An Algae Cultivator Coupled with a Hybrid Photosynthetic–Air-Cathode Microbial Fuel Cell with Ceramic Membrane Interface
Abstract
1. Introduction
1.1. Background
1.2. Microalgae
1.3. Microbial Fuel Cells (MFCs)
1.4. Photosynthetic MFCs (pMFCs)
1.5. Ceramic Membrane-Based MFCs
1.6. Goal and Objective
- Produces clean algal biomass for biofuel without direct contact between algae and wastewater, while recovering nutrients from the wastewater.
- Recovers carbon from wastewater as algal biomass, thereby reducing CO2 emissions to the atmosphere.
- Recovers electrical energy from wastewater while removing organic matter and nutrients.
2. Materials and Methods
2.1. Wastewater (Substrate) and Bacterial Inoculum
2.2. Microalgae
2.3. MFC Design and Operation
2.4. Algae Cultivator (AC) Design and Operation
2.5. MFC–AC System Operation
2.6. Water and Wastewater Analyses
2.7. Ceramics Analysis
2.8. Electrical Power Output Measurements
3. Results and Discussion
3.1. Bamboo Charcoal Electrode
3.2. Characterization of Ceramic Membrane Separator
3.3. Voltage Output
3.4. Impact of Light and Dark Cycles
3.5. Polarization and Maximum Power Density
3.5.1. Photosynthetic MFCs (pMFCs)
3.5.2. MFCs with Ceramic Membrane Separators
3.6. Algae Growth and Production Rate
3.7. pH and Alkalinity
3.8. Ammonium-N and Nitrate-N
3.9. Phosphate-P and Total Dissolved Phosphorus
3.10. Inorganic Species
3.11. Overall Outlook
- Renewable energy generation through microbial fuel cells.
- Sustainable wastewater treatment via nutrient recovery.
- High-quality algal biomass production suitable for biofuel or other value-added applications.
4. Conclusions
- Separation of wastewater from clean algal culture, reducing pretreatment needs.
- A photosynthetic–air-cathode configuration that minimized diurnal voltage fluctuations and enabled electricity generation even during dark periods, thereby eliminating reliance on artificial lighting.
- Use of low-cost, renewable natural materials (clay membrane, bamboo charcoal electrodes).
- Na+ mass flux rate: 0.424 vs. 0.315 g d−1 m−2;
- Average voltage: 0.346 V vs. 0.270 V;
- Maximum power density: 139 ± 0.16 mW m−2 vs. 80 ± 0.01 mW m−2;
- Internal resistance: 390 Ω vs. 802 Ω;
- Peak algal biomass: 425 ± 51 mg L−1 vs. 218 ± 46 mg L−1;
- Algal growth rate: 234 ± 48 mg L−1 d−1 vs. 173 ± 48 mg L−1 d−1;
- Apparent PO43−-P flux: 0.929 vs. 0.329 g d−1 m−2.
5. Future Work
- Causality between power generation and biomass growth: Although positive correlations were observed, it is unclear whether higher electrochemical output stimulates algal productivity directly or is simply a co-benefit of nutrient availability (e.g., via enhanced ion transport). Controlled studies varying membrane conductivity independent of nutrient concentrations could address this.
- Advanced membrane engineering: Development of ceramic membranes with tunable ion permeability and optimized pore structure could allow nutrient flux control. Electrical conductivity measurements could serve as a rapid, low-cost diagnostic for membrane performance.
- Long-term operational stability: Multicycle experiments are needed to assess fouling, mechanical durability, and performance drift in both the membrane and electrodes.
- Nutrient-limitation management: Strategies to prevent late-stage nitrogen limitation, such as staged nitrogen (e.g., ammonia, nitrate) dosing, should be explored to maintain steady biomass output.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBM | Bold basal medium |
CE | Coulombic efficiency |
CEM | Cation exchange membrane |
PEM | Proton exchange medium |
pMFC | Photosynthetic microbial fuel cell |
Appendix A
MFC Type | Anode Chamber, Anolyte, Electrode, EAB | Cathode Chamber, Catholyte, Electrode | Separator | Algae Species/Inoculum | Performance | Comment | Reference |
---|---|---|---|---|---|---|---|
Two-chamber Honeycomb MFC | Anode chamber (5 × 5 × 8 cm); Anolyte: domestic wastewater; Inoculum: mixed bacterial culture. | Cathode chamber (5 × 5 × 6 cm); Catholyte: BG 11 medium. | Polyvinyl alcohol membrane. | Chlorella vulgaris | Max. PD: 42.95 ± 0.12 mW m−2; Peak CD: 329.0 mA−2. | Anolyte was continuously recirculated. | [73] |
H-type two-chamber pMFC | A 1000 mL glass bottle (each chamber); Catholyte: synthetic medium + diluted effluent from the anode chamber; Anolyte: dairy wastewater; Inoculum: anaerobic sludge; | Anode: carbon cloth; Cathode: carbon rod; | PEM (Nafion 117) | Chlorella vulgaris; Arthrospira pltensis | 91 mW m−2 with Arthrospira pltensis. | Operation mode: batch; significant diurnal fluctuation in voltage; | [62] |
Top–Bottom Two-chamber MFC | Graphite rod anode; Inoculum: activated sludge from a dairy WWTP; Annolyte: synthetic medium. | Graphite rod cathode; Catholyte: modified BG-11 media. | Clay membrane separator. | Unspecified microalgae culture. | Max. PD: 24.99 mW m−3; Electrical energy recovery: 0.1 kWh m−3; Total energy recovery: 7.25 kWh m−3. | Light source: LED emitting 450 lumens/m−2. | [24] |
Cylindrical two-chamber MFC | A cylindrical chamber (0.25 L); Graphite rod anode; Inoculum: mixed culture from anaerobic digester; Anolyte: synthetic biogas slurry. | A cylindrical chamber (0.25 L); Graphite rod anode; Catholyte: effluent from the anode chamber. | Unspecified PEM. | Unspecified microalgae culture. | Max. PD: 19.76 mW m−2; average output voltage of 0.412 V. | Flow-through operation (HRT: 24 h); Light intensity: 5500 lx. | [60] |
