B.; Cong, H.; Li, Z.; Tang, J.; Zhao, X.S. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2 /N2 and CO2 /H2 separation. J. Appl. Polym. Sci. 2013, 130, 2867–2876. [Google Scholar] [CrossRef]
- Sadeghi, M.; Semsarzadeh, M.A.; Barikani, M.; Pourafshari Chenar, M. Gas separation properties of polyether-based polyurethane-silica nanocomposite membranes. J. Membr. Sci. 2011, 376, 188–195. [Google Scholar] [CrossRef]
- Chen, X.Y.; Razzaz, Z.; Kaliaguine, S.; Rodrigue, D. Mixed matrix membranes based on silica nanoparticles and microcellular polymers for CO2/CH4 separation. J. Cell. Plast. 2018. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817–861. [Google Scholar] [CrossRef]
- Chua, M.L.; Shao, L.; Low, B.T.; Xiao, Y.; Chung, T.S. Polyetheramine-polyhedral oligomeric silsesquioxane organic-inorganic hybrid membranes for CO2/H2 and CO2/N2 separation. J. Membr. Sci. 2011, 385–386, 40–48. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Neumann, S.; Bolmer, S.; Khan, M.M.; Abetz, V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. J. Membr. Sci. 2013, 437, 286–297. [Google Scholar] [CrossRef]
- Yang, L.; Tian, Z.; Zhang, X.; Wu, X.; Wu, Y.; Wang, Y.; Peng, D.; Wang, S.; Wu, H.; Jiang, Z. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. J. Membr. Sci. 2017, 543, 69–78. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Wakimoto, K.; Gibbons, A.H.; Isfahani, A.P.; Kusuda, H.; Sivaniah, E.; Ghalei, B. Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci. 2017, 539, 178–186. [Google Scholar] [CrossRef]
- Guerrero, G.; Hägg, M.B.; Kignelman, G.; Simon, C.; Peters, T.; Rival, N.; Denonville, C. Investigation of amino and amidino functionalized Polyhedral Oligomeric SilSesquioxanes (POSS®) nanoparticles in PVA-based hybrid membranes for CO2/N2 separation. J. Membr. Sci. 2017, 544, 161–173. [Google Scholar] [CrossRef]
- Matteucci, S.; Kusuma, V.A.; Swinnea, S.; Freeman, B.D. Gas permeability, solubility and diffusivity in 1,2-polybutadiene containing brookite nanoparticles. Polymer 2008, 49, 757–773. [Google Scholar] [CrossRef]
- Xin, Q.; Wu, H.; Jiang, Z.; Li, Y.; Wang, S.; Li, Q.; Li, X.; Lu, X.; Cao, X.; Yang, J. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. J. Membr. Sci. 2014, 467, 23–35. [Google Scholar] [CrossRef]
- Matteucci, S.; Kusuma, V.A.; Sanders, D.; Swinnea, S.; Freeman, B.D. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 2008, 307, 196–217. [Google Scholar] [CrossRef]
- Oskam, G. Metal oxide nanoparticles: Synthesis, characterization and application. J. Sol-Gel Sci. Technol. 2006, 37, 161–164. [Google Scholar] [CrossRef]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Hu, Q.; Marand, E.; Dhingra, S.; Fritsch, D.; Wen, J.; Wilkes, G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. J. Membr. Sci. 1997, 135, 65–79. [Google Scholar] [CrossRef]
- Yampolskii, Y.P.; Starannikova, L.E.; Belov, N.A. Hybrid gas separation polymeric membranes containing nanoparticles. Pet. Chem. 2015, 54, 637–651. [Google Scholar] [CrossRef]
- Yave, W.; Peinemann, K.V.; Shishatskiy, S.; Khotimskiy, V.; Chirkova, M.; Matson, S.; Litvinova, E.; Lecerf, N. Synthesis, characterization, and membrane properties of poly(1-trimethylgermyl-1-propyne) and its nanocomposite with TiO2. Macromolecules 2007, 40, 8991–8998. [Google Scholar] [CrossRef]
- Shao, L.; Samseth, J.; Hagg, M.B. Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations. J. Membr. Sci. 2009, 326, 285–292. [Google Scholar] [CrossRef]
- Liang, C.Y.; Uchytil, P.; Petrychkovych, R.; Lai, Y.C.; Friess, K.; Sipek, M.; Mohan Reddy, M.; Suen, S.Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012, 92, 57–63. [Google Scholar] [CrossRef]
