Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds
Abstract
:1. Introduction
2. Preparation and Characterization of Hydrogels
2.1. Materials for Hydrogels
2.1.1. Hyaluronic Acid (HA)
2.1.2. Chitosan
2.1.3. Alginate
2.1.4. Collagen (and Gelatin)
2.1.5. Polyethylene Glycol (PEG)
2.1.6. Polyvinyl Alcohol (PVA)
2.1.7. Poly(2-Hydroxyethyl Methacrylate)
2.1.8. Poly(Amido-Amine)
2.1.9. PEO-PPO-PEO Triblock Copolymer
2.1.10. Cross Linkable Group Modification
2.1.11. Poly(PEG-Co-Peptides) Conjugate
2.2. Formation of Cross-Links
2.2.1. Preparation of Hydrogels by Chemical Cross-Linking
2.2.2. Preparation of Hydrogels by Physical Cross-Linking
2.3. Properties and Characterization of Hydrogels
2.3.1. Swelling Behavior
2.3.2. Gel or Gel/Cell Construct Morphology
2.3.3. Mechanical Properties
2.3.4. Cytotoxicity and Cell Viability
2.3.5. Degradation Analysis
2.3.6. Chemical Properties
3. Bone TE Application
4. Summary
Acknowledgments
References and Notes
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar]
- Vacanti, J.P.; Morsea, M.A.; Saltzmana, W.M.; Domba, A.J.; Ataydea, A.P.; Robert, L. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediat. Surg. 1988, 23, 3–9. [Google Scholar] [CrossRef]
- Vacanti, J.P.; Langer, R.; Upton, J.; Marler, J.J. Transplantation of cells in matrices for tissue regeneration. Adv. Drug. Deliv. Rev. 1998, 33, 165–182. [Google Scholar] [CrossRef]
- Peppas, N.A. A practical approach to bodybuilding. Nature 1997, 389, 453–453. [Google Scholar] [CrossRef]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef]
- Alberts, B. Essential Cell Biology; Garland Science: New York, NY, USA, 2004. [Google Scholar]
- Peppas, N.A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Kristi, S.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494. [Google Scholar] [CrossRef]
- Patel, M.; Fisher, J.P. Biomaterial scaffolds in pediatric tissue engineering. Pediat. Res. 2008, 63, 497–501. [Google Scholar] [CrossRef]
- Huglin, M.R. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Smeds, K.A.; Serres, A.P.; Hatchella, D.L.; MARK, W.; Grinstaff, M.W. Synthesis of a novel polysaccharide hydrogel. J. Macromol. Sci. Pure. Appl. Chem. 1999, 36, 981–989. [Google Scholar]
- Hubbell, J.A. Biomaterials in tissue engineering. Nat. Biotechnol. 1995, 13, 565–576. [Google Scholar] [CrossRef]
- Kochlamazashvili1, G.G.; Christian, H.; Olena, B.; Dvoretskova, E.; Senkov, O.; Patricia, M.J.L.; Westenbroek, R.; Enge, A.K.; Catterall, W.A.; Rusakov, D.A.; et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type ca2+channels. Neuron 2010, 67, 116–128. [Google Scholar] [CrossRef]
- Olczyk, P. Hyaluronan: Structure, metabolism, functions, and role in wound healing. Postepy Hig. Med. Dosw. 2008, 62, 651–659. [Google Scholar]
- Zou, L.; Zou, X.; Chen, L.; Li, H.; Mygind, T.; Kassem, M.; Bünger, C. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J. Orthopaed. Res. 2008, 26, 713–720. [Google Scholar] [CrossRef]
- Gerecht, S.; Burdick, J.A.; Ferreira, L.S.; Townsend, S.A.; Langer, R.; Novakovic, G.V. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Nat. Acad. Sci. USA 2007, 104, 11298–11303. [Google Scholar]
- Vercruysse, K.P.; Marecak, D.M.; Marecek, J.F.; Prestwich, G.D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 1997, 8, 686–694. [Google Scholar] [CrossRef]
- Takigami, S.; Takigami, M.; Phillips, G.O. Hydration characteristics of the cross-linked hyaluronan derivative hylan. Carbohyd. Polym. 1993, 22, 153–160. [Google Scholar] [CrossRef]
