A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics
Abstract
:1. Introduction
2. Data Sources and Methodology
3. Results and Discussion
3.1. Bibliometric Analysis of Research on Supported Ionic Liquid Membranes (1995–2015)
3.1.1. Publication Year, Document Type and Language of Documents
3.1.2. Distribution of Output in Subject Categories and Journals
3.1.3. Publication Distribution of Countries and Institutions
3.1.4. Most Frequently Cited Papers
3.2. Analysis of Author Keywords and Hot Topics of the Research on Supported Ionic Liquid Membranes
3.3. Review of the Main Applications of Supported Ionic Liquid Membranes and Current Trending Topics
- Carbon dioxide separation
- Other gas separations
- Pervaporation
- Separations in liquid phase
- Other applications
3.3.1. Carbon Dioxide Separation
3.3.2. Other Gas Separations
3.3.3. Pervaporation
3.3.4. Separations in Liquid Phase
3.3.5. Other Relevant Applications
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature ILs
Symbol | Name |
[BEHP] | Bis(2-ethyl-hexyl)-phthalate |
[BF4] | Tetrafluoroborate |
[BIM] | Butyl-imidazolium |
[BMIM] | Butyl-methyl-imidazolium |
[BMP] | Butyl-methyl-pyridinium |
[BPy] | N-butyl-pyridinium |
[Cl] | Chloride |
[DBP] | Di-butyl-phosphate |
[DCA] | Dicyanoamide |
[DMIM] | Decyl-methyl-imidazolium |
[EIM] | Ethyl-imidazolium |
[EeMIM] | Ethenyl-methyl-imidazolium |
[Et2MeMoEtN] | Di-ethyl-methyl-(2-methoxyethyl)-ammonium |
[Et2MoEtN] | Di-ethyl-(2-methoxyethyl)-ammonium |
[EtSO4] | Ethylsulfate |
[FAP] | Tris(pentafluoroethyl)-trifluorophosphate |
[HMIM] | Hexyl-methyl-imidazolium |
[HSO4] | Hydrogensulfate |
[MeSO4] | ylsulfate |
[MIM] | Methyl-imidazolium |
[MTOA] | Methyl-trioctyl-ammonium |
[NO3] | Nitrate |
[NTf2] | Bis((trifluoromethyl)sulfonyl)-imide |
[OMIM] | Octyl-methyl-imidazolium |
[OTf] | Triflate |
[PF6] | Hexafluorophosphate |
[TBP] | Tetrabutyl-phosphonium |
[TCB] | Tetracyanoborate |
[TPA] | Tetrapropyl-ammonium |
[TTHB] | Tetradecyl-trihexyl-phosphonium |
Nomenclature Polymers
Acronym | Name |
PDMS | Polydimethylsiloxane |
PEBA | Polyether block amide |
PES | Polyethersulfone |
PP | Polypropylene |
PTFE | Polytetrafluoroethylene |
PVA | Polyvinyl acetate |
PVDF | Polyvinylidene fluoride |
P(VDF-HFP) | Poly(vinylidene fluoride-co-hexafluoropropylene) |
References
- Tomé, L.C.; Marrucho, I.M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. [Google Scholar] [CrossRef] [PubMed]
- Marino, T.; Figoli, A. Arsenic removal by liquid membranes. Membranes 2015, 5, 150–167. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Hashim, M.A.; Nabi, F. Ionic liquids in supported liquid membrane technology. Chem. Eng. J. 2011, 171, 242–254. [Google Scholar] [CrossRef]
- Parhi, P.K. Supported liquid membrane principle and its practices: A short review. J. Chem. 2013, 2013, 618236. [Google Scholar] [CrossRef]
- Babucci, M.; Balci, V.; Akçay, A.; Uzun, A. Interactions of [BMIM][BF4] with metal oxides and their consequences on stability limits. J. Phys. Chem. C 2016, 120, 20089–20102. [Google Scholar] [CrossRef]
- Levdansky, V.; Izák, P. Membrane separation of gas mixtures under the influence of resonance radiation. Sep. Purif. Technol. 2016, 173, 93–98. [Google Scholar] [CrossRef]
- Cowan, M.G.; Lopez, A.M.; Masuda, M.; Kohno, Y.; McDanel, W.M.; Noble, R.D.; Gin, D.L. Imidazolium-based poly(ionic liquid)/ionic liquid ion-gels with high ionic conductivity prepared from a curable poly(ionic liquid). Macromol. Rapid Commun. 2016, 37, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.; López-Luna, A.; Shirai, K.; Tecante, A.; Gimeno, M.; Bárzana, E. Lipase-catalyzed synthesis of hyperbranched poly-l-lactide in an ionic liquid. Bioprocess Biosyst. Eng. 2013, 36, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Restolho, J.; Mata, J.L.; Saramago, B. On the interfacial behavior of ionic liquids: Surface tensions and contact angles. J. Colloid Interface Sci. 2009, 340, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Salar-García, M.J.; Ortiz-Martínez, V.M.; Hernández-Fernández, F.J.; de los Ríos, A.P.; Quesada-Medina, J. Ionic liquid technology to recover volatile organic compounds (VOCs). J. Hazard. Mater. 2017, 321, 484–499. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F.; Poole, S.K. Extraction of organic compounds with room temperature ionic liquids. J. Chromatogr. A 2010, 1217, 2268–2286. [Google Scholar] [CrossRef] [PubMed]
- Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Han, D.H.; Row, K.H. Recent applications of ionic liquids in separation technology. Molecules 2010, 15, 2405–2426. [Google Scholar] [CrossRef] [PubMed]
- Lozano, L.J.; Godínez, C.; de los Ríos, A.P.; Hernández-Fernández, F.J.; Sánchez-Segado, S.; Alguacil, F.J. Recent advances in supported ionic liquid membrane technology. J. Membr. Sci. 2011, 376, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Feng, S.; Li, H.; Wan, Y.; Zhang, X. Recent development of ionic liquid membranes. Green Energy Environ. 2016, 1, 43–61. [Google Scholar] [CrossRef]
- Zyoud, S.H.H.; Fuchs-Hanusch, D.; Zyoud, S.H.; Al-Rawajfeh, A.E.; Shaheen, H.Q. A bibliometric-based evaluation on environmental research in the Arab world. Int. J. Environ. Sci. Technol. 2017, 14, 689–706. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, C.; Zhu, X.; Li, Y.; Jarouche, M.; Bensoussan, A.; Li, P. High-performance liquid chromatography coupled with tandem mass spectrometry technology in the analysis of Chinese Medicine Formulas: A bibliometric analysis (1997–2015). J. Sep. Sci. 2017, 40, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Durmusoglu, Z.D.U.; Ciftci, P.K. An analysis of trends in publications on ‘tobacco control’. Health Educ. J. 2017, 76, 544–556. [Google Scholar]