- Moghadam, F.; Omidkhah, M.R.; Vasheghani-Farahani, E.; Pedram, M.Z.; Dorosti, F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol. 2011, 77, 128–136. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Behbahani, R.M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J. Nat. Gas Sci. Eng. 2017, 37, 39–51. [Google Scholar] [CrossRef]
- Ahmad, J.; Deshmukh, K.; Hägg, M.B. Influence of TiO2 on the Chemical, Mechanical, and Gas Separation Properties of Polyvinyl Alcohol-Titanium Dioxide (PVA-TiO2) Nanocomposite Membranes. Int. J. Polym. Anal. Charact. 2013, 18, 287–296. [Google Scholar] [CrossRef]
- Ahmad, J.; Hågg, M.B. Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J. Membr. Sci. 2013, 445, 200–210. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Behbahani, R.M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. J. Energy Chem. 2016. [Google Scholar] [CrossRef]
- Gouvêa, D.; Ushakov, S.V.; Navrotsky, A. Energetics of CO2 and H2O adsorption on zinc oxide. Langmuir 2014, 30, 9091–9097. [Google Scholar] [CrossRef] [PubMed]
- Hotan, W.; Göpel, W.; Haul, R. Interaction of CO2 and co with nonpolar zinc oxide surfaces. Surf. Sci. 1979, 83, 162–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenh. Gas Control 2013, 12, 84–107. [Google Scholar] [CrossRef]
- Jazebizadeh, M.H.; Khazraei, S. Investigation of Methane and Carbon Dioxide Gases Permeability Through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane. Silicon 2016, 9, 775–784. [Google Scholar] [CrossRef]
- Momeni, S.M.; Pakizeh, M. Preparation, Characterization and gas permeation study of PSf/MgO nanocomposite membrane. Braz. J. Chem. Eng. 2013, 30, 589–597. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Li, Y.; Chung, T.S.; Liu, Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J. Membr. Sci. 2007, 302, 207–217. [Google Scholar] [CrossRef]
- Matteucci, S.; Kusuma, V.A.; Kelman, S.D.; Freeman, B.D. Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Polymer 2008, 49, 1659–1675. [Google Scholar] [CrossRef]
- Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kumar, S. Polymer/carbon nanotube nano composite fibers—A review. Appl. Mat. Interf. 2014, 6, 6069–6087. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.D. Reinforcement. Encycl. Polym. Sci. Technol. 2002. [Google Scholar] [CrossRef]
- Peng, H.; Chen, D.; Huang, J.Y.; Chikkannanavar, S.B.; Hanisch, J.; Jain, M.; Peterson, D.E.; Doorn, S.K.; Lu, Y.; Zhu, Y.T.; et al. Strong and ductile colossal carbon tubes with walls of rectangular macropores. Phys. Rev. Lett. 2008, 101, 145501. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.F.; Goh, P.S.; Sanip, S.M.; Aziz, M. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol. 2009, 70, 12–26. [Google Scholar] [CrossRef]
- Kim, S.; Jinschek, J.R.; Chen, H.; Sholl, D.S.; Marand, E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 2007, 7, 2806–2811. [Google Scholar] [CrossRef] [PubMed]
- Joselevich, E.; Dai, H.; Liu, J.; Hata, K.; Windle, A.H. Carbon Nanotube Synthesis and Organization. Organization 2008, 164, 101–164. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009, 9, 3137–3141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Stoddart, J.F. Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 2009, 42, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Skoulidas, A.I.; Ackerman, D.M.; Johnson, J.K.; Sholl, D.S. Rapid Transport of Gases in Carbon Nanotubes. Phys. Rev. Lett. 2002, 89, 185901. [Google Scholar] [CrossRef] [PubMed]