- Kreil, G. Hyaluronidases—A group of neglected enzymes. Protein. Sci. 1995, 4, 1666–1669. [Google Scholar] [CrossRef]
- Shu, X.Z., Liu; Palumbo, F.; Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003, 24, 3825–3834. [Google Scholar]
- Burdick, J.A.; Chung, C.; Jia, X.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391. [Google Scholar] [CrossRef]
- Lee, F.; Chung, J.E.; Kurisawa, M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008, 4, 880–887. [Google Scholar] [CrossRef]
- Shu, X.Z.; Liu, Y.; Palumbo, F.; Prestwich, G.D. Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 2002, 3, 1304–1311. [Google Scholar] [CrossRef]
- Mironov, V.; Kasyanov, V.; Zheng, S.X.; Eisenberg, C.; Eisenberg, L.; Gonda, S.; Trusk, T.; Markwald, R.R.; Prestwich, G.D. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 2005, 26, 7628–7635. [Google Scholar]
- Jha, A.K.; Xu, X.; Duncan, R.L.; Jia, X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 2011, 32, 2466–2478. [Google Scholar] [CrossRef]
- Huang, Y.; Onyeri, S.; Siewe, M.; Moshfeghian, A.; Madihally, S.V. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 2005, 26, 7616–7627. [Google Scholar] [CrossRef]
- Leipzig, N.D.; Wylie, R.G.; Kim, H.; Shoichet, M.S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2011, 32, 57–64. [Google Scholar] [CrossRef]
- Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004, 12, 41–57. [Google Scholar] [CrossRef]
- Gerrit, B. Chitosans for gene delivery. Adv. Drug. Deliv. Rev. 2001, 52, 145–150. [Google Scholar] [CrossRef]
- Vieira, E.F.; Cestari, A.R.; Airoldi, C.; Loh, W. Polysaccharide-based hydrogels: Preparation, characterization, and drug interaction behaviour. Biomacromolecules 2008, 9, 1195–1199. [Google Scholar] [CrossRef]
- Cheng, N.; Cao, X. Photosensitive chitosan to control cell attachment. J. Colloid. Interface. Sci. 2011, 361, 71–78. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Arai, Y.J.; Itoh, T.; Hirano, S. Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohyd. Res. 1981, 88, 172–175. [Google Scholar] [CrossRef]
- Freier, T.; Koh, H.S.; Kazazian, K.; Shoichet, M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 2005, 26, 5872–5878. [Google Scholar] [CrossRef]
- Monteiro, O.J.; Airoldi, C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef]
- Mi, F.L.; Sung, H.W.; Shyu, S.S. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J. Polym. Sci. A-Polym. Chem. 2000, 38, 2804–2814. [Google Scholar] [CrossRef]
- Zhong, C.; Wu, J.; Reinhart-King, C.A.; Chu, C.C. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater. 2010, 6, 3908–3918. [Google Scholar] [CrossRef]
- Finotelli, P.V.; Sampaio, D.A.; Morales, M.A.; Rossi, A.M. Ca alginate as scaffold for iron oxide nanoparticles synthesis. Braz. J. Chem. Eng. 2008, 25, 759–764. [Google Scholar] [CrossRef]
- Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53. [Google Scholar]
- Cha, C.; Kim, E.S.; Kim, I.W.; Kong, H. Integrative deign of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 2011, 32, 2695–2703. [Google Scholar]
- Huebsch, N.; Arany, P.R.; Mao, A.S.; Shvartsman, D.; Ali, O.A.; Bencherif, S.A.; Rivera, F.J.; Mooney, D.J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010, 9, 518–526. [Google Scholar] [CrossRef]
- Müller, W.E. The origin of metazoan complexity: porifera as integrated animals. Integer. Comp. Biol. 2003, 43, 3–10. [Google Scholar] [CrossRef]