- Fu, H.; Ho, Y.; Sui, Y.; Li, Z. A bibliometric analysis of solid waste research during the period 1993–2008. Waste Manag. 2010, 30, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Dereli, T.; Durmusoglu, A.; Delibas, D.; Avlanmaz, N. An analysis of the papers published in Total Quality Management & Business Excellence from 1995 through 2008. Total Qual. Manag. 2011, 22, 373–386. [Google Scholar]
- Santos, A.; Ma, W.; Judd, S.J. Membrane bioreactors: Two decades of research and implementation. Desalination 2011, 273, 148–154. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Al-Jabi, S.W.; Sweileh, W.M. Bibliometric analysis of scientific publications on waterpipe (narghile, shisha, hookah) tobacco smoking during the period 2003–2012. Tob. Induc. Dis. 2014, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Durmusoglu, A. A pre-assessment of past research on the topic of environmental-friendly electronics. J. Clean. Prod. 2016, 129, 305–314. [Google Scholar] [CrossRef]
- Gambella, F.; Sistu, L.; Piccirilli, D.; Corposanto, S.; Caria, M.; Arcangeletti, E.; Proto, A.S.; Chessa, G.; Pazzona, A. Forest and UAV: A bibliometric review. Contemp. Eng. Sci. 2016, 9, 1359–1370. [Google Scholar] [CrossRef]
- García-Lillo, F.; Úbeda-García, M.; Marco-Lajara, B. The intellectual structure of research in hospitality management: A literature review using bibliometric methods of the journal International Journal of Hospitality Management. Int. J. Hosp. Manag. 2016, 52, 121–130. [Google Scholar] [CrossRef]
- Sweileh, W.M.; Zyoud, S.H.; Al-Jabi, S.W.; Sawalha, A.F.; Shraim, N.Y. Drinking and recreational water-related diseases: A bibliometric analysis (1980–2015). Ann. Occup. Environ. Med. 2016, 28, 40. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, A.D.; Stewart, A.G.; Hursthouse, A.S. Seeking evidence of multidisciplinarity in environmental geochemistry and health: An analysis of arsenic in drinking water research. Environ. Geochem. Health 2017. [Google Scholar] [CrossRef] [PubMed]
- Durán-Sánchez, A.; Del Río-Rama, M.C.; Álvarez-García, J. Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. Eur. Res. Manag. Bus. Econ. 2015, 23, 8–15. [Google Scholar] [CrossRef]
- Hew, J.J. Hall of fame for mobile commerce and its applications: A bibliometric evaluation of a decade and a half (2000–2015). Telemat. Inform. 2017, 34, 43–66. [Google Scholar] [CrossRef]
- Judd, S.J. Membrane technology costs and me. Water Res. 2017, 122, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Scopus. Scopus Content Coverage Guide; 02.16 Version; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Cho, T.H.; Fuller, J.; Carlin, R.T. Catalytic hydrogenation using supported ionic liquid membranes. High Temp. Mater. Process. 1998, 2, 543–558. [Google Scholar]
- Clarivate Analytics. Web of Science. Trust the Difference. Web of Science Fact Book. Available online: http://images.info.science.thomsonreuters.biz/Web/ThomsonReutersScience/%7Bd6b7faae-3cc2-4186-8985-a6ecc8cce1ee%7D_Crv_WoS_Upsell_Factbook_A4_FA_LR_edits.pdf (accessed on 10 October 2017).
- Hu, J.; Ma, Y.; Zhang, L.; Gan, F.; Ho, Y.S. A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Sci. Total Environ. 2010, 408, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Jie, W. A bibliometric study of the trend in articles related to eutrophication published in science citation index. Scientometrics 2011, 89, 919–927. [Google Scholar] [CrossRef]
- Wan, T.J.; Shen, S.M.; Bandyopadhyay, A.; Shu, C.H. Bibliometric analysis of carbon dioxide reduction research trends during 1999–2009. Sep. Purif. Technol. 2012, 94, 87–91. [Google Scholar] [CrossRef]
- Jaber, S.; Al-Rawajfeh, A.E.; Al-Hanaktah, I.I. Arab countries research activities in engineering during 1977–2012: A bibliometric analysis approach. Recent Innov. Chem. Eng. 2015, 8, 30–42. [Google Scholar] [CrossRef]
- Abejón, R.; Garea, A. A bibliometric analysis of research on arsenic in drinking water during the 1992–2012 period: An outlook to treatment alternatives for arsenic removal. J. Water Process Eng. 2015, 6, 105–119. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Yang, L.; Xi, S. Study on trends and performance of landfill research from 1999 to 2013 by using bibliometric analysis. Environ. Prog. Sustain. Energy 2015, 34, 1349–1355. [Google Scholar] [CrossRef]
- Cañas-Guerrero, I.; Mazarrón, F.R.; Pou-Merina, A.; Calleja-Perucho, C.; Suárez-Tejero, M.F. Analysis of research activity in the field “Engineering, Civil” through bibliometric methods. Eng. Struct. 2013, 56, 2273–2286. [Google Scholar] [CrossRef]
- Ward, T.A.; Rezadad, M.; Fearday, C.J.; Viyapuri, R. A review of biomimetic air vehicle research: 1984–2014. Int. J. Micro Air Veh. 2015, 7, 375–394. [Google Scholar] [CrossRef]
- De Castro e Silva Neto, D.; Cruz, C.O.; Rodrigues, F.; Silva, P. Bibliometric analysis of PPP and PFI literature: Overview of 25 years of research. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Lyu, Q.J.; Pu, Q.H.; Zhang, J. Bibliometric analysis of scientific publications in endocrinology and metabolism from China, Japan, and South Korea. Scientometrics 2017, 110, 105–112. [Google Scholar] [CrossRef]
- Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009, 48, 2739–2751. [Google Scholar] [CrossRef]
- Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F. Ionic liquids for CO2 capture—Development and progress. Chem. Eng. Process. Process Intensif. 2010, 49, 313–322. [Google Scholar] [CrossRef]
- Myers, C.; Pennline, H.; Luebke, D.; Ilconich, J.; Dixon, J.K.; Maginn, E.J.; Brennecke, J.F. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J. Membr. Sci. 2008, 322, 28–31. [Google Scholar] [CrossRef]
- Ramdin, M.; De Loos, T.W.; Vlugt, T.J.H. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Peng, J.F.; Liu, J.F.; Hu, X.L.; Jiang, G.B. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A 2007, 1139, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, Z.; Yang, Y.; Long, C.; Li, H. A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci. Total Environ. 2014, 473–474, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, R.; Branco, L.C.; Afonso, C.A.M.; Benavente, J.; Crespo, J.G. Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. J. Membr. Sci. 2006, 270, 42–49. [Google Scholar] [CrossRef]
- Cichowska-Kopczynska, I.; Joskowska, M.; Wojciechowska, A.; Aranowski, R. Preparation and physicochemical characterisation of ceramic supports for suported liquid membranes. Physicochem. Probl. Miner. Process. 2013, 49, 287–300. [Google Scholar]
- Dai, S.; Seol, Y.; Wickramanayake, S.; Hopkinson, D. Characterization of hollow fiber supported Ionic liquid membranes using microfocus X-ray computed tomography. J. Membr. Sci. 2015, 492, 497–504. [Google Scholar] [CrossRef]
- Otvagina, K.V.; Mochalova, A.E.; Sazanova, T.S.; Petukhov, A.N.; Moskvichev, A.A.; Vorotyntsev, A.V.; Afonso, C.A.M.; Vorotyntsev, I.V. Preparation and characterization of facilitated transport membranes composed of chitosan-styrene and chitosan-acrylonitrile copolymers modified by methylimidazolium based ionic liquids for CO2 separation from CH4 and N2. Membranes 2016, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, R.; Afonso, C.A.M.; Benavente, J.; Rodriguez-Castellón, E.; Crespo, J.G. Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy. J. Membr. Sci. 2005, 256, 216–223. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; de los Ríos, A.P.; Tomás-Alonso, F.; Palacios, J.M.; Víllora, G. Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability. J. Membr. Sci. 2009, 341, 172–177. [Google Scholar] [CrossRef]
- Zhao, W.; He, G.; Nie, F.; Zhang, L.; Feng, H.; Liu, H. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. J. Membr. Sci. 2012, 411–412, 73–80. [Google Scholar] [CrossRef]
- Babucci, M.; Akçay, A.; Balci, V.; Uzun, A. Thermal stability limits of imidazolium ionic liquids immobilized on metal-oxides. Langmuir 2015, 31, 9163–9176. [Google Scholar] [CrossRef] [PubMed]
- Zeh, M.; Wickramanayake, S.; Hopkinson, D. Failure mechanisms of hollow fiber supported ionic liquid membranes. Membranes 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Supported ionic liquids: Versatile reaction and separation media. Top. Catal. 2006, 40, 91–102. [Google Scholar] [CrossRef]
- Bara, J.E.; Camper, D.; Gin, D.L.; Noble, R.D. Room-temperature ionic liquids and composite materials: Platform technologies for CO2 capture. Acc. Chem. Res. 2010, 41, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Karousos, D.S.; Labropoulos, A.I.; Sapalidis, A.; Kanellopoulos, N.K.; Iliev, B.; Schubert, T.J.S.; Romanos, G.E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chem. Eng. J. 2017, 313, 777–790. [Google Scholar] [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- Akhmetshina, A.A.; Davletbaeva, I.M.; Grebenschikova, E.S.; Sazanova, T.S.; Petukhov, A.N.; Atlaskin, A.A.; Razov, E.N.; Zaripov, I.I.; Martins, C.F.; Neves, L.A.; et al. The effect of microporous polymeric support modification on surface and gas transport properties of supported ionic liquid membranes. Membranes 2016, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Vangeli, O.C.; Romanos, G.E.; Beltsios, K.G.; Fokas, D.; Athanasekou, C.P.; Kanellopoulos, N.K. Development and characterization of chemically stabilized ionic liquid membranes—Part I: Nanoporous ceramic supports. J. Membr. Sci. 2010, 365, 366–377. [Google Scholar] [CrossRef]
- Vollath, D. Nanoparticles—Nanocomposites—Nanomaterials. An Introduction for Beginners; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Ju-Nam, Y.; Lead, J.R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 2008, 400, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.H.; Fulvio, P.F.; Hillesheim, P.C.; Qiao, Z.A.; Mahurin, S.M.; Dai, S. “Brick-and-mortar” synthesis of free-standing mesoporous carbon nanocomposite membranes as supports of room temperature ionic liquids for CO2-N2 separation. J. Membr. Sci. 2014, 468, 73–80. [Google Scholar] [CrossRef]
- Kamiya, T.; Kudashewa, A.; Hirota, Y.; Ito, A. CO2 separation from air by nanoparticle-supported liquid membranes of amine and ionic liquid mixtures. J. Chem. Eng. Jpn. 2016, 49, 607–613. [Google Scholar] [CrossRef]
- Yoon, K.W.; Kim, H.; Kang, Y.S.; Kang, S.W. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance. Chem. Eng. J. 2017, 320, 50–54. [Google Scholar] [CrossRef]