Two-chamber MFC | Anode chamber (WV: 1 L); Anolyte: untreated domestic wastewater; Inoculum: activated sludge. | Cathode chamber (WV: 1 L); Catholyte: untreated domestic wastewater. | CEM (CMI-7000) | Scenedesmus sp. | Max. PD: 81.6 mW m−2; Avg. Max. voltage: 414 mV; Average biomass productivity: 800 mg L−1 d−1; Max. algae conc. 5165 mg L−1. | Operation mode: batch. | [61] |
Two-chamber MFC | Anode chamber (WV: 900 mL) with a photobioanode. | Cathode chamber (WV: 900 mL); Carbon felt cathode. | PEM (Nafion 117) | voltage produced: 2.5 V; produced current: 2.8 A. | Operation: fed-batch mode. | [86] | |
Two-chamber MFC | A chamber (WV: 1 L); graphite rod anode; Inoculum: decanted activated sludge; Anolyte: domestic wastewater or sugar industry wastewater. | A chamber (WV: 1 L); graphite rod cathode. | CEM (CMI-7000S) | Scenedesmus sp. | Max. PD: 47.6 mW m−2. | Operation: batch mode; p-MFC yielded lower internal resistance than MAMFC. | [71] |
Two-chamber MFC | A polyacrylic chamber (3 L working volume); Graphite rod anode. | A polyacrylic chamber (3 L working volume); Graphite rod cathode. | PEM (Nafion 117) | Spirulina platensis | Max. PD: 14.47 ± 0.7 mWm−2. | Algae productivity: 55.38 ± 6.39 mg L−1 d−1. | [83] |
Rectangular two-chamber p-MFC with a gas exchange tube | Rectangular chamber; 100 mL working volume; Graphite felt anode; Anolyte: synthetic solution. | A rectangular chamber (100 mL working volume); Graphite felt cathode. | PEM (Nafion 117) | Chlamydomonas reinhardtil cc-503 | Max. PD: 15.21 W m−3; Max. current density: 39 A m−3. | Operation mode: fed-batch; µ = 0.284 d−1; COD removal: 73.30%; CE: 9.068%. | [20] |
Tubular-type MFC with multiple electrodes in the cathode chamber | A cube chamber (working volume of 280 mL); Carbon fiber brush anode; Inoculum: Anolyte: domestic wastewater. | A glass bottle (WV: 620 mL); Cathode: carbon fiber brush; Inoculum: mixed culture isolated from municipal wastewater; Catholyte: BBM; Illumination: 7000 lx. | PEM (CMI-7000) | Algae culture isolated from wastewater. | Produced voltage: 315 mV. | Operation mode: Continuous flow. | [87] |
Two-chamber p-MFC | A chamber (140 mL); Graphite fiber brush anode; Algae biomass + synthetic anolyte; inoculated with anaerobic soil sediments. | A chamber (140 mL); Graphite felt cathode; Catholyte: BG-11 media supplemented with trace elements. | PEM (Nafion 117) | Microcystis aeruginosa | Max. PD: 83 mW m−2; Max current density: 672 mA m−2; CE of 7.6%. | COD removal: 67.5 ± 1% | [88] |
Two-chamber MFC | A cube chamber (WV: 205 mL); Carbon fiber brush anode; Inoculum: domestic wastewater; Anolyte: GM media. | A cube chamber (WV: 205 mL); Carbon fiber brush cathode; Photon flux: 68 µE m−2 s−1. | PEM (Nafion 117) | Mixed microalgae culture (Chlorella sp., Desmodesmus sp., Scenedismus sp.) isolated from municipal wastewater. | Sustainable voltage: 0.31 V. | Max. ammonium-N removal rate: 22.7 mg L−1 d−1; Ammonium-N removal: 95.5%. | [89] |
Airlift type MFC (AL-PMFC) | A 380 mL chamber; carbon brush anode; Anolyte: synthetic medium; inoculated anaerobic digester sludge; operated in a batch mode. | An air-lift type chamber (380 mL) with a baffle; Carbon fiber cloth (0.1 mg cm−2 pt coated) cathode; Catholyte: modified B-11 medium; Operation: batch mode. | PEM (Nafion 117) | Chlorella vulgaris | Max PD: 5.94 W m−3; Max. net energy: 2.701 kWh m−3; Maximum CO2 fixation rate: 1292.8 mg L−1 d−1; Max lipid productivity: 234.3 mg L−1 d−1. | CO2 fixation rate: algae productivity: 835.7 mg L−1 d−1 | [90] |
Two-chamber MFC | Anolyte: Swine wastewater; pH: 7.0–7.5; TOC: 780–800 mg/L; ammonium-N: 320–330 mg/L; Total-N: 330–350 mg/L. The wastewater was filtered. | Catholyte: swine wastewater (3-fold diluted) with microalgae. | CEM | Chlorella vulgaris | Max. PD: 3720 mW/m3; Percent removal of ammonia-N (85.6%), total-N (70.2%), TOC (93.9%). | C. vulgaris had direct contact with swine wastewater. | [91] |
Tubular two-chamber p-MFC | A tubular chamber (350 mL working volume); Anode: carbon cloth interwoven with titanium wires; Anolyte: anaerobically digested kitchen waste. | A chamber (1500 mL working volume); Cathode: a layer of carbon cloth was wrapped around the CEM. | CEM | Golenkinia sp. SDEC-16 | Energy output: 0.57 kWh m−3; Algae mass conc: 0.94 g L−1. | CEM was wrapped around the tubular anodic chamber; Ammonium transport rate: 2.3–2.7 g m2 d−1 | [23] |
Two-chamber p-MFC | A 1 L glass bottle; Graphite plate anode; Anaerobic bacterial consortium from domestic and industrial dumps; Blue dye brl | A glass bottle (1 L); Graphite plate cathode; Catholyte: effluent from chocolate industry | PEM (Nafion 117) | Chlorella vulgaris | Max. PD: 327.67 mW m−2; Max. CD: 343.47 mA m−2. | Illuminance: 75,000 lx | [92] |
Cylindrical two-chamber p-MFC (algae biofilm) | Anode electrode: carbon cloth interwoven with titanium wire; Anolyte: Domestic wastewater; in a batch mode. | Cathode electrode: carbon cloth woven with titanium; Catholyte: Domestic wastewater; Operation: a batch mode. | Compressed glass wool thickness 20, diameter 110 mm). | Scenedesmus quadricauda SEDC-8 | PD: 62.93 mW m−2. | Lipid productivity: 6.26 mg L−1 d−1. | [93] |