- Jepps, O.G.; Bhatia, S.K.; Searles, D.J. Wall mediated transport in confined spaces: Exact theory for low density. Phys. Rev. Lett. 2003, 91, 126102. [Google Scholar] [CrossRef] [PubMed]
- Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. CO2 adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 2003, 376, 761–766. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Chen, Z.; Waje, M.; Yan, Y. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir 2005, 21, 9386–9389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, B.; Wang, X.; Liang, Y.; Qiu, H.; Zheng, G.; Yang, J. Gas transport in vertically-aligned carbon nanotube/parylene composite membranes. Carbon 2014, 66, 11–17. [Google Scholar] [CrossRef]
- Cong, H.; Zhang, J.; Radosz, M.; Shen, Y. Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. J. Membr. Sci. 2007, 294, 178–185. [Google Scholar] [CrossRef]
- Kim, S.; Pechar, T.W.; Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330–339. [Google Scholar] [CrossRef]
- Kim, S.; Chen, L.; Johnson, J.K.; Marand, E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. J. Membr. Sci. 2007, 294, 147–158. [Google Scholar] [CrossRef]
- Murali, R.S.; Ismail, A.F.; Rahman, M.A.; Sridhar, S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep. Purif. Technol. 2014, 129, 1–8. [Google Scholar] [CrossRef]
- Weng, T.H.; Tseng, H.H.; Wey, M.Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int. J. Hydrogen Energy 2009, 34, 8707–8715. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Huang, S.; Wu, H.; Li, Y.; Tian, Z.; Jiang, Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. J. Membr. Sci. 2014, 460, 62–70. [Google Scholar] [CrossRef]
- Ge, L.; Zhu, Z.; Li, F.; Liu, S.; Wang, L.; Tang, X.; Rudolph, V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C 2011, 115, 6661–6670. [Google Scholar] [CrossRef]
- Wong, K.C.; Goh, P.S.; Ismail, A.F. Gas separation performance of thin film nanocomposite membranes incorporated with polymethyl methacrylate grafted multi-walled carbon nanotubes. Int. Biodeterior. Biodegrad. 2015, 102, 339–345. [Google Scholar] [CrossRef]
- Deng, L.; Hagg, M.B. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. Int. J. Greenh. Gas Control 2014, 26, 127–134. [Google Scholar] [CrossRef]
- Saeed, M.; Deng, L. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. Int. J. Greenh. Gas Control 2016, 53, 254–262. [Google Scholar] [CrossRef]
- Zhao, Y.; Jung, B.T.; Ansaloni, L.; Ho, W.S.W. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. J. Membr. Sci. 2014, 459, 233–243. [Google Scholar] [CrossRef]
- Ansaloni, L.; Zhao, Y.; Jung, B.T.; Ramasubramanian, K.; Baschetti, M.G.; Ho, W.S.W. Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. J. Membr. Sci. 2015, 490, 18–28. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Qiao, Z.; Wei, X.; Zhang, C.; Wang, J.; Wang, S. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. J. Mater. Chem. A 2013, 1, 246–249. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Wang, J.; Wang, S. High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation. J. Membr. Sci. 2012, 403–404, 203–215. [Google Scholar] [CrossRef]
- Ansaloni, L.; Salas-Gay, J.; Ligi, S.; Baschetti, M.G. Nanocellulose-based membranes for CO2 capture. J. Membr. Sci. 2017, 522, 216–225. [Google Scholar] [CrossRef]
- Venturi, D.; Grupkovic, D.; Sisti, L.; Baschetti, M.G. Effect of humidity and nanocellulose content on Polyvinylamine-nanocellulose hybrid membranes for CO2 capture. J. Membr. Sci. 2018, 548, 263–274. [Google Scholar] [CrossRef]