- Lee, J.H.; Chae, I.S.; Song, D.; Kang, Y.S.; Kang, S.W. Metallic copper incorporated ionic liquids toward maximizing CO2 separation properties. Sep. Purif. Technol. 2013, 112, 49–53. [Google Scholar] [CrossRef]
- Hong, G.H.; Oh, J.H.; Ji, D.; Kang, S.W. Activated copper nanoparticles by 1-butyl-3-methyl imidazolium nitrate for CO2 separation. Chem. Eng. J. 2014, 252, 263–266. [Google Scholar] [CrossRef]
- Lee, J.H.; Hong, J.; Kim, J.H.; Song, D.; Kang, Y.S.; Kang, S.W. Surface tuned copper nanoparticles by 1-methyl-3-octylimidazolium tetrafluoroborate and its applications to facilitated CO2 transport. Chem. Eng. J. 2014, 235, 252–256. [Google Scholar] [CrossRef]
- Chang, J.; Hong, G.H.; Kang, S.W. Highly permeable ionic liquid membrane by both facilitated transport and the increase of diffusivity through porous materials. RSC Adv. 2015, 5, 69698–69701. [Google Scholar] [CrossRef]
- Chang, J.; Min, K.J.; Lee, H.; Kim, J.K.; Kang, S.W. Factors affecting the separation performance in ionic liquid/Cu nanocomposite membranes for facilitated CO2 transport. J. Nanosci. Nanotechnol. 2016, 16, 3110–3114. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, M.C.; Cowan, R.M.; Smith, D.A.; Horazak, D.A.; Jensen, M.D.; Laumb, J.D.; Vucelic, A.P.; Chen, H.; Wang, L.; Wu, X. Membrane-based, enzyme-facilitated, efficient carbon dioxide capture. Energy Procedia 2009, 1, 353–360. [Google Scholar] [CrossRef]
- Neves, L.A.; Afonso, C.; Coelhoso, I.M.; Crespo, J.G. Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes. Sep. Purif. Technol. 2012, 97, 34–41. [Google Scholar] [CrossRef]
- Bednár, A.; Nemestóthy, N.; Bakonyi, P.; Fülöp, L.; Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K.; Bélafi-Bakó, K. Enzymatically-boosted ionic liquid gas separation membranes using carbonic anhydrase of biomass origin. Chem. Eng. J. 2016, 303, 621–626. [Google Scholar] [CrossRef]
- Abdelrahim, M.Y.; Martins, C.F.; Neves, L.A.; Capasso, C.; Supuran, C.T.; Coelhoso, I.M.; Crespo, J.G.; Barboiu, M. Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures. J. Membr. Sci. 2017, 528, 225–230. [Google Scholar] [CrossRef]
- Liang, L.H.; Gan, Q.; Nancarrow, P. A study on permeabilities and selectivities of small-molecule gases for composite ionic liquid and polymer membranes. Appl. Mech. Mater. 2014, 448–453, 765–770. [Google Scholar] [CrossRef]
- Lin, H.; Bai, P.; Guo, X. Ionic liquids for SO2 capture: Development and progress. Asian J. Chem. 2014, 26, 2501–2506. [Google Scholar]
- Jiang, Y.Y.; Zhou, Z.; Jiao, Z.; Li, L.; Wu, Y.T.; Zhang, Z.B. SO2 gas separation using supported ionic liquid membranes. J. Phys. Chem. B 2007, 111, 5058–5061. [Google Scholar] [CrossRef] [PubMed]
- Luis, P.; Neves, L.A.; Afonso, C.A.M.; Coelhoso, I.M.; Crespo, J.G.; Garea, A.; Irabien, A. Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs). Desalination 2009, 245, 485–493. [Google Scholar] [CrossRef]
- Park, Y.I.; Kim, B.S.; Byun, Y.H.; Lee, S.H.; Lee, E.W.; Lee, J.M. Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination 2009, 236, 342–348. [Google Scholar] [CrossRef]
- Seeberger, A.; Kern, C.; Jess, A. Gas desulfurization by supported ionic liquid membranes (SILMs). Oil Gas Eur. Mag. 2009, 35, 94–100. [Google Scholar]
- Neves, L.A.; Nemestóthy, N.; Alves, V.D.; Cserjési, P.; Bélafi-Bakó, K.; Coelhoso, I.M. Separation of biohydrogen by supported ionic liquid membranes. Desalination 2009, 240, 311–315. [Google Scholar] [CrossRef]
- Zarca, G.; Ortiz, I.; Urtiaga, A. Facilitated-transport supported ionic liquid membranes for the simultaneous recovery of hydrogen and carbon monoxide from nitrogen-enriched gas mixtures. Chem. Eng. Res. Des. 2014, 92, 764–768. [Google Scholar] [CrossRef]
- Zarca, G.; Ortiz, I.; Urtiaga, A. Copper(I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation. J. Membr. Sci. 2013, 438, 38–45. [Google Scholar] [CrossRef]
- Castro-Domínguez, B.; Leelachaikul, P.; Takagaki, A.; Sugawara, T.; Kikuchi, R.; Oyama, S.T. Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Sep. Purif. Technol. 2013, 116, 19–24. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Neves, L.A.; Coelhoso, I.M.; Afonso, C.A.M.; Crespo, J.G. Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams. Environ. Sci. Technol. 2012, 46, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Krull, F.F.; Medved, M.; Melin, T. Novel supported ionic liquid membranes for simultaneous homogeneously catalyzed reaction and vapor separation. Chem. Eng. Sci. 2007, 62, 5579–5585. [Google Scholar] [CrossRef]
- Fallanza, M.; Ortiz, A.; Gorri, D.; Ortiz, I. Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+-RTILs as carrier. Sep. Purif. Technol. 2012, 97, 83–89. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; Likhanova, N.V.; Olivares-Xometl, O. Supported ionic liquid membranes for separations of gases and liquids: An overview. Petrol. Chem. 2014, 54, 595–607. [Google Scholar] [CrossRef]
- Kárászová, M.; Kacirková, M.; Friess, K.; Izák, P. Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review. Sep. Purif. Technol. 2014, 132, 93–101. [Google Scholar] [CrossRef]
- Yu, J.; Li, H.; Liu, H. Recovery of acetic acid over water by pervaporation with a combination of hydrophobic ionic liquids. Chem. Eng. Commun. 2006, 193, 1422–1430. [Google Scholar] [CrossRef]
- Millat, T.; Winzer, K. Mathematical modelling of clostridial acetone-butanol-ethanol fermentation. Appl. Microbiol. Biotechnol. 2017, 101, 2251–2271. [Google Scholar] [CrossRef] [PubMed]