Two-chamber LEA-fed MFC | A 100 mL chamber; Graphite felt anode; EAB: microbial consortia from cow manure; Substrate: lipid-extracted algae (LEA); run in a fed-batch mode. | A chamber (100 mL); Graphite felt cathode; Catholyte: BG 11 media; Operation: a fed-batch mode. | PEM (Nafion 117) | Chlorella vulgaris | PD: 2.7 W m−3; Algae productivity: 0.028 kg m−3 d−1. | Electricity generation: 0.0136 kWh kg−1 COD d−1; Algae oil energy: 0.0782 kWh m−3 d−1. | [63] |
Air-exposed single-chamber MFC | A 125 mL chamber; in a fed-batch operation; Carbon fibre anode; Anolyte: dye textile wastewater. | Microalgae attached on the cathode; Carbon fibre cathode. | Cellophane | Chlorella vulgaris | Max. PD: 123.2 ± 27.5 mW m−3. | 12 h/12 h: light/dark cycle. | [94] |
Tubular two-chamber MFC | A tubular anodic chamber (79 mL effective volume); Carbon brush anode. | A tubular cathodic chamber inside the anodic chamber; Stainless steel mesh cathode. | PEM (Nafion 117) | Dominantly Chlorella sp. community | Max. CD: ~200 mA m−2. | Stainless steel mesh cathode also served as filter; biomass concentration: 3.5–6.5 g L−1. | [16] |
H-type cylinder membrane-less MFC | A plexiglass cylinder (400 mL); Anode: Graphite rod; Inoculum: digester sludge; Anolyte: primary sludge. | A plexiglass cylinder (400 mL); Cathode: graphite rod; Catholyte: filtered primary settled wastewater. | Glass-wool | Mixed algae consortia culture | Produced voltage: ~15 mV; Algae production rate: 29 mg/L·d. | Voltage change between light and dark was ~6 mV. | [59] |
A tubular MFC followed by a membrane photoreactor | A CEM tube (1.75 L working volume); Carbon brush anode; Anolyte: Synthetic solution; Inoculum: anaerobic sludge from municipal WWTP. | Cathode: carbon cloth coated with activated carbon; Inoculum: green algae collected from a local water pond. | CEM (Ultrex CMI-7000) | Mixed algae consortia culture | Max. PD: 2.5 W m−3; The highest energy production: 0.205 kWh m−3. | Synthetic solution first flowed through the MFC anode and then was fed into the photobioreactor. | [95] |
Two-chamber MFC with a biomass harvesting photobioreactor. | An anode chamber (25 mL); Anode: carbon fibre veil; Inoculum and Anolyte: activated anaerobic sludge. | A cathode chamber (25 mL); Cathode: carbon fibre veil; Inoculum: pond water. | CEM (VWR International). | Mixed culture isolated from pond water. | 128 µW by algae-based cathode. | Operation mode: a closed-loop recirculation. | [96] |
Two-chamber p-MFC | A cubical chamber (600 mL); Carbon brush anode; Anolyte: Synthetic municipal wastewater. | Air-lift-type cubical chamber (500 mL); Carbon fiber cloth cathode; Catholyte: anode effluent. | PEM (Nafion 117) | Chlorella vulgaris (ESP-6) | Max. PD: 972.5 mW m−3; | Removal of COD: 86.69%; Ammonium-N: 69.24%; phosphorus (69.24%). | [22] |
Two-chamber p-MFC | A cube chamber (working volume of 205 mL); Carbon fiber brush anode; Inoculum: wastewater + acetate (2 g L−1); Anolyte: GM media + acetate (2 g L−1). | A glass bottle (580 mL working volume with 30 mL head space); Cathode: carbon cloth coated with Pt (0.5 mg cm−2); Catholyte: BBM. | PEM: Nafion-117 | Mixed culture isolated from municipal wastewater. | Max. PD: 0.63 W m−2 at 2.06 A m−2. | An algae bioreactor (ABR) was externally connected to air-cathode MFC; Illumination: 5000 lumens. | [70] |
Two-chamber bottle-type MFC | A glass bottle (250 mL working volume); Plain carbon paper anode; Anolyte: started from municipal wastewater + Acetate, changed to GM media. | A glass bottle (250 mL working volume); Carbon brush cathode; Catholyte: BBM. | Unspecified membrane | Scenedesmus obliquus | Max. PD: 30 mW m−2. | MFC was operated at 30 ± 1 °C; Light of 5000 lumens. | [69] |
H-type bottle MFC | A bottle-type chamber (estimated volume: 125 mL); Plain carbon paper anode; Anolyte: domestic wastewater, later changed to GM media. | A bottle-type chamber (~125 mL); Pt (0.5 mg/cm2) coated carbon paper cathode; Catholyte: BBM and sodium carbonate. | PEM (Nafion 117) | Scenedismus obliquus | Max. PD: 153 mW m−2; voltage of 0.47 ± 0.03 V. | MFC was operated at 30 ± 1 °C; Light of 5000 lumens. | [58] |
Cylindrical two-chamber MFC | Cylindrical chamber (50 mL); plain graphite anode; Bacterial consortium. | Cylindrical chamber (50 mL); plain graphite cathode (0.5 mg/cm2 Pt coating). | PEM (Nafion 117) | Chlorella vulgaris | Max. PD: 62.7 mW m−2. | Light intensity range: 26–96 µE m−2 s−1. | [68] |
H-type two-chamber MFC | A chamber (270 mL); Toray carbon paper anode; Anolyte: synthetic medium; Inoculum: wastewater; operation: a batch mode. | A chamber (270 mL); Toray carbon paper cathode; Catholyte: ferricyanide in phosphate buffer; operation: a batch mode. | PEM (Nafion 117) | Scenedismus obliquus | Max. PD: 102 mW m–2 (951 mW m–3) at current density of 276 mA m−2. | COD reduction: 74% for 150 h operation. | [97] |
Two-chamber MFC | A chamber (25 mL); carbon fibre veil (20 g/m2 carbon loading) anode; Inoculum: anaerobic activated sludge. | A chamber (25 mL); carbon fibre veil (20 g/m2 carbon loading) cathode; Inoculum: pond water. | Unspecified CEM | Nonspecific pond algae (mixed consortia). | Max. PD: 7.00 mW m−2. | 14 h light/10 h dark cycle; catholyte was circulated; anode chamber was operated in a fed-batch mode. | [67] |