- Venturi, D.; Ansaloni, L.; Baschetti, M.G. Nanocellulose based facilitated transport membranes for CO2 separation. Chem. Eng. Trans. 2016, 47, 349–354. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kitaoka, T. Ultraselective Gas Separation by Nanoporous Metal-Organic Frameworks Embedded in Gas-Barrier Nanocellulose Films. Adv. Mater. 2016, 28, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Gao, C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 2010, 22, 5054–5064. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Dong, T.; Ueda, M.; Zhang, X.; Wang, L. Sulfonated Reduced Graphene Oxide as a Conductive Layer in Sulfonated Poly(ether ether ketone) Nanocomposite Membranes. J. Membr. Sci. 2016, 524, 663–672. [Google Scholar] [CrossRef]
- Quan, S.; Li, S.W.; Xiao, Y.C.; Shao, L. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. Int. J. Greenh. Gas Control 2017, 56, 22–29. [Google Scholar] [CrossRef]
- Miculescu, M.; Thakur, V.K.; Miculescu, F.; Voicu, S.I. Graphene-based polymer nanocomposite membranes: A review. Polym. Adv. Technol. 2016, 27, 844–859. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.M.; Shin, J.E.; Lee, H.D.; Park, H.B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng. 2017, 16, 39–47. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Yoon, H.W.; Yoo, B.M.; Park, J.S.; Gleason, K.L.; Freeman, B.D.; Park, H.B. High-performance CO2-philic graphene oxide membranes under wet-conditions. Chem. Commun. 2014, 50, 13563–13566. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; et al. Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science 2013, 342, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, L.; Ligi, S.; De Angelis, M.G.; Cucca, G.; Pettinau, A. Effect of Graphene and Graphene Oxide Nanoplatelets on the Gas Permselectivity and Aging Behavior of Poly(trimethylsilyl propyne) (PTMSP). Ind. Eng. Chem. Res. 2015. [Google Scholar] [CrossRef]
- Althumayri, K.; Harrison, W.J.; Shin, Y.; Gardiner, J.M.; Casiraghi, C.; Budd, P.M.; Bernardo, P.; Clarizia, G.; Jansen, J.C. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philos. Trans. R. Soc. A 2016, 374. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Prestat, E.; Zhou, K.-G.; Gorgojo, P.; Althumayri, K.; Harrison, W.; Budd, P.M.; Haigh, S.J.; Casiraghi, C. Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon 2016, 102, 357–366. [Google Scholar] [CrossRef]
- Rea, R.; Ligi, S.; Christian, M.; Morandi, V.; Giacinti Baschetti, M.; De Angelis, M.G. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation. Polymers 2018, 10, 129. [Google Scholar] [CrossRef]
- Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K.R.; Xu, N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chemie Int. Ed. 2015, 54, 578–582. [Google Scholar] [CrossRef]
- Karunakaran, M.; Shevate, R.; Kumar, M.; Peinemann, K.-V. CO2-selective PEO–PBT (PolyActiveTM)/graphene oxide composite membranes. Chem. Commun. 2015, 51, 14187–14190. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, M.; Liu, G.; Guan, K.; Jin, W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE J. 2016, 62, 2843–2852. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, J.; Qiu, Y.; Li, H.; Hua, K.; Li, X.; Deng, M. Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membranes in the permeation process. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Lape, N.K.; Nuxoll, E.E.; Cussler, E.L. Polydisperse flakes in barrier films. J. Membr. Sci. 2004, 236, 29–37. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Zhang, H.; Wang, S.; Jiang, Z.; Guo, R.; Wu, H. Efficient CO2 Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 2015, 7, 5528–5537. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Ruan, X.; Yan, Z.; Yang, K.; Yu, M.; Li, H.; Zhao, W.; He, G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep. Purif. Technol. 2016, 166, 171–180. [Google Scholar] [CrossRef]