- Izák, P.; Schwarz, K.; Ruth, W.; Bahl, H.; Kragl, U. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane. Appl. Microbiol. Biotechnol. 2008, 78, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Izák, P.; Friess, K.; Hynek, V.; Ruth, W.; Fei, Z.; Dyson, J.P.; Kragl, U. Separation properties of supported ionic liquid-polydimethylsiloxane membrane in pervaporation process. Desalination 2009, 241, 182–187. [Google Scholar] [CrossRef]
- Cascon, H.R.; Choudhari, S.K. 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes. J. Membr. Sci. 2013, 429, 214–224. [Google Scholar] [CrossRef]
- Mai, N.L.; Kim, S.H.; Ha, S.H.; Shin, H.S.; Koo, Y. Selective recovery of acetone-butanol-ethanol from aqueous mixture by pervaporation using immobilized ionic liquid polydimethylsiloxane membrane. Korean J. Chem. Eng. 2013, 30, 1804–1809. [Google Scholar] [CrossRef]
- Heitmann, S.; Krings, J.; Kreis, P.; Lennert, A.; Pitner, W.R.; Górak, A.; Schulte, M.M. Recovery of n-butanol using ionic liquid-based pervaporation membranes. Sep. Purif. Technol. 2012, 97, 108–114. [Google Scholar] [CrossRef]
- Rdzanek, P.; Heitmann, S.; Górak, A.; Kamiński, W. Application of supported ionic liquid membranes (SILMs) for biobutanol pervaporation. Sep. Purif. Technol. 2014, 155, 83–88. [Google Scholar] [CrossRef]
- Plaza, A.; Merlet, G.; Hasanoglu, A.; Isaacs, M.; Sanchez, J.; Romero, J. Separation of butanol from ABE mixtures by sweep gas pervaporation using a supported gelled ionic liquid membrane: Analysis of transport phenomena and selectivity. J. Membr. Sci. 2013, 444, 201–212. [Google Scholar] [CrossRef]
- Izák, P.; Köckerling, M.; Kragl, U. Solute transport from aqueous mixture throught supported ionic liquid membrane by pervaporation. Desalination 2006, 199, 96–98. [Google Scholar] [CrossRef]
- Dahi, A.; Fatyeyeva, K.; Langevin, D.; Chappey, C.; Rogalsky, S.P.; Tarasyuk, O.P.; Benamor, A.; Marais, S. Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties. J. Membr. Sci. 2014, 458, 164–178. [Google Scholar] [CrossRef]
- Yongquan, D.; Ming, W.; Lin, C.; Mingjun, L. Preparation, characterization of P(VDF–HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination 2012, 295, 53–60. [Google Scholar] [CrossRef]
- Ong, Y.T.; Tan, S.H. Pervaporation separation of a ternary azeotrope containing ethyl acetate, ethanol and water using a buckypaper supported ionic liquid membrane. Chem. Eng. Res. Des. 2016, 109, 116–126. [Google Scholar] [CrossRef]
- Ong, Y.T.; Tan, S.H. Synthesis of the novel symmetric buckypaper supported ionic liquid membrane for the dehydration of ethylene glycol by pervaporation. Sep. Purif. Technol. 2015, 143, 135–145. [Google Scholar] [CrossRef]
- Branco, L.C.; Crespo, J.G.; Afonso, C.A.M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Ed. 2002, 41, 2771–2773. [Google Scholar] [CrossRef]
- Branco, L.C.; Crespo, J.G.; Afonso, C.A. Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chemistry 2002, 8, 3865–3871. [Google Scholar] [CrossRef]
- Matsumoto, M.; Inomoto, Y.; Kondo, K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Membr. Sci. 2005, 246, 77–81. [Google Scholar] [CrossRef]
- Matsumoto, M.; Ueba, K.; Kondo, K. Separation of benzene/cyclohexane mixture through supported liquid membranes with an ionic liquid. Solvent Extr. Res. Dev. 2006, 13, 51–59. [Google Scholar]
- Zeng, Z.R.; Wu, F.; Lin, J.; Ding, L.; Peng, Y.; Wang, B.G. Separation of benzene/cyclohexane mixture using supported liquid membrane with ionic liquid. J. Tianjin Polytech. Univ. 2008, 27, 1–4. [Google Scholar]
- Chakraborty, M.; Dobaria, D.; Parikh, P.A. The separation of aromatic hydrocarbons through a supported ionic liquid membrane. Petrol. Sci. Technol. 2012, 30, 2504–2516. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, W.; Liu, J.; Zhang, W.; Ren, Z. Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane. Korean J. Chem. Eng. 2014, 31, 1049–1056. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, H.; Sun, W.; Zhang, W.; Liu, J.; Ren, Z. Selective separation of toluene/n-heptane by supported ionic liquid membranes with [Bmim][BF4]. Chem. Eng. Technol. 2015, 38, 355–361. [Google Scholar] [CrossRef]
- Pilli, S.R.; Banerjee, T.; Mohanty, K. Performance of different ionic liquids to remove phenol from aqueous solutions using supported liquid. Desalin. Water Treat. 2015, 54, 3062–3072. [Google Scholar] [CrossRef]
- Nosrati, S.; Jayakumar, N.S.; Hashim, M.A. Performance evaluation of supported ionic liquid membrane for removal of phenol. J. Hazard. Mater. 2011, 192, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, A.; Pilli, S.R.; Mohanty, K. Selective separation of Bisphenol A from aqueous solution using supported ionic liquid membrane. Sep. Purif. Technol. 2013, 107, 70–78. [Google Scholar] [CrossRef]
- Pilli, S.R.; Banerjee, T.; Mohanty, K. 1-Butyl-2,3-dimethylimidazolium hexafluorophosphate as a green solvent for the extraction of endosulfan from aqueous solution using supported liquid membrane. Chem. Eng. J. 2014, 257, 56–65. [Google Scholar] [CrossRef]
- Abejón, R.; Abejón, A.; Garea, A.; Irabien, A. Transport of lignin and other lignocellulosic components through supported ionic liquid membranes. Chem. Eng. Trans. 2017, 57, 1153–1158. [Google Scholar]