Two-chamber-MFC | A chamber (800 mL); Cathode: Toray carbon cloth with 10% Teflon; Inoculum: activated sludge from municipal WWTP; Anolyte: synthetic fruit processing industry effluent. | An 800 mL chamber; Anode: Toray carbon cloth with 10% Teflon); Catholyte: BBM | PEM (Sterion) | Chlorella vulgaris | Max. PD: 13.5 mW m−2. | Cathode chamber was illuminated for 12 h/day; Bubbling CO2 for 30 min d−1. | [66] |
Sequential anode–cathode configuration MFC with a photobioreactor | A stainless steel cylinder; Carbon brush anode; Anolyte: primary clarifier effluent. | A plastic cylinder; Carbon brush cathode; Catholyte: effluent from the anode chamber. | CEM | Mixed culture from domestic wastewater. | Max. power density: 20.3 W m−3. | Continuous feed operation. | [21] |
Two-chamber MFC | A half-circular column (400 mL) with a vent at the top; Carbon felt anode. | A half-circular column (400 mL) with a vent at the top; Carbon fiber cloth (0.1 mg cm−2 Pt coating). | CEM (Ultrex CMI-7000) | Chlorella vulgaris (Immobilized) | Max. power density: 2485.35 mW m−3; CE: 9.40%; COD removal: 84.8%. | Two chambers were connected through a tube for CO2 supply from anode chamber to cathode chamber. | [98] |
Two-chamber MFC | A cubic chamber (WV: 75 mL); Graphite plate anode; Anolyte: modified Zehnder medium. | A cubic chamber (WV: 75 mL); Graphite plate cathode; Catholyte: K-ferricyanide in phosphate buffer. | CEM (Ultrex CMI-7000) | Chlorella vulgaris; Dunalieella tertiolecta | Max. PD: 15.0 mW m−2 (C. vulgaris); 5.3 mW m−2 (D. tertiolecta)). | Butanol was produced in the anodes of the MFCs. | [99] |
Single-chamber tubular MFC | A PVC tube (EV: 170 mL); Graphite felt anode; Inoculum: anaerobic sludge from local WWTP; Operation: a fed-batch mode; Anolyte: domestic wastewater. | A PVC tube (EV: 170 mL); A cloth cathode with 5.0 ± 0.1 mg cm−2 MnO2 loading. | None | Blue-green algae | Max. PD: 114 mW m−2 at 0.55 mA m−2; CE of 28.2%. | Removal efficiencies: total COD (78.9%); soluble COD (80.0%); total N (91.0%); ammonium N (96.8%) in 12 days. | [100] |
Sediment-type single-chamber MFC | A glass bottle (500 mL); Carbon paper anode; Lake sediments; Anolyte: synthetic wastewater. | No cathode chamber; A piece of 5% wet-proofed carbon paper (0.5 mg Pt cm−2); Anolyte: synthetic wastewater. | None | Chlorella vulgaris | Max. PD: 68 ± 5 mW m−2. | Biomass: 0.56 ± 0.02 g L−1. | [101] |
Two-chamber MFC | A half-circular column; carbon fiber brush anode; Inoculum: mixed culture originally from domestic wastewater; Substrate: glucose. | A half-circular column; Pt-coated carbon cloth cathode; Anolyte: NBS amended with BG11. | CEM (Ultrex CMI-7000) | Chlorella vulgaris | Max. PD: 5.6 W m−3. | Carbon capture efficiency: 94 ± 1%. | [102] |
Two-chamber MFC | A bottle (WV: 100 mL); Anolyte: modified BBM with 0.02 M potassium ferrocyanide. | A bottle (WV: 100 mL); Catholyte: modified BBM. | A salt bridge filled with saturated KCl, jellified with agar. | Chlorella vulgaris | 1.0 µA mg−1 of cell dry weight; 2.7 mW m−2 cathode area; Max. cell growth rate: 3.6 mg of cells L−1 h−1. | Operation mode: batch; Methylene blue mediator. | [82] |
Appendix B
MFC Type | Characteristics of Ceramics | Type of Fuel (Media, Substrate, Anolyte) | Experimental (Operating) Conditions | MFC Performance | Reference |
---|---|---|---|---|---|
Single-chamber MFC, air-cathode configuration; Anode: carbon veil; Cathode: activated carbon coated with PTFE. | White clay; Ceramic membrane integrated with PVDF treated with alkaline and rhamnolipids (PVDF-OH/BS). | Anolyte: mineral salt medium; Inoculum: activated sludge. | Fed-batch mode; 25 °C. | Ceramic integrated with PVDF-OH/BS: 13.8 W m−3, 30% higher than that of unmodified ceramic membrane. | [28] |
Cylinder-based MFCs, assembled as cascade; Anode: carbon veil; Cathode: carbon veil coated with AC/PTFE. | Earthenware ceramic cylinders. | Anolyte: urine. | Continuous flow mode; HRT: 12 h/each module; Flow rate: 0.66 mL min−1; 22 ± 1 °C. | Energy output: 0.75 ± 0.04 kJ d−1. | [103] |
Two-chamber MFC. | Natural red clay with bone char, coconut shell activated carbon, or bituminous activated carbon. | Anolyte: domestic wastewater with sodium acetate; Inoculum: domestic wastewater. | Batch mode (3 cycles); Room temperature. | Clay with bituminous carbon: 0.699 W m−3 at 4.012 A m−3. | [81] |
Two-chamber MFC; Anode: carbon felt; Cathode: carbon felt. | Potter’s clay blended with fly ash with varying proportions. | Anolyte: synthetic wastewater with sodium acetate; Inoculum: anaerobic sludge; Catholyte: tap water with continuous aeration. | Batch mode. | The MFC with the ceramic separator made from clay blend with 10% flyash (CFA10) produced a peak power output of 4.57 W m−3. | [80] |
Cylinder-based MFCs, assembled as cascade; Anode: carbon veil; Cathode: carbon veil coated with AC/PTFE | Earthenware ceramic cylinders; | Anolyte: artificial urine. | Continuous flow mode. | 32.2 ± 3.9 W m−3. | [104] |
Single-chamber air-cathode MFC; Anode: carbon felt; Cathode: carbon felt. | Red soil, montmorillonite, and vermiculite. | Anolyte: synthetic wastewater; Inoculum: anaerobic digester sludge. | Batch mode. | MFC with the membrane prepared using red soil, montmorillonite and vermiculite: 995.73 ± 49.3 mW m−3. | [26] |