- Parkinson, J.; Brass, A.; Canova, G.; Brechet, Y. The mechanical properties of simulated collagen fibrils. J. Biomech. 1997, 30, 549–554. [Google Scholar] [CrossRef]
- Di Lullo, G.A.; Sweeney, S.M.; Körkkö, J.; Leena, A.K.; Antonio, J.S. apping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type i collagen. J. Biol. Chem. 2002, 277, 4223–4231. [Google Scholar]
- Zhang, Z.; Li, G.Y.; Shi, B.L. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2006, 90, 23–28. [Google Scholar]
- Lee, S.H.; Moon, J.J.; Miller, J.S.; West, J.L. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials 2007, 28, 3163–3170. [Google Scholar] [CrossRef]
- Layman, H.; Spiga, M.G.; Brooks, T.; Pham, S.; Webster, K.A.; Andreopoulos, F.M. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 2007, 28, 2646–2654. [Google Scholar] [CrossRef]
- Lyons, F.G.; Al-Munajjed, A.A.; Kieran, S.M.; Toner, M.E.; Murphy, C.M.; Duffy, G.P.; O’Brien, F.J. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 2010, 31, 9232–9243. [Google Scholar]
- Wang, L.S.; Chung, J.E.; Chan, P.P.; Kurisawa, M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010, 31, 1148–1157. [Google Scholar]
- Hern, D.L.; Hubbell, J.A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 1998, 39, 266–276. [Google Scholar] [CrossRef]
- Pelham, R.J.; Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Nat. Acad. Sci. USA 1997, 94, 13661–13665. [Google Scholar] [CrossRef]
- Wang, Y.L.; Pelham, R.J. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Mol. Motor. Cytoskelet. 1998, 298, 489–496. [Google Scholar] [CrossRef]
- Barnard, Z.; Keen, I.; Hill, D.T.; Chirila, T.V.; Harkin, D.G. PHEMA hydrogels modified through the grafting of phosphate groups by atrp support the attachment and growth of human corneal epithelial cells. J. Biomater. Appl. 2008, 23, 147–168. [Google Scholar] [CrossRef]
- Pokharna, H.K.; Zhong, Y.M.; Smith, D.J.; Dunphy, M.J. Copolymers of hydroxyethyl methacrylate with quadrol methacrylate and with various aminoalkyl methacrylamides as fibroblast cell substrata. J. Bioact. Compat. Polym. 1990, 5, 42–52. [Google Scholar] [CrossRef]
- Temenoff, J.S.; Park, H.; Jabbari, E.; Conway, D.E.; Sheffield, T.L.; Ambrose, C.G.; Mikos, A.G. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 2003, 5, 5–10. [Google Scholar]
- Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282. [Google Scholar] [CrossRef]
- Stasko, J.; Kalniņš, M.; Dzene, A.; Tupureina, V. Poly(vinyl alcohol) hydrogels. Proc. Eston. Acad. Sci. 2009, 58, 63–66. [Google Scholar] [CrossRef]
- Schmedlen, R.H.; Masters, K.S.; West, J.L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002, 23, 4325–4332. [Google Scholar] [CrossRef]
- Martens, P.; Holland, T.; Anseth, K.S. Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2002, 43, 6093–6100. [Google Scholar]
- Mawad, D.; Martens, P.J.; Odell, R.A.; Poole-Warren, L.A. The effect of redox polymerisation on degradation and cell responses to poly(vinyl alcohol) hydrogels. Biomaterials 2007, 28, 947–955. [Google Scholar]
- Chirila, T.V.; Constablea, I.J.; Crawforda, G.J.; Vijayasekarana, S.; Thompsona, D.E.; Chen, Y.C.; Fletchera, W.A.; Griffin, B.J. Poly(2-hydroxyethyl methacrylate) sponges as implant materials: In vivo and in vitro evaluation of cellular invasion. Biomaterials 1993, 14, 26–38. [Google Scholar] [CrossRef]
- Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Casadio, Y.S.; Brown, D.H.; Chirila, T.V.; Kraatz, H.B.; Baker, M.V. Biodegradation of poly(2-hydroxyethyl methacrylate) (phema) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents. Biomacromolecules 2010, 11, 2949–2959. [Google Scholar]