- Peng, D.; Wang, S.; Tian, Z.; Wu, X.; Wu, Y.; Wu, H.; Xin, Q.; Chen, J.; Cao, X.; Jiang, Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. J. Membr. Sci. 2017, 522, 351–362. [Google Scholar] [CrossRef]
- Xin, Q.; Li, Z.; Li, C.; Wang, S.; Jiang, Z.; Wu, H.; Zhang, Y.; Yang, J.; Cao, X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. A 2015, 3, 6629–6641. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Liu, J.; Zhang, Y. Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2 Capture. ACS Sustain. Chem. Eng. 2015, 3, 1819–1829. [Google Scholar] [CrossRef]
- Dong, G.; Hou, J.; Wang, J.; Zhang, Y.; Chen, V.; Liu, J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J. Membr. Sci. 2016, 520, 860–868. [Google Scholar] [CrossRef]
- Zahri, K.; Wong, K.C.; Goh, P.S.; Ismail, A.F. Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation. RSC Adv. 2016, 6, 89130–89139. [Google Scholar] [CrossRef]
- Dong, L.; Chen, M.; Li, J.; Shi, D.; Dong, W.; Li, X.; Bai, Y. Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Membr. Sci. 2016, 520, 801–811. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.C.; Roh, J.S.; Moon, G.H.; Shin, J.E.; Kang, Y.S.; Park, H.B. Metal-Organic Frameworks Grown on Porous Planar Template with Exceptionally High Surface Area: Promising Nanofiller Platforms for CO2 Separation. J. Mater. Chem. A 2017, 5, 22500–22505. [Google Scholar] [CrossRef]
- Yue, Q.; Shao, Z.; Chang, S.; Li, J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425. [Google Scholar] [CrossRef] [PubMed]
- Berean, K.J.; Ou, J.Z.; Daeneke, T.; Carey, B.J.; Nguyen, E.P.; Wang, Y.; Russo, S.P.; Kaner, R.B.; Kalantar-Zadeh, K. 2D MoS2 PDMS Nanocomposites for NO2 Separation. Small 2015, 11, 5035–5040. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, H.; Zhang, X.; Zhang, Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Appl. Mater. Interfaces 2016, 8, 23371–23378. [Google Scholar] [CrossRef] [PubMed]
Filler Type | Hybrid Membranes with Solid Fillers | |
---|---|---|
Nanocomposite Membrane | Mixed Matrix Membrane | |
0D | Dense Nanoparticles | |
• Silica | ||
• Fumed Silica | ||
• TiO2 | ||
• MgO | ||
• Al2O3 | ||
Polyhedral oligomeric silsequioxanes (POSS) | ||
1D | Carbon nanotubes (CNT) | |
Cellulose nanofibers (CNF) | ||
Polyaniline nanorods | ||
Zinc nanorods | ||
2D | Graphene/Graphene Oxide (GO) | |
Molybdenum disulfide (MoS2) | ||
Polyaniline nanosheets | ||
3D | Porous nanoparticles | |
• Porous silica | ||
• Porous metal oxides | ||
Zeolites | ||
Metal organic frameworks (MOFs) | ||
Porous organic frameworks (POFs) | ||
MOF nanosheets * |
Filler | Polymer | Loading (wt %) | PCO2 (Barrer) | αCO2/N2 | αCO2/CH4 | Ref |
---|---|---|---|---|---|---|
P84 co-polyimide BTDA-TDI/MDI | 0 | 0.9 | 20.2 | [15] | ||
SiO2 | 4 | 1.2 | 16.6 | |||
8 | 1.3 | 15.0 | ||||
APTES- | 4 | 0.9 | 19.6 | |||
modified | 8 | 1.1 | 16.1 | |||
SiO2 | 14 | 1.3 | 17.8 | |||
20 | 1.6 | 10.1 | ||||
25 | 3.0 | 4.0 | ||||
PEBAX-1657 crosslinked polyether block amide | 0 | 80.2 | 71.5 | [21] | ||
SiO2 | 5 | 66.0 | 50.4 | |||
10 | 62.9 | 49.2 | ||||
30 | 51.4 | 46.5 | ||||
polyurethane a | 0 | 189.6 | 25.0 | 9.7 | [22] | |
silica | 2.5 | 176.2 | 29.6 | 10.8 | ||
28 nm | 5 | 160.8 | 32.3 | 11.8 | ||
10 | 152.2 | 36.1 | 12.4 | |||
20 | 124.5 | 39.8 | 13.1 | |||
Polycaprolactum/polyurethene a | 0 | 86.3 | 34.1 | 15.4 | [16] | |
SiO2 | 2.5 | 66.8 | 42.8 | 18.4 | ||
5 | 62.1 | 45.0 | 17.5 | |||
10 | 59.1 | 45.5 | 18.3 | |||