Single-chamber air-cathode MFC; Anode: carbon veil sheet; Cathode: AC/PTFE mixture pressed on a stainless steel 316 mesh. | Ceramic separator containing 5.75 vol.% of iron oxide (sintered at 1100 °C). | Anolyte: urine; Inoculum: partially hydrolysed urine and effluent from running MFCs. | Continuous-flow mode. | Max. power output: 1.045 mW. | [79] |
Single-chamber air-cathode MFC; Anode: carbon felt; Cathode: carbon felt. | Red soil ceramic membrane modified using montmorillonite, spray-coated with Nafion solution. | Anolyte: synthetic solution containing sodium acetate. | Batch mode (3 days per cycle). | 84.3 mW m−3. | [78] |
Two-chamber MFC; Anode: graphite felt; Cathode: graphite felt. | 5% goethite in natural clay (G-5). | Anolyte: synthetic wastewater with sucrose; Inoculum: anaerobic mixed sludge; Catholyte: water. | Batch mode; 27 ± 5 °C. | The G-5 membrane: 112.81 ± 8.74 mW m−2, which is slightly higher than 106.95 ± 5.52 mW m−2 produced by Nafion-117. | [33] |
Air-cathode cylindrical MFC; Anode: plain carbon fibre veil; Cathode: hot-pressed activated carbon. | Mixture of plastic clay and chamotte: named brown, red, and white. | Anolyte: human urine; Inoculum: anaerobic sewage sludge. | Batch mode; White and red ceramics are more porous and have smaller pores compared to brown ceramic. | White ceramic-based with brown spots: 71.8 W m−3; White ceramic-based with red spots: 71.5 W m−3. | [77] |
Air-cathode MFC: terracotta bottom sealed cylinders; Cathode: activated carbon. | Terracotta separators modified with ionic liquid (IL), [EMIM][Tf2N]. | Anolyte: activated sewage sludge with sodium acetate. | Batch mode. | Terracotta separators modified with ionic liquid, [EMIM][Tf2N], achieved up to 86.5% more power output compared to IL-free MFCs from 229.78 µW to 428.65 µW. | [75] |
Air-cathode, single-chamber MFC; Anode: carbon veil; Cathode: conductive graphite paint. | pyrophyllite; earthenware; mullite; alumina. | Inoculum: anaerobic activated sludge; Anolyte: fresh human urine. | Continuous flow; Flow rate: 0.35 L d−1. | 6.93 W m−3 (pyrophyllite); 6.85 W m−3 (earthenware); 4.98 W m−3 (mullite); 2.60 W m−3 (alumina). | [76] |
Two-chamber MFC; Anode: stainless steel mesh; Cathode: carbon felt. | Red soil separator—rich in aluminum and silica; Black soil—rich in Ca, Fe, and Mg. | Anolyte: synthetic wastewater with sodium acetate; Inoculum: anaerobic mixed sludge; Catholyte: tp water (aerated). | Batch mode; 33–37 °C. | MFC with Red soil separator: 1.49 W m−3 and 51.65 mW m−2 anode area; MFC with Black soil separator: 1.12 W m−3 and 31.20 mW m−2 anode area. | [74] |
References
- Sato, C.; Apollon, W.; Luna-Maldonado, A.I.; Paucar, N.E.; Hibbert, M.; Dudgeon, J. Integrating microbial fuel cell and hydroponic technologies using a ceramic membrane separator to develop an energy–water–food supply system. Membranes 2023, 13, 803. [Google Scholar] [CrossRef] [PubMed]
- Energy Institute. Statistical Review of World Energy, 74th ed.; Energy Institute: London, UK, 2025. [Google Scholar]
- Ahuja, V.; Palai, A.K.; Kumar, A.; Patel, A.K.; Farooque, A.A.; Yang, Y.H.; Bhatia, S.K. Biochar: Empowering the future of energy production and storage. J. Anal. Appl. Pyrolysis 2024, 177, 106370. [Google Scholar] [CrossRef]
- Velasquez-Orta, S.B.; Curtis, T.P.; Logan, B.E. Energy from algae using microbial fuel cells. Biotechnol. Bioeng. 2009, 103, 1068–1076. [Google Scholar] [CrossRef]
- Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Chen, F.; Leng, Y.; Lu, Q.; Zhou, W. The Application of Microalgae Biomass and Bio-Products as Aquafeed for Aquaculture. Algal Res. 2021, 60, 102541. [Google Scholar] [CrossRef]
- Zielinski, M.; Kisielewska, M.; Talpalaru, A.; Rusanowska, P.; Kazimierowicz, J.; Debowski, M. Integration of Aquaculture Wastewater Treatment and Chlorella vulgaris Cultivation as a Sustainable Method for Biofuel Production. Energies 2025, 18, 4352. [Google Scholar] [CrossRef]
- Mueller, J.; Pauly, M.; Molkentin, J.; Ostermeyer, U.; van Muilekom, D.R.; Rebl, A.; Goldammer, T.; Lindemeyer, J.; Schultheis, T.; Seibel, H.; et al. Microalgae as Functional Feed for Atlantic Salmon: Effects on Growth, Health, Immunity, Muscle Fatty Acid and Pigment Deposition. Front. Mar. Sci. 2023, 10, 1273614. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Sorensen, M.; Islam, S.M.M.; Saha, N.; Rahman, M.A.; Francis, D.S. Expanded Utilisation of Microalgae in Global Aquafeeds. Rev. Aquac. 2024, 16, 6–33. [Google Scholar] [CrossRef]
- Zhao, C.; Brück, T.; Lercher, J.A. Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem. 2013, 15, 1720–1739. [Google Scholar] [CrossRef]
- Santillan-Jimenez, E.; Pace, R.; Marques, S.; Morgan, T.; McKelphin, C.; Mobley, J.; Crocker, M. Extraction, characterization, purification and catalytic upgrading of algae lipids to fuel-like hydrocarbons. Fuel 2016, 180, 668–678. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wołejko, E.; Ernazarovna, M.D.; Głowacka, A.; Sokołowska, G.; Wydro, U. Using algae for biofuel production: A review. Energies 2023, 16, 1758. [Google Scholar] [CrossRef]
- Hoang, N.P.V.; Ngo, H.H.; Guo, W.S.; Nguyen, T.M.H.; Liu, Y.W.; Liu, Y.; Nguyen, D.D.; Chang, S.W. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Sci. Total Environ. 2019, 651, 1549–1568. [Google Scholar] [CrossRef]