- Ferruti, P.; Marchisio, M.A.; Barbucci, R. Synthesis, physico-chemical properties and biomedical applications of poly(amidoamine)s. Polymer 1985, 26, 1336–1348. [Google Scholar] [CrossRef]
- Jacchetti, E.; Emilitri, E.; Rodighiero, S.; Indrieri, M.; Gianfelice, A.; Lenardi, C.; Podestà, A.; Ranucci, E.; Ferruti, P.; Milani, P. Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture. J. Nanobiotechnol. 2008, 6, 14. [Google Scholar] [CrossRef]
- Lopez, A.I.; Reins, R.Y.; McDermott, A.M.; Trautner, B.W.; Cai, C.Z. Antibacterial activity and cytotoxicity of pegylated poly(amidoamine) dendrimers. Mol. Biosyst. 2009, 5, 1148–1156. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C.; Oupický, D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules 2009, 10, 2921–2927. [Google Scholar] [CrossRef]
- Emilitri, E.; Paolo, F.; Rita, A.; Elisabetta, R.; Manuela, R.; Luigi, F.; Patrizia, M.; Federica, C.; Cristina, B. Novel amphoteric cystine-based poly(amidoamine)s responsive to redox stimuli. Macromolecules 2007, 40, 4785–4793. [Google Scholar]
- Ferruti, P.; Bianchi, S.; Ranucci, E.; Chiellini, F.; Piras, A.M. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules 2005, 6, 2229–2235. [Google Scholar] [CrossRef]
- Fusco, S.; Borzacchiello, A.; Netti, P.A. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J. Bioact. Compat. Polym. 2006, 21, 149–164. [Google Scholar] [CrossRef]
- Bromberg, L.E.; Ron, E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998, 31, 197–221. [Google Scholar] [CrossRef]
- Lindman, B.; Alexandridis, P. Amphiphilic Block Copolymers Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Cohn, D.; Lando, G.; Sosnik, A.; Garty, S.; Levi, A. PEO-PPO-PEO—Based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 2006, 27, 1718–1727. [Google Scholar]
- Neff, J.A.; Caldwell, K.D.; Tresco, P.A. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J. Biomed. Mater. Res. 1998, 40, 511–519. [Google Scholar] [CrossRef]
- Vanderhooft, J.L.; Mann, B.K.; Prestwich, G.D. synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007, 8, 2883–2889. [Google Scholar] [CrossRef]
- Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 1996, 12, 697–715. [Google Scholar] [CrossRef]
- Hölig, P.; Bach, M.; Völkel, T.; Thomas Nahde, T.; Hoffmann, S.; Müller, R.; Roland, E.; Kontermann, R.E. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng. Des. Sel. 2004, 17, 433–441. [Google Scholar] [CrossRef]
- Ford, M.C. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Nat. Acad. Sci. USA 2006, 103, 2512–2517. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218. [Google Scholar] [CrossRef]
- Tse, J.R.; Engler, A.J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell. Biol. 2001, 47, 1–16. [Google Scholar]
- Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Nat. Acad. Sci. USA 2010, 107, 17894–17898. [Google Scholar]
- Duan, S.F.; Zhu, W.; Yu, L.; Ding, J.D. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin. Sci. Bull. 2005, 50, 1093–1096. [Google Scholar] [CrossRef]
- Park, H.; Guo, X.; Temenoff, J.S.; Tabata, Y.; Caplan, A.I.; Kasper, F.K.; Antonios, G.; Mikos, A.G. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 2009, 10, 541–546. [Google Scholar]
- Wu, D.C.; Loh, X.J.; Wu, Y.L.; Lay, C.L.; Liu, Y. “Living” controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels. J. Am. Chem. Soc. 2010, 132, 15140–15143. [Google Scholar]