20 | 53.6 | 54.1 | 18.6 | |||
30 | 41.3 | 62.5 | 19.1 | |||
PEBAX-1074 crosslinked polyether block amide | 0 | 110.7 | 11.1 | [17] | ||
SiO2 | 2 | 116.7 | 11.1 | |||
4 | 121.7 | 11.1 | ||||
6 | 134.2 | 12.0 | ||||
8 | 152.1 | 13.3 | ||||
Matrimid BTDA-DAPI polyimide | 0 | 9.9 | 35.3 | [23] | ||
SiO2 | 0.92 | 21.3 | 33.2 | |||
200 nm | 1.6 | 41.0 | 36.6 | |||
3.11 | 46.3 | 28.3 | ||||
PEBAX-2533 crosslinked polyether block amide | 0 | 221.7 | 26.3 | 7.9 | [26] | |
10 | 252.4 | 26.2 | 7.5 | |||
PEG-POSS | 20 | 276.7 | 27.8 | 7.9 | ||
30 | 297.9 | 30.0 | 9.0 | |||
40 | 288.9 | 31.0 | 8.8 | |||
50 | 148.2 | 34.9 | 9.5 | |||
PEBAX-1657 crosslinked polyether block amide | 0 | 74.5 | 53.0 | 17.1 | ||
10 | 70.7 | 48.2 | 17.1 | |||
20 | 99.3 | 50.5 | 16.2 | |||
30 | 150.7 | 50.9 | 15.9 | |||
PIM 1 | 0 | 2795 | 19 | 12 | [27] | |
PEG-POSS | 1 | 3360 | 18 | 13 | ||
2 | 3381 | 22 | 16 | |||
5 | 1875 | 26 | 21 | |||
10 | 1309 | 31 | 30 |
Filler | Polymer | Loading (wt %) | PCO2 (Barrer) | αCO2/N2 | αCO2/CH4 | Ref |
---|---|---|---|---|---|---|
PTGMP a | 0 | 18,600 | 6.7 | 3.0 | [38] | |
TiO2 ~10 nm | 5 | 20,000 | 6.1 | 2.4 | ||
10 | 24,900 | 8.0 | 3.1 | |||
20 | 20,400 | 6.5 | 2.6 | |||
PTMSP | 0 | 35,000 | 3.8 | 1.59 | [32] | |
TiO2 aggregates, 10–50 nm | 3 b | 27,000 | 4.6 | 1.80 | ||
7 b | 30,000 | 4.8 | 1.67 | |||
10 b | 33,000 | 5.9 | 1.94 | |||
15 b | 35,000 | 4.9 | 1.67 | |||
23 b | 56,000 | 4.3 | 1.56 | |||
33 b | 71,000 | 3.6 | 1.39 | |||
PMP | 0 | 6700 | 7.1 | 3.7 | [39] | |
TiO2 21 nm | 15 | 6980 | 7.1 | 3.5 | ||
25 | 8430 | 7.0 | 3.5 | |||
35 | 10,970 | 6.5 | 3.2 | |||
PES | 0 | 2.0 | 26.0 | [40] | ||
TiO2 70 nm | 2 | 2.3 | 24.8 | |||
4 | 2.6 | 39.6 | ||||
6 | 2.6 | 31.1 | ||||
10 | 2.9 | 19.8 | ||||
20 | 5.6 | 16.8 | ||||
Matrimid BTDA-DAPI polyimide | 0 | 4.3 | 19.5 | 20.5 | [41] | |
TiO2 aggregates, 3 nm | 5 | 5.4 | 15.0 | 16.9 | ||
10 | 7.4 | 14.8 | 18.1 | |||
15 | 8.0 | 10.8 | 13.8 | |||
20 | 10.5 | 11.4 | 13.7 | |||
25 | 12.0 | 8.9 | 6.5 | |||
polybutadiene | 0 | 50.8 | 14.1 | 6.8 | [30] | |
Brookite aggregates, 2–60 nm | 7 b | 51.2 | 16.6 | 7.1 | ||
13 b | 65.8 | 17.9 | 7.7 | |||
20 b | 87.2 | 15.4 | 6.6 | |||
27 b | 161.6 | 15.2 | 8.4 | |||
PEBAX-1074 (crosslinked polyether block amide)/PEG | 0 | 150.4 | 20.8 | [42] | ||
TiO2 21 nm | 2 | 154.4 | 21.3 | |||
4 | 159.9 | 21.8 | ||||
6 | 179.4 | 22.6 | ||||
8 | 204.5 | 23.6 | ||||
PEBAX-1074 crosslinked polyether block amide | 0 | 110.7 | 11.1 | [17] | ||
TiO2 21 nm | 2 | 111.8 | 11.1 | |||
4 | 117.5 | 11.2 | ||||
6 | 125.4 | 11.7 | ||||
8 | 150.3 | 13.2 | ||||
PVA | 0 | 10.5 | 7.0 | [43] | ||
TiO2 21 nm | 10 | 7.4 | 7.4 | |||
20 | 7.0 | 8.8 | ||||
30 | 7.0 | 5.6 | ||||
40 | 7.3 | 5.4 | ||||
PVAc | 0 | 2.9 | 58.7 | [44] | ||
TiO2 21 nm | 1 | 4.2 | 69.4 | |||
5 | 4.8 | 71.8 | ||||
10 | 5.3 | 74.4 | ||||
15 | 5.8 | 73.9 | ||||
sPEEK c | 0 | 564.0 | 38.9 | 28.8 | [31] | |
TiO2 | 5 | 680.0 | 39.3 | 29.8 | ||
10 | 835.4 | 43.1 | 32.6 | |||
15 | 1342.3 | 34.7 | 29.1 | |||
Dopamine functionalizedd TiO2 | 5 | 680.0 | 42.1 | 28.3 | ||
10 | 1055.1 | 46.9 | 29.1 | |||
15 | 1342.3 | 52.7 | 35.3 | |||
DA and PEI functionalized TiO2 | 5 | 574.6 | 44.5 | 33.2 | ||
10 | 1349.7 | 56.1 | 39.3 | |||
15 | 1632.4 | 64.4 | 58.2 | |||
PEBAX-1074 crosslinked polyether block amide | 0 | 110.7 | 50.1 | 11.1 | [45] | |
ZnO | 2 | 120.6 | 53.1 | 11.1 | ||
4 | 124.7 | 54.4 | 11.2 | |||
6 | 131.7 | 57.0 | 11.8 | |||
8 | 152.3 | 62.2 | 13.5 | |||
PEBAX-1657 (crosslinked polyether block amide)/PEG | 0 | 71.7 | 25.8 | [49] | ||
ZnO | 4 | 94.5 | 23.8 | |||
PEBAX-1074 crosslinked polyether block amide | 0 | 110.7 | 11.1 | [17] | ||