- Dutta, K.; Daverey, A.; Lin, J.G. Evolution retrospective for alternative fuels: First to fourth generation. Renew. Energy 2014, 69, 114–122. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Zhang, J.; Waite, T.D.; Wu, Z. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res. 2017, 108, 356–364. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Mehariya, S.; Verma, P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: An emerging and foreseeable sustainable approach. Environ. Sci. Pollut. Res. 2021, 29, 61905–61937. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Callegari, A.; Cecconet, D.; Molognoni, D.; Capodaglio, A.G. Sustainable processing of dairy wastewater: Long-term pilot application of a bio-electrochemical system. J. Clean. Prod. 2018, 189, 563–569. [Google Scholar] [CrossRef]
- Sharma, A.; Chhabra, M. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresour. Technol. 2021, 338, 125499. [Google Scholar] [CrossRef]
- Jiang, H.M.; Luo, S.J.; Shi, X.S.; Dai, M.; Guo, R.B. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Biotechnol. Lett. 2012, 34, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, B.J.; Zhou, J.T.; Jin, R.F.; Qiao, S.; Liu, G.F. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System. Environ. Sci. Technol. 2015, 49, 10710–10717. [Google Scholar] [CrossRef]
- Pei, H.Y.; Yang, Z.G.; Nie, C.L.; Hou, Q.J.; Zhang, L.J.; Wang, Y.T.; Zhang, S.S. Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal. Bioresour. Technol. 2018, 256, 11–16. [Google Scholar] [CrossRef]
- Khandelwal, A.; Lens, P.N.L. Simultaneous removal of sulfide and bicarbonate from synthetic wastewater using an algae-assisted microbial fuel cell. Environ. Technol. 2024, 45, 4181–4190. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Nava, J.; Martínez-Castrejón, M.; García-Mesino, R.L.; López-Díaz, J.A.; Talavera-Mendoza, O.; Sarmiento-Villagrana, A.; Rojano, F.; Hernández-Flores, G. The Implications of Membranes Used as Separators in Microbial Fuel Cells. Membranes 2021, 11, 738. [Google Scholar] [CrossRef]
- Suransh, J.; Mungray, A.K. Reduction in particle size of vermiculite and production of the low-cost earthen membrane to achieve enhancement in the microbial fuel cell performance. J. Environ. Chem. Eng. 2022, 10, 108787. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Park, S.G.; Mungray, A.K.; Eisa, T.; Madenli, E.C.; Olabi, A.G.; Abdelkareem, M.A.; Chae, K.J. Current outlook towards feasibility and sustainability of ceramic membranes for practical scalable applications of microbial fuel cells. Renew. Sustain. Energy Rev. 2022, 167, 112769. [Google Scholar] [CrossRef]
- de Rosset, A.; Yalcinkaya, F.; Wolska, J.; Waclawek, S.; Pasternak, G. Enhancing performance and durability of PVDF-ceramic composite membranes in microbial fuel cells using natural rhamnolipids. J. Power Sources 2024, 621, 235257. [Google Scholar] [CrossRef]
- Yousefi, V.; Mohebbi-Kalhori, D.; Samimi, A. Ceramic-based microbial fuel cells (MFCs): A review. Int. J. Hydrogen Energy 2017, 42, 1672–1690. [Google Scholar] [CrossRef]
- Jenani, R.; Karishmaa, S.; Ponnusami, A.B.; Kumar, P.S.; Rangasamy, G. A recent development of low-cost membranes for microbial fuel cell applications. Desalination Water Treat. 2024, 320, 100698. [Google Scholar] [CrossRef]
- Tiwari, A.; Yadav, N.; Jadhav, D.A.; Saxena, D.; Anghan, K.; Sandhwar, V.K.; Saxena, S. A Critical Review on the Advancement of the Development of Low-Cost Membranes to Be Utilized in Microbial Fuel Cells. Water 2024, 16, 1597. [Google Scholar] [CrossRef]
- Kwofie, M.; Amanful, B.; Gamor, S.; Kaku, F. Comprehensive Analysis of Clean Energy Generation Mechanisms in Microbial Fuel Cells. Int. J. Energy Res. 2024, 2024, 5866657. [Google Scholar] [CrossRef]
- Das, I.; Das, S.; Dixit, R.; Ghangrekar, M.M. Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics 2020, 26, 3061–3072. [Google Scholar] [CrossRef]
- Li, Z.; Haynes, R.; Sato, E.; Shields, M.S.; Fujita, Y.; Sato, C. Microbial community analysis of a single chamber microbial fuel cell using potato wastewater. Water Environ. Res. 2014, 86, 324–330. [Google Scholar] [CrossRef]
- Sato, C.; Paucar, N.E.; Chiu, S.; Mahmud, M.Z.I.M.; Dudgeon, J. Single-chamber microbial fuel cell with multiple plates of bamboo charcoal anode: Performance evaluation. Processes 2021, 9, 2194. [Google Scholar] [CrossRef]
- Paucar, N.E.; Sato, C. Coupling microbial fuel cell and hydroponic system for electricity generation, organic removal, and nutrient recovery via plant production from wastewater. Energies 2022, 15, 9211. [Google Scholar] [CrossRef]
- Adochite, C.; Andronic, L. Aquatic toxicity of photocatalyst nanoparticles to green microalgae Chlorella vulgaris. Water 2021, 13, 77. [Google Scholar] [CrossRef]
- Chen, P.S.; Toribara, T.Y., Jr.; Warner, H. Microdetermination of phosphorus. Anal. Chem. 1956, 28, 1756–1758. [Google Scholar] [CrossRef]
- Holmes, R.M.; Aminot, A.; Kérouel, R.; Hooker, B.A.; Peterson, B. A simple and precise method for measuring ammonium in marine and freshwater ecosystem. Can. J. Fish. Aquat. Sci. 1999, 56, 1801–1808. [Google Scholar] [CrossRef]
- Solórzano, L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 1969, 14, 799–801. [Google Scholar] [CrossRef]
- Gustafsson, J. Visual MINTEQ, Version 3.1. 2000. Available online: https://vminteq.com/ (accessed on 5 April 2025).