- Weiss, P.; Vinatier, C.; Guicheux, J.; Grimandi, G.; Daculsi, G. Self setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng. Mater. 2004, 254-256, 1107–1110. [Google Scholar] [CrossRef]
- Fatimi, A.; Tassin, J.F.; Quillard, S.; Axelos, M.V.; Weiss, P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 2008, 29, 533–543. [Google Scholar] [Green Version]
- Smidsrød, O.; Skjak-Brk, G. Alginate as immobilization matrix for cells. Trend. Biotech. 1990, 8, 71–78. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319. [Google Scholar]
- Zhang, S.; Greenfield, M.A.; Mata, A.; Palmer, L.C.; Bitton, R.; Mantei, J.R.; Conrado Aparicio, C.; Cruz, M.O.; Stupp, S.I. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 2010, 9, 594–601. [Google Scholar]
- Salick, D.A.; Pochan, D.J.; Schneider, J.P. Design of an injectable beta-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus. Adv. Mater. 2009, 21, 4120–4123. [Google Scholar] [CrossRef]
- Hirst, A.R.; Roy, S.; Arora, M.; Das, A.K.; Hodson, N.; Murray, P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; van Esch, J.H.; Santabarbara, S.; Neil, T.; Hunt, N.T.; Ulijn, R.V. Biocatalytic induction of supramolecular order. Nat. Chem. 2011, 2, 1089–1094. [Google Scholar]
- Langer, R.; Peppas, N.A. advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006. [Google Scholar] [CrossRef]
- McBath, R.A.; Shipp, D.A. Swelling and degradation of hydrogels synthesized with degradable poly(beta-amino ester) crosslinkers. Polym. Chem. 2010, 1, 860–865. [Google Scholar] [CrossRef]
- Tasdelen, B.; Apohan, N.K.; Olgun Güven, O.; Baysal, B.M. Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs. J. Appl. Polym. Sci. 2004, 91, 911–915. [Google Scholar]
- Tan, H.; Chu, C.R.; Payne, K.A.; Marra, K.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, 2499–2506. [Google Scholar] [CrossRef]
- Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, A.; Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 2007, 315, 487–490. [Google Scholar]
- Xu, X.D.; Zhang, X.Z.; Yang, J.; Cheng, S.X.; Zhuo, R.X.; Huang, Y.Q. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir 2007, 23, 4231–4236. [Google Scholar]
- Braet, F.; De Zanger, R.; Wisse, E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: A study on hepatic endothelial cells. J. Microsc. 1997, 186, 84–87. [Google Scholar]
- Xu, C. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886. [Google Scholar] [CrossRef]
- Boyde, A.; Jones, S.J. Back-scattered electron imaging of skeletal tissues. Metab. Bone. Dis. Relat. Res. 1983, 5, 145–50. [Google Scholar] [CrossRef]
- Boyde, A.; Lovicar, L.; Zamecnik, J. Combining confocal and bse sem imaging for bone block surfaces. Eur. Cell. Mater. 2005, 9, 33–38. [Google Scholar]
- Rocchietta, I.; Dellavia, C.; Nevins, M.; Simion, M. Bone regenerated via rhpdgf-bb and a deproteinized bovine bone matrix: backscattered electron microscopic element analysis. Int. J. Periodontics. Restor. Den. 2007, 27, 539–545. [Google Scholar]
- Kingsmill, V.J.; Boyde, A. Mineralisation density of human mandibular bone: Quantitative backscattered electron image analysis. Amer. J. Anat. 1998, 192, 245–256. [Google Scholar]
- Pang, X.A.; Chu, C.C. Synthesis, characterization and biodegradation of poly(ester amide)s based hydrogels. Polymer 2010, 51, 4200–4210. [Google Scholar] [CrossRef]