Al2O3 | 2 | 118.3 | 11.1 | |||
4 | 128.4 | 11.5 | ||||
6 | 137.9 | 12.2 | ||||
8 | 163.9 | 14.2 | ||||
PTMSP | 0 | 34,000 | 6.2 | 2.3 | [52] | |
MgO | 13 c | 53,960 | 1.9 | |||
30 c | 92,477 | 4.1 | 1.7 | |||
40 c | 224,358 | 3.8 | 1.5 | |||
50 c | 449,604 | 3.4 | 1.4 | |||
75 c | 570,425 | 2.6 | 0.9 | |||
PSU | 0 | 7.7 | 27.7 | 30.8 | [50] | |
MgO | 10 | 9.4 | 25.4 | 27.6 | ||
20 | 11.2 | 24.0 | 26.7 | |||
30 | 14.1 | 23.6 | 25.7 | |||
Matrimid BTDA-DAPI polyimide | 0 | 6.8 | 25.0 | 33.3 | [51] | |
MgO | 20 | 7.5 | 23.0 | 29.8 | ||
30 | 8.5 | 24.5 | 26.9 | |||
40 | 9.5 | 19.6 | 26.4 |
Filler | Polymer | Loading (wt %) | PCO2 (Barrer) | αCO2/N2 | αCO2/CH4 | Ref |
---|---|---|---|---|---|---|
BPPO a | 0 | 78 | 30 | [70] | ||
SWNT SWNT-COOH | 5 | 123 | 29 | |||
5 | 79 | 30 | ||||
MWNT | 5 | 153 | 28 | |||
poly(imide-siloxane) | 0 | 166.0 | 13.9 | 5.89 | [71] | |
SWNT | 2 | 190.7 | 13.2 | 5.58 | ||
10 | 191.3 | 10.7 | 5.21 | |||
PSU | 0 | 3.9 | 22.4 | 22.9 | [72] | |
SWNT | 5 | 5.12 | 22.3 | 19.0 | ||
10 | 5.19 | 22.6 | 18.5 | |||
15 | 4.52 | 20.5 | 16.1 | |||
PEBAX 1657 crosslinked polyether block amide | 0 | 55.9 | 40.2 | [73] | ||
MWNT | 2 | 329 | 78.6 | |||
5 | 262.2 | 58.5 | ||||
XL PEBAX 1657 | 0 | 13.38 | 56.9 | |||
MWNT | 2 | 3.54 | 83.2 | |||
5 | 17.47 | 84.5 | ||||
PBNPI | 0 | 2.6 | 3.7 | [74] | ||
MWNT | 2.5 | 2.7 | 2.8 | |||
10 | 4.9 | 3.2 | ||||
15 | 6 | 3.4 | ||||
PEBAX 1657 crosslinked polyether block amide | 0 | 88.4 | 49.4 | 20.4 | [75] | |
MWNT | 2 | 119.3 | 51.5 | 17.6 | ||
PEGDME (90,10) | 0 | 162 | 56.2 | 16.5 | ||
MWNT | 2 | 196.7 | 62 | 15.4 | ||
PEG600 (90,10) | 0 | 144.9 | 48.46 | 20.5 | ||
MWNT | 2 | 179 | 52.3 | 18.9 | ||
PEG10k (90,10) | 0 | 66.2 | 44.6 | 21.3 | ||
MWNT | 2 | 89.6 | 49.2 | 17.8 | ||
PEG20k (90,10) | 0 | 67.7 | 46.1 | 21.7 | ||
MWNT | 2 | 102.8 | 49.9 | 17.9 | ||
PEG20k (80,20) | 0 | 48.1 | 28.2 | 25.4 | ||
MWNT | 2 | 72.2 | 32.2 | 21.0 | ||
PEG20k (60,40) | 0 | 23.5 | 18.7 | 30.1 | ||
MWNT | 2 | 35 | 22.7 | 23.7 | ||
PES | 0 | 2.6 | 22 | [76] | ||
CNT-COOH | 5 | 4.5 | 22 | |||
CNT-Ru | 5 | 3.6 | 22.5 | |||
CNT-Fe | 10 | 4.4 | 11.5 | |||
PDMS | 0 | 54.9 | 45.7 | 26.6 | [77] | |
PMMA-CNT | 0.5 b | 58.1 | 34.8 | 20.6 | ||
0.5 b | 70.5 | 67.2 | 29.0 | |||
PVAm/PVA b | 0 | 110 c | 25 | [78] | ||
MWNT | 1 | 130 c | 45 | |||
PVA | 0 | 120 | 60 | [79] | ||
MWNT | 1 | 135 | 60 | |||
PVA + ME | 0 | 193 | 103 | |||
MWNT | 1 | 301 | 120 | |||
polyamine blends | 0 | 984 | 283.6 | [81] | ||
Amine functionalized | on PSU c | 2 | 943 | 264.9 | ||
MWNT | 6 | 1013 | 265.4 | |||
PVAm on PSU d | 0 | 214 | 68.6 | [82] | ||
PANI nanorods | 2 | 3080 | 240 | |||
PVAm on PSU d | 0 | 135.0 e | 51.8 | [83] | ||
PANI nanofibers | 1 | 203.6 e | 82.9 | |||
8 | 459.9 e | 135.7 | ||||
17 | 990.6 e | 83.4 | ||||
PANI nanosheets | 1 | 589.9 e | 108.3 | |||
8 | 662.1 e | 105.2 | ||||
17 | 1402.2 e | 219.3 | ||||
NCF | Lupamin d (PVAm) | 30 | 187 | 100 | 88 | [85] |
70 | 62 | 44 | 27 | |||
50 | 187 | 48 | 19 | [84] |
Filler | Polymer | Loading (wt %) | PCO2 (Barrer) | αCO2/N2 | αCO2/CH4 | Ref |
---|---|---|---|---|---|---|
PTMSP | 22,400 | 6.4 | 2.5 | [99] | ||
XT-IND-G | 1 | 16,990 | 6.7 | 2.7 | ||
XT-M60-G | 1 | 19,360 | 6.2 | 2.3 | ||
GO | 1 | 23,950 | 6.3 | 2.4 | ||
PIM-1 | 0 | 5120 | 19.0 | 15.1 | [100] | |
FL-G | 0.00096 | 12,700 | 14.6 | 8.8 | ||
0.0018 | 9840 | 17.3 | 12.3 | |||
0.0034 | 7830 | 19.1 | 14.2 | |||
0.0071 | 3410 | 20.1 | 21.3 | |||
0.0243 | 5150 | 19.1 | 13.2 | |||
PPO | 61 | 20.3 | [102] | |||
XT6 | 1 | 60 | 16.7 | |||
5 | 51 | 18.2 | ||||
15 | 27 | 15.0 | ||||
XT7 | 0.3 | 62 | 17.7 | |||