- Sato, C.; Martinez, R.G.; Shields, M.S.; Perez-Garcia, A.; Schoen, M.P. Behaviour of microbial fuel cell in a start-up phase. Int. J. Environ. Eng. 2009, 1, 36–51. [Google Scholar] [CrossRef]
- Rizzoni, G. Principles and Applications of Electrical Engineering, 2nd ed.; IRWIN: Chicago, IL, USA, 1996; pp. 97–98. [Google Scholar]
- Zhou, S.W.; Lin, M.; Zhuang, Z.C.; Liu, P.W.; Chen, Z.L. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere 2019, 232, 296–402. [Google Scholar] [CrossRef]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schroder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef]
- Satpathy, S.S.; Ojha, P.C.; Ojha, R.; Dash, J.; Pradhan, D. Recent Modifications of Anode Materials and Performance Evaluation of Microbial Fuel Cells: A Brief Review. J. Energy Eng. 2025, 151, 03125001. [Google Scholar] [CrossRef]
- Moqsud, M.A.; Omine, K.; Yasufuku, N.; Hyodo, M.; Nakata, Y. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag. 2013, 33, 2465–2469. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Ye, D.; Zhu, X.; Liao, Q.; Zhang, B. Tubular bamboo charcoal for anode in microbial fuel cells. J. Power Sources 2014, 272, 277–282. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in Moso bamboo forests in China. J. Environ. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef]
- Das, S.; Raj, R.; Ghangrekar, M.M. Application of a novel photosynthetic microbial fuel cell employing carbonized bamboo monolith as cathode coated with agro-waste biochar to improve overall performance efficacy. J. Environ. Manag. 2025, 385, 125691. [Google Scholar] [CrossRef]
- Lloyd, L. Handbook of Industrial Catalysts; Springer: New York, NY, USA, 2011; pp. 181–182. ISBN 978-0387246826. [Google Scholar]
- Saary, J.; Qureshi, R.; Palda, V.; DeKoven, J.; Pratt, M.; Skotnicki-Grant, S.; Holness, L. A systematic review of contact dermatitis treatment and prevention. J. Am. Acad. Dermatol. 2005, 53, 845.e1–845.e13. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid. Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Z.; Luo, H.; Hu, B.; Dang, Z.; Yang, C.; Li, L. Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 2014, 97–98, 17–23. [Google Scholar] [CrossRef]
- Uddin, F. Montmorillonite: An Introduction to Properties and Utilization. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Schnoor, J.L. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Kakarla, R.; Min, B. Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int. J. Hydrogen Energy 2014, 39, 10275–10283. [Google Scholar] [CrossRef]
- Uggetti, E.; Puigagut, J. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration. Bioresour. Technol. 2016, 218, 1016–1020. [Google Scholar] [CrossRef]
- Wang, H.P.; Zheng, L.G.; Tan, C.Y.; Li, L.; Liu, F.; Feng, H. Changes in the microbial community structure and diversity during the electricity generation process of a microbial fuel cell with algal-film cathode. Clean Energy 2024, 8, 177–185. [Google Scholar] [CrossRef]
- Ullah, Z. Zeshan Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery. Renew. Energy 2024, 221, 119810. [Google Scholar] [CrossRef]
- Zielinski, M.; Rusanowska, P.; Dudek, M.; Starowicz, A.; Barczak, L.; Debowski, M. Efficiency of Photosynthetic Microbial Fuel Cells (pMFC) Depending on the Type of Microorganisms Inhabiting the Cathode Chamber. Energies 2024, 17, 2296. [Google Scholar] [CrossRef]
- Khandelwal, A.; Vijay, A.; Dixit, A.; Chhabra, M. Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation. Bioresour. Technol. 2018, 247, 520–527. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants 2020, 9, 31. [Google Scholar] [CrossRef]
- Li, X.P.; Huff, J.; Crunkleton, D.W.; Johannes, T.W. Light intensity and spectral quality modulation for improved growth kinetics and biochemical composition of Chlamydomonas reinhardtii. J. Biotechnol. 2023, 375, 28–39. [Google Scholar] [CrossRef]
- del Campo, A.G.; Cañizares, P.; Rodrigo, M.A.; Fernández, F.J.; Lobato, J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. J. Power Sources 2013, 242, 638–645. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Photosynthetic cathodes for microbial fuel cells. Int. J. Hydrogen Energy 2013, 38, 11559–11564. [Google Scholar] [CrossRef]
- Gouveia, L.; Neves, C.; Sebastiao, D.; Nobre, B.P.; Matos, C.T. Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour. Technol. 2014, 154, 171–177. [Google Scholar] [CrossRef]
- Kakarla, R.; Min, B. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: Carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst. Eng. 2014, 37, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Kakarla, R.; Kim, J.R.; Jeon, B.H.; Min, B. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor. Bioresour. Technol. 2015, 195, 210–216. [Google Scholar] [CrossRef]
- Ullah, Z.; Sheikh, Z.; Zaman, W.Q.; Zeeshan, M.; Miran, W.; Li, J.S.; Khan, M.A.N.; Saleem, S.; Shabbir, S. Performance comparison of a photosynthetic and mechanically aerated microbial fuel cell for wastewater treatment and bioenergy generation using different anolytes. J. Water Process Eng. 2023, 56, 104358. [Google Scholar] [CrossRef]
- Colombo, A.; Marzorati, S.; Lucchini, G.; Cristiani, P.; Pant, D.; Schievano, A. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Bioresour. Technol. 2017, 237, 240–248. [Google Scholar] [CrossRef]
- Wang, C.T.; Das, B.; Saladaga, I.A. Microalgae biocathode coupled polyvinylalcohol proton exchange membrane for performance of recirculation honeycomb microbial fuel cells. Bioresour. Technol. Rep. 2025, 29, 102037. [Google Scholar] [CrossRef]
- Ghadge, A.N.; Sreemannarayana, M.; Duteanu, N.; Ghangrekar, M.M. Influence of ceramic separator’s characteristics on microbial fuel cell performance. J. Electrochem. Sci. Eng. 2014, 4, 315–326. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.M.; Gajda, I.; Salar-García, M.J.; Greenman, J.; Hernández-Fernández, F.J.; Ieropoulos, I. Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chem. Eng. J. 2016, 291, 317–324. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem 2016, 9, 88–96. [Google Scholar] [CrossRef]