- Pratiwi, A.I.; Matsumoto, M. Separation of organic acids through liquid membranes containing ionic liquids. In Ionic Liquids in Separation Technology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Matsumoto, M.; Hasegawa, W.; Kondo, K.; Shimamura, T.; Tsuji, M. Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalin. Water Treat. 2010, 14, 37–46. [Google Scholar] [CrossRef]
- Matsumoto, M.; Panigrahi, A.; Murakami, Y.; Kondo, K. Effect of ammonium- and phosphonium-based ionic liquids on the separation of lactic acid by supported ionic liquid membranes (SILMs). Membranes 2011, 1, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Murakami, Y.; Minamidate, Y.; Kondo, K. Separation of lactic acid through polymer inclusion membranes containing ionic liquids. Sep. Sci. Technol. 2012, 47, 354–359. [Google Scholar] [CrossRef]
- Pratiwi, A.I.; Matsumoto, M.; Kondo, K. Permeation of succinic acid through supported ionic liquid membranes. J. Chem. Eng. Jpn. 2013, 46, 383–388. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nobuyasu, T.; Kondo, K. Effect of carriers on the transport of saccharides by supported ionic liquid membranes. Solvent Extr. Res. Dev. 2010, 17, 249–253. [Google Scholar] [CrossRef]
- Matsumoto, M.; Oku, N.; Kondo, K. Permeation of saccharides through supported ionic liquid membranes containing calixarenes as carriers. Solvent Extr. Res. Dev. 2013, 20, 219–224. [Google Scholar] [CrossRef]
- De los Ríos, A.P.; Hernández-Fernández, F.J.; Tomás-Alonso, F.; Rubio, M.; Gómez, D.; Víllora, G. On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes. J. Membr. Sci. 2008, 307, 233–238. [Google Scholar] [CrossRef]
- De Los Ríos, A.P.; Hernández-Fernández, F.J.; Presa, H.; Gómez, D.; Víllora, G. Tailoring supported ionic liquid membranes for the selective separation of transesterification reaction compounds. J. Membr. Sci. 2009, 328, 81–85. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; de los Ríos, A.P.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. Improvement in the separation efficiency of transesterification reaction compounds by the use of supported ionic liquid membranes based on the dicyanamide anion. Desalination 2009, 244, 122–129. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; de los Ríos, A.P.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane. J. Chem. Technol. Biotechnol. 2009, 84, 337–342. [Google Scholar]
- Yahaya, G.O.; Hamad, F.; Bahamdan, A.; Tammana, V.V.R.; Hamad, E.Z. Supported ionic liquid membrane and liquid-liquid extraction using membrane for removal of sulfur compounds from diesel/crude oil. Fuel Process. Technol. 2013, 113, 123–129. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Neves, L.A.; Ribeiro, J.C.; Lopes, F.M.; Coutinho, J.A.P.; Coelhoso, I.M.; Crespo, J.G. Removal of thiols from model jet-fuel streams assisted by ionic liquid membrane extraction. Chem. Eng. J. 2014, 256, 144–154. [Google Scholar] [CrossRef]
- Matsumoto, M.; Onaka, R.; Kondo, K. Effects of ionic liquids and supports on the permeation of organic nitrogen compounds through supported ionic liquid membranes. Solvent Extr. Res. Dev. 2012, 19, 147–152. [Google Scholar] [CrossRef]
- Alguacil, F.J. Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101. Sep. Purif. Technol. 2017, 179, 72–76. [Google Scholar] [CrossRef]
- Baczynska, M.; Regel-Rosocka, M.; Coll, M.T.; Fortuny, A.; Sastre, A.M.; Wiśniewski, M. Transport of Zn(II), Fe(II), Fe(III) across polymer inclusion membranes (PIM) and flat sheet supported liquid membranes (SLM) containing phosphonium ionic liquids as metal ion carriers. Sep. Sci. Technol. 2016, 51, 2639–2648. [Google Scholar] [CrossRef]
- Rodríguez de San Miguel, E.; Vital, X.; de Gyves, J. Cr(VI) transport via a supported ionic liquid membrane containing Cyphos IL101 as carrier: System analysis and optimization through experimental design strategies. J. Hazard. Mater. 2014, 273, 253–262. [Google Scholar] [CrossRef] [PubMed]
- De Los Ríos, A.P.; Hernández-Fernández, F.J.; Lozano, L.J.; Sánchez-Segado, S.; Ginestá-Anzola, A.; Godínez, C.; Tomás-Alonso, F.; Quesada-Medina, J. On the selective separation of metal ions from hydrochloride aqueous solution by pertraction through supported ionic liquid membranes. J. Membr. Sci. 2013, 444, 469–481. [Google Scholar] [CrossRef]
- Nosrati, S.; Jayakumar, N.S.; Hashim, M.A.; Mukhopadhyay, S. Performance evaluation of vanadium(IV) transport through supported ionic liquid membrane. J. Taiwan Inst. Chem. Eng. 2013, 44, 337–342. [Google Scholar] [CrossRef]
- Baba, Y.; Kubota, F.; Kamiya, N.; Goto, M. Selective recovery of dysprosium and neodymium ions by a supported liquid membrane based on ionic liquids. Solvent Extr. Res. Dev. 2011, 18, 193–198. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta 2008, 624, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-F.; Jiang, G.-B.; Chi, Y.-G.; Cai, Y.-Q.; Zhou, Q.-X.; Hu, J.-T. Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal. Chem. 2003, 75, 5870–5876. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Ionic liquid-based dynamic liquid-phase microextraction: Application to the determination of anti-inflammatory drugs in urine samples. J. Chromatogr. A 2008, 1202, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Basheer, C.; Alnedhary, A.A.; Madhava Rao, B.S.; Balasubramanian, R.; Lee, H.K. Ionic liquid supported three-phase liquid–liquid–liquid microextraction as a sample preparation technique for aliphatic and aromatic hydrocarbons prior to gas chromatography-mass spectrometry. J. Chromatogr. A 2008, 1210, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, W.; Wei, D.; Guo, Z.; Wang, S. Hollow fiber supported ionic liquid membrane microextraction for preconcentration of kanamycin sulfate with electrochemiluminescence detection. J. Electroanal. Chem. 2014, 735, 136–141. [Google Scholar] [CrossRef]