- Zhang, J.X.; Ma, P.X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano. Today 2010, 5, 337–350. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival—Application to proliferation and cyto-toxicity assays. J. Immunol. Method. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium formazan assay for cell-growth assays in culture. Cancer. Commun. 1991, 3, 207–212. [Google Scholar]
- Lau, T.T.; Wang, C.M.; Wang, D.A. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos. Sci. Technol. 2010, 70, 1909–1914. [Google Scholar] [CrossRef]
- Zhang, J.; Skardal, A.; Prestwich, G.D. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials 2008, 29, 4521–4531. [Google Scholar]
- Hunt, N.C.; Smith, A.M.; Gbureck, U.; Shelton, R.M.; Grover, L.M. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 2010, 6, 3649–3656. [Google Scholar] [CrossRef]
- Sahoo, S.; Chung, C.; Khetan, S.; Burdick, J.A. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules 2008, 9, 1088–1092. [Google Scholar] [CrossRef]
- Bueno, E.M.; Glowacki, J. Cell-free and cell-based approaches for bone regeneration. Nat. Rev. Rheumatol. 2009, 5, 685–697. [Google Scholar] [CrossRef]
- El-Ghannam, A. Bone reconstruction: From bioceramics to tissue engineering. Expert Rev. Med. Devices 2005, 2, 87–101. [Google Scholar] [CrossRef]
- Wong, V.W.; Rustad, K.C.; Longaker, M.T.; Gurtner, G.C. Tissue engineering in plastic surgery: A review. Plast. Reconstr. Surg. 2010, 126, 858–868. [Google Scholar] [CrossRef]
- Salinas, C.N.; Anseth, K.S. Mesenchymal stem cells for craniofacial tissue regeneration: Designing hydrogel delivery vehicles. J. Dent. Res. 2009, 88, 681–692. [Google Scholar] [CrossRef]
- Bakhtiari, L.; Rezaie, H.R.; Hosseinalipour, S.M.; Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int. 2010, 36, 2421–2426. [Google Scholar]
- Guvendiren, M.; Burdick, J.A. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 2010, 31, 6511–6518. [Google Scholar] [CrossRef]
- Pritchard, C.D.; O’Shea, T.M.; Siegwart, D.J.; Calo, E.; Anderson, D.G.; Reynolds, F.M.; Thomas, J.A.; Slotkin, J.R.; Woodard, E.J.; et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011, 32, 587–597. [Google Scholar]
- Discher, D.E.; Janmey, P.; Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar]
- Mei, Y.; Saha, K.; Bogatyrev, S.R.; Yang, J.; Hook, A.L.; Kalcioglu, I.Z.; Cho, S.W.; Mitalipova, M.; Pyzocha, N.; Rojas, F.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9, 768–778. [Google Scholar] [Green Version]
- Burdick, J.A.; Anseth, K.S. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials 2002, 23, 4315–4323. [Google Scholar] [CrossRef]
- Chatterjee, K.; Lin-Gibson, S.; Wallace, W.E.; Parekh, S.H.; Lee, Y.J.; Cicerone, M.T.; Young, M.F.; Simon, C.G. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31, 5051–5062. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shi, J.; Xing, M.M.Q.; Zhong, W. Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds. Membranes 2012, 2, 70-90. https://doi.org/10.3390/membranes2010070
Shi J, Xing MMQ, Zhong W. Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds. Membranes. 2012; 2(1):70-90. https://doi.org/10.3390/membranes2010070
Chicago/Turabian StyleShi, Junbin, Malcolm M. Q. Xing, and Wen Zhong. 2012. "Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds" Membranes 2, no. 1: 70-90. https://doi.org/10.3390/membranes2010070
APA StyleShi, J., Xing, M. M. Q., & Zhong, W. (2012). Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds. Membranes, 2(1), 70-90. https://doi.org/10.3390/membranes2010070