PEBAX crosslinked polyether block amide | 0 | 50.5 | 51.9 | 21.6 | [103] | |
GO | 0.05 | 59.1 | 57.8 | 22.1 | ||
0.075 | 72.7 | 71.7 | 22.3 | |||
0.1 | 100 | 91 | 24.6 | |||
0.4 | 30 | |||||
0.5 | 23 | |||||
Polyactive | 0 | 150.0 | 52.0 | 18.0 | [104] | |
GO | PEO-PBT | 0.025 | 150.0 | 58.0 | 19.0 | |
0.05 | 149.0 | 68.0 | 21.0 | |||
0.065 | 143.0 | 73.0 | 21.0 | |||
0.075 | 130.0 | 69.0 | 22.0 | |||
0.125 | 123.0 | 69.0 | 21.0 | |||
0.25 | 95.0 | 68.0 | 21.0 | |||
0.5 | 76.0 | 67.0 | 21.0 | |||
PEBAX 1657 crosslinked polyether block amide | 0 | 48.0 | 38.0 | [105] | ||
GO-S | 0.1 | 52.6 | 47.6 | |||
GO-M | 0.1 | 92.5 | 84.3 | |||
GO-L | 0.1 | 14.0 | 35.3 | |||
PEBAX 1657 crosslinked polyether block amide | 0 a | 128.6 | 56.2 | [106] | ||
GO | 0.99 a | 108.0 | 48.5 | |||
1.96 a | 53.7 | 53.1 | ||||
3.85 a | 38.3 | 54.8 | ||||
PEG | 0 | 254.2 | 48.2 | [92] | ||
GO | 0.5 | 397.3 | 58.2 | |||
1 | 449.6 | 55.0 | ||||
2 | 314.8 | 57.1 | ||||
3 | 299.6 | 59.3 | ||||
PEBAX 1657 c crosslinked polyether block amide | 0 | 81.9 | 53.7 | 18.7 | [108] | |
PEG-PEI-GO | 1 | 109.3 | 53.7 | 21.0 | ||
3 | 116.3 | 54.8 | 22.1 | |||
5 | 140.2 | 57.8 | 22.1 | |||
10 | 146.0 | 61.8 | 24.4 | |||
12 | 140.0 | 57.6 | 21.1 | |||
PEBAX1657 d crosslinked polyether block amide | 0 | 488.4 | 49.0 | 15.7 | ||
PEI-GO | 10 | 1086.3 | 103.3 | 30.9 | ||
PEG-PEI-GO | 10 | 1334.7 | 119.6 | 45.4 | ||
PEBAX 1657 crosslinked polyether block amide | 0 | 61.9 | 65.3 | 26.0 | [109] | |
Imidazole-GO | 0.2 | 63.4 | 68.4 | 25.3 | ||
0.5 | 66.6 | 75.0 | 24.7 | |||
0.8 | 64.6 | 91.3 | 25.3 | |||
1 | 56.8 | 96.1 | 29.1 | |||
PEBAX 1657 crosslinked polyether block amide | 0 | 92.6 | 17.2 | [110] | ||
Zn-DA-GO | 0.5 | 122.1 | 26.5 | |||
1 | 137.8 | 28.8 | ||||
2 | 121.0 | 30.6 | ||||
2.5 | 116.9 | 29.2 | ||||
sPEEK d | 0 | 565.3 | 26.6 | 38.1 | [111] | |
GO | 2 | 493.2 | 29.2 | 39.3 | ||
4 | 335.2 | 31.1 | 42.8 | |||
6 | 292.6 | 32.7 | 43.6 | |||
8 | 432.7 | 32.2 | 41.8 | |||
DA-GO | 2 | 590.5 | 31.2 | 46.1 | ||
4 | 698.4 | 35.4 | 61.5 | |||
6 | 798.3 | 39.7 | 67.2 | |||
8 | 856.2 | 47.8 | 74.5 | |||
DA-Cysteine-GO | 2 | 631.1 | 35.2 | 48.1 | ||
4 | 771.9 | 47.4 | 71.5 | |||
6 | 957.8 | 62.7 | 93.2 | |||
8 | 1247.6 | 81.8 | 114.5 | |||
PVAm | 0 | 13.9 a | 77.9 | [112] | ||
PEI GO | 1 | 8.8 a | 82.6 | |||
2 | 35.1 a | 90.0 | ||||
3 | 31.0 a | 106.9 | ||||
4 | 27.7 a | 80.9 | ||||
5 | 26.8 a | 76.7 | ||||
PEBAX 1657 crosslinked polyether block amide | 0 | 60.5 | 54.7 | [113] | ||
Por-GO | 1.67 | 86.8 | 77.3 | |||
3.33 | 94.1 | 70.8 | ||||
5 | 119.5 | 103.9 | ||||
6.67 | 62.4 | 76.8 | ||||
PSU | 0 | 65.2 b | 17.3 | 17.2 | [114] | |
Por-GO | 0.25 | 74.5 b | 44.4 | 29.9 | ||
PEBAX 2533 crosslinked polyether block amide | 0 | 131.6 | 27.1 | [115] | ||
ZIF-8 on GO | 2 | 146.3 | 29.4 | |||
4 | 212.7 | 41.7 | ||||
6 | 247.2 | 44.7 | ||||
8 | 254.5 | 43.1 | ||||
PEBAX 1657 crosslinked polyether block amide | 0 | 83.0 | 50.0 | [116] | ||
ZIF-8 on GO | 0.02 | 125.9 | 39.9 | |||
ZIF-8 on por-GO | 0.02 | 183.8 | 51.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janakiram, S.; Ahmadi, M.; Dai, Z.; Ansaloni, L.; Deng, L. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes 2018, 8, 24. https://doi.org/10.3390/membranes8020024
Janakiram S, Ahmadi M, Dai Z, Ansaloni L, Deng L. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes. 2018; 8(2):24. https://doi.org/10.3390/membranes8020024
Chicago/Turabian StyleJanakiram, Saravanan, Mahdi Ahmadi, Zhongde Dai, Luca Ansaloni, and Liyuan Deng. 2018. "Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review" Membranes 8, no. 2: 24. https://doi.org/10.3390/membranes8020024