- Ge, D.; Lee, H.K. Ultra-hydrophobic ionic liquid 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate supported hollow-fiber membrane liquid–liquid–liquid microextraction of chlorophenols. Talanta 2015, 132, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Liu, J.F.; Hu, X.L.; Li, H.C.; Wang, T.; Jiang, G.B. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 6259–6266. [Google Scholar] [CrossRef] [PubMed]
- Hanapi, N.S.M.; Sanagi, M.M.; Ismail, A.K.; Ibrahim, W.A.W.; Saim, N.; Ibrahim, W.N.W. Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-µ-EME) for the analysis of antidepressants in water samples. J. Chromatogr. B 2017, 1046, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Pimparu, R.; Nitiyanontakit, S.; Miró, M.; Varanusupakul, P. Dynamic single-interface hollow fiber liquid phase microextraction of Cr(VI) using ionic liquid containing supported liquid membrane. Talanta 2016, 161, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, Q.; Li, S.; Luan, L.; Li, J.; Zhang, S.; Dong, H. Hollow fiber supported ionic liquid membrane microextraction for speciation of mercury by high-performance liquid chromatography inductively coupled plasma mass spectrometry. Anal. Methods 2015, 7, 1140–1146. [Google Scholar] [CrossRef]
- Batalha, J.A.F.L.; Dahmouche, K.; Sampaio, R.B.; de Souza Gomes, A. Structure and properties of new sPEEK/zirconia/protic ionic liquid membranes for fuel cell application. Macromol. Mater. Eng. 2017, 302, 1600301. [Google Scholar] [CrossRef]
- Qu, S.; Sun, Y.; Li, J. Sulfonate poly(ether ether ketone) incorporated with ammonium ionic liquids for proton exchange membrane fuel cell. Ionics 2017, 23, 1607–1611. [Google Scholar] [CrossRef]
- Awasthi, S.; Kiran, V.; Gaur, B. Influence of hydrophobic block length and ionic liquid on the performance of multiblock poly(arylene ether) proton exchange membrane. Int. J. Hydrogen Energy 2017, 42, 11710–11723. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Liu, J.; Chen, P.; Zhang, H.; Huang, J. Intercalating ionic liquid in graphene oxide to create efficient and stable anhydrous proton transfer highways for polymer electrolyte membrane. Int. J. Hydrogen Energy 2017, 42, 11400–11410. [Google Scholar] [CrossRef]
- Devanathan, R. Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci. 2008, 1, 101–119. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Ortiz, I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 2014, 469, 379–396. [Google Scholar] [CrossRef]
- Dahi, A.; Fatyeyeva, K.; Langevin, D.; Chappey, C.; Rogalsky, S.P.; Tarasyuk, O.P.; Marais, S. Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Electrochim. Acta 2014, 130, 830–840. [Google Scholar] [CrossRef]
- Malis, J.; Mazúr, P.; Schauer, J.; Paidar, M.; Bouzek, K. Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell. Int. J. Hydrogen Energy 2013, 38, 4697–4704. [Google Scholar] [CrossRef]
- Ortiz-Negrón, A.; Lasanta-Cotto, N.; David Suleiman, D. Imidazolium ionic liquid incorporation on sulfonated poly(styreneisobutylene-styrene) proton exchange membranes. J. Appl. Polym. Sci. 2017, 134, 44900. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; Pérez de los Ríos, A.; Mateo-Ramírez, F.; Godínez, C.; Lozano-Blanco, L.J.; Moreno, J.I.; Tomás-Alonso, F. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chem. Eng. J. 2015, 279, 115–119. [Google Scholar] [CrossRef]
- Koók, L.; Nemestóthy, N.; Bakonyi, P.; Zhen, G.; Kumar, G.; Lu, X.; Su, L.; Saratale, G.D.; Kim, S.-H.; Gubicza, L. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. Chemosphere 2017, 175, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, F.J.; De Los Ríos, A.P.; Mateo-Ramírez, F.; Juarez, M.D.; Lozano-Blanco, L.J.; Godínez, C. New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell. Sep. Purif. Technol. 2016, 160, 51–58. [Google Scholar] [CrossRef]
Ranking | Subject Categories | Documents | Percentage (%) |
---|---|---|---|
1 | Chemical Engineering | 135 | 72.2 |
2 | Chemistry | 125 | 66.8 |
3 | Materials Science | 61 | 32.6 |
4 | Engineering | 43 | 23.0 |
5 | Biochemistry, Genetics and Molecular Biology | 42 | 22.5 |
6 | Environmental Science | 29 | 15.5 |
Ranking | Journal | IF (WoS) | SJR (Scopus) | Documents | Percentage (%) |
---|---|---|---|---|---|
1 | Journal of Membrane Science | 5.557 | 2.000 | 35 | 20.8 |
2 | Separation and Purification Technology | 3.299 | 1.078 | 14 | 8.3 |
3 | Desalination | 4.412 | 1.522 | 8 | 4.8 |
4 | Chemical Engineering Journal | 5.310 | 1.695 | 6 | 3.6 |
5 | Industrial and Engineering Chemistry Research | 2.567 | 0.949 | 6 | 3.6 |
Country | TP | (%) | SPR | (%) | ICPR | (%) | FAPR | (%) | CAPR | (%) |
---|---|---|---|---|---|---|---|---|---|---|
USA | 42 | (22.5) | 1 | (23.4) | 2 | (19.4) | 1 | (21.6) | 1 | (21.6) |
China | 33 | (17.8) | 2 | (20.1) | 10 | (6.5) | 2 | (17.8) | 2 | (17.8) |
Spain | 26 | (14.1) | 3 | (14.9) | 7 | (9.7) | 3 | (13.0) | 3 | (13.0) |
Japan | 16 | (8.6) | 4 | (7.1) | 3 | (16.1) | 4 | (7.0) | 4 | (7.0) |
Germany | 14 | (7.6) | 6 | (4.6) | 1 | (10.3) | 6 | (4.9) | 6 | (4.9) |
Portugal | 14 | (7.6) | 5 | (5.8) | 3 | (16.1) | 4 | (7.0) | 4 | (7.0) |
Czech Republic | 7 | (3.8) | 13 | (1.3) | 3 | (16.1) | 8 | (2.7) | 8 | (2.7) |
India | 7 | (3.8) | 7 | (3.2) | 10 | (6.5) | 8 | (2.7) | 8 | (2.7) |
Poland | 7 | (3.8) | 7 | (3.2) | 10 | (6.5) | 7 | (3.8) | 7 | (3.8) |
UK | 6 | (3.2) | 9 | (1.9) | 7 | (9.7) | 8 | (2.7) | 8 | (2.7) |
Ranking | Institutions | Documents | Percentage (%) |
---|---|---|---|
1 | Polytechnic University of Cartagena (Spain) | 14 | 7.5 |
2 | National Energy Technology Laboratory, Morgantown (USA) | 13 | 7.0 |
3 | Doshisha University (Japan) | 11 | 5.9 |
4 | University of Murcia (Spain) | 10 | 5.3 |
5 | University of Cantabria (Spain) | 8 | 4.3 |
6 | Institute of Chemical Process of the Academy of Sciences (Czech Republic) | 7 | 3.7 |
7 | Centre for Fine Chemistry and Biotechnology (Portugal) | 7 | 3.7 |
8 | Oak Ridge National Laboratory (USA) | 6 | 3.2 |
Ranking | Articles | Times Cited |
---|---|---|
1 | Title: Guide to CO2 separations in imidazolium-based room-temperature ionic liquids Author(s): Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; et al. Source: Industrial and Engineering Chemistry Research Published: 2009 | 409 |
2 | Title: Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes Author(s): Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; DuBois, D.; Noble, R. Source: Journal of Membrane Science Published: 2004 | 298 |
3 | Title: State-of-the-art of CO2 capture with ionic liquids Author(s): Ramdin, M.; De Loos, T.W.; Vlugt, T.J.H. Source: Industrial and Engineering Chemistry Research Published: 2012 | 259 |
4 | Title: Ionic liquids for CO2 capture—Development and progress Author(s): Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F. Source: Chemical Engineering and Processing: Process Intensification Published: 2010 | 244 |
5 | Title: Direct determination of chlorophenols in environmental water samples by hollow fibre supported ionic liquid membrane extraction coupled with high-performance liquid chromatography Author(s): Peng, J.F.; Liu, J.F.; Hu, X.L.; Jiang, G.B. Source: Journal of Chromatography A Published: 2007 | 195 |
6 | Title: Examination of the potential of ionic liquids for gas separations Author(s): Baltus, R.E.; Counce, R.M.; Culbertson, B.H.; Luo, H.; et al. Source: Separation Science and Technology Published: 2005 | 162 |
7 | Title: Determination of the upper limits, benchmarks and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research Author: Scovazzo, P. Source: Journal of Membrane Science Published: 2009 | 160 |
8 | Title: Recent advances in supported ionic liquid membrane technology Author(s): Lozano, L.J.; Godínez, C.; de los Ríos, A.P.; et al. Source: Journal of Membrane Science Published: 2011 | 136 |
9 | Title: SO2 gas separation using supported ionic liquid membranes Author(s): Jiang, Y.Y.; Zhou, Z.; Jiao, Z.; Li, L.; Wu, Y.T.; Zhang, Z.B. Source: Journal of Physical Chemistry B Published: 2007 | 132 |
10 | Title: High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes Author(s): Myers, C.; Pennline, H.; Luebke, D.; et al. Source: Journal of Membrane Science Published: 2008 | 128 |
Reference | Aromatic HC | Paraffin HC | IL | Support |
---|---|---|---|---|
Zhang 2015 | Toluene | n-heptane | [BMIM][BF4] | PVDF |
Zhang 2014 | Toluene | Cyclohexane | [BPy][BF4] | PVDF |
Toluene | Cyclohexane | [BMIM][BF4] | PVDF | |
Chakraborty 2012 | Benzene | n-heptane | [OMIM][Cl] | PP |
Toluene | n-heptane | [OMIM][Cl] | PP | |
Ethylbenzene | n-heptane | [OMIM][Cl] | PP | |
p-xylene | n-heptane | [OMIM][Cl] | PP | |
Benzene | n-heptane | [EMIM][EtSO4] | PP | |
Toluene | n-heptane | [EMIM][EtSO4] | PP | |
Ethylbenzene | n-heptane | [EMIM][EtSO4] | PP | |
p-xylene | n-heptane | [EMIM][EtSO4] | PP | |
Benzene | n-heptane | [MIM][HSO4] | PP | |
Toluene | n-heptane | [MIM][HSO4] | PP | |
Ethylbenzene | n-heptane | [MIM][HSO4] | PP | |
p-xylene | n-heptane | [MIM][HSO4] | PP | |
Zeng 2008 | Benzene | Cyclohexane | [BMIM][PF6] | Not identified |
Matsumoto 2006 | Benzene | Cyclohexane | [Et2MoEtN][BF4] | PES |
Matsumoto 2005 | Benzene | n-heptane | [BMIM][PF6] | PVDF |
Toluene | n-heptane | [BMIM][PF6] | PVDF | |
p-xylene | n-heptane | [BMIM][PF6] | PVDF | |
Benzene | n-heptane | [HMIM][PF6] | PVDF | |
Toluene | n-heptane | [HMIM][PF6] | PVDF | |
p-xylene | n-heptane | [HMIM][PF6] | PVDF | |
Benzene | n-heptane | [OMIM][PF6] | PVDF | |
Toluene | n-heptane | [OMIM][PF6] | PVDF | |
p-xylene | n-heptane | [OMIM][PF6] | PVDF | |
Benzene | n-heptane | [Et2MeMoEtN][NTf2] | PVDF |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abejón, R.; Pérez-Acebo, H.; Garea, A. A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics. Membranes 2017, 7, 63. https://doi.org/10.3390/membranes7040063
Abejón R, Pérez-Acebo H, Garea A. A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics. Membranes. 2017; 7(4):63. https://doi.org/10.3390/membranes7040063
Chicago/Turabian StyleAbejón, Ricardo, Heriberto Pérez-Acebo, and Aurora Garea. 2017. "A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics" Membranes 7, no. 4: 63. https://doi.org/10.3390/membranes7040063
APA StyleAbejón, R., Pérez-Acebo, H., & Garea, A. (2017). A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995–2015 Period: Study of the Main Applications and Trending Topics. Membranes, 7(4), 63. https://doi.org/10.3390/membranes7040063