- You, J.; Wallis, L.; Radisavljevic, N.; Pasternak, G.; Sglavo, V.M.; Hanczyc, M.M.; Greenman, J.; Ieropoulos, I. A comprehensive study of custom-made ceramic separators for microbial fuel cells: Towards “Living” bricks. Energies 2019, 12, 4071. [Google Scholar] [CrossRef]
- Suransh, J.; Tiwari, A.K.; Mungray, A.K. Modification of clayware ceramic membrane for enhancing the performance of microbial fuel cell. Environ. Prog. Sustain. Energy 2020, 39, e13427. [Google Scholar] [CrossRef]
- Salar-García, M.J.; Walter, X.A.; Gurauskis, J.; Fernández, A.D.; Ieropoulos, I. Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochim. Acta 2021, 367, 137385. [Google Scholar] [CrossRef]
- Rao, A.; Kaushik, A.; Kuppurangan, G.; Selvaraj, G. Characterization and application of novel fly ash blended ceramic membrane in MFC for low-cost and sustainable wastewater treatment and power generation. Environ. Sci. Pollut. Res. 2023, 30, 45872–45887. [Google Scholar] [CrossRef]
- Sabina-Delgado, A.; Kamaraj, S.K.; Hernández-Montoya, V.; Cervantes, F.J. Novel carbon-ceramic composite membranes with high cation exchange properties for use in microbial fuel cell and electricity generation. Int. J. Hydrogen Energy 2023, 48, 25512–25526. [Google Scholar] [CrossRef]
- Powell, E.E.; Mapiour, M.L.; Evitts, R.W.; Hill, G.A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour. Technol. 2009, 100, 269–274. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; da Costa, C. Electrogenic and biomass production capabilities of a Microalgae-Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 3409–3420. [Google Scholar] [CrossRef]
- Mahmood, T.; Hussain, N.; Shahbaz, A.; Mulla, S.I.; Iqbal, H.M.N.; Bilal, M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess. D Biosyst. Eng. 2023, 46, 1077–1097. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.H.; Han, W.; Li, P.L.; Miao, X.L.; Zhong, J.J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Ahmad, M.; Yousaf, M.; Batool, A.; Sharif, H.M.A. Multilayered photo-bioanode for simultaneous conversion of CO2 and indus-trial refractory organics into bioelectricity in a microbial fuel cell system. Fuel 2024, 378, 132927. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Min, B. Using multiple carbon brush cathode in a novel tubular photosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment. Bioresour. Technol. 2020, 316, 123928. [Google Scholar] [CrossRef]
- Ali, J.; Wang, L.; Waseem, H.; Song, B.; Djellabi, R.; Pan, G. Turning harmful algae biomass to electricity by microbial fuel cell: A sustainable approach for waste management. Environ. Pollut. 2020, 266, 115373. [Google Scholar] [CrossRef]
- Kakarla, R.; Min, B. Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions. Bioresource technology 2019, 284, 161–167. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tan, C.; Tian, X. Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell. Bioresour. Technol. 2019, 272, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Zhou, M. A photosynthetic algal microbial fuel cell for treating swine wastewater. Environ. Sci. Pollut. Res. 2019, 26, 6182–6190. [Google Scholar] [CrossRef] [PubMed]
- Huarachi-Olivera, R.; Dueñas-Gonza, A.; Yapo-Pari, U.; Vega, P.; Romero-Ugarte, M.; Tapia, J.; Molina, L.; Lazarte-Rivera, A.; Pacheco-Salazar, D.G.; Esparza, M. Bioelectrogenesis with microbial fuel cells (MFCs) using the microalga Chlorella vulgaris and bacterial communities. Electron. J. Biotechnol. 2018, 31, 34–43. [Google Scholar] [CrossRef]
- Yang, Z.; Pei, H.; Hou, Q.; Jiang, L.; Zhang, L.; Nie, C. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chem. Eng. J. 2018, 332, 277–285. [Google Scholar] [CrossRef]
- Logroño, W.; Pérez, M.; Urquizo, G.; Kadier, A.; Echeverría, M.; Recalde, C.; Rákhely, G. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chmosphere 2017, 176, 378–388. [Google Scholar] [CrossRef]
- Tse, H.T.; Luo, S.; Li, J.; He, Z. Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production. Bioprocess Biosyst. Eng. 2016, 39, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Gajda, I.; Greenman, J.; Melhuish, C.; Ieropoulos, I. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenerg. 2015, 82, 87–93. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Choi, K.; Kakarla, R.; Min, B. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). FESE 2014, 8, 784–791. [Google Scholar] [CrossRef]
- Zhou, M.; He, H.; Jin, T.; Wang, H. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J. Power Sources 2012, 214, 216–219. [Google Scholar] [CrossRef]
- Lakaniemi, A.M.; Tuovinen, O.H.; Puhakka, J.A. Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bioenergy Res. 2012, 5, 481–491. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Q.; Zhou, S.; Zhuang, L.; Hu, P. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J. Hazard. Mater. 2011, 187, 591–595. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Noori, J.S.; Angelidaki, I. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ. Sci. 2011, 4, 4340–4346. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Liu, J.; Lee, H.; Li, C.; Li, N.; Ren, N. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens. Bioelectron. 2010, 25, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Walter, X.A.; You, J.; Gajda, I.; Greenman, J.; Ieropoulos, I. Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs. J. Power Sources 2023, 561, 232708. [Google Scholar] [CrossRef]
- Walter, X.A.; Madrid, E.; Gajda, I.; Greenman, J.; Ieropoulos, I. Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J. Power Sources 2022, 520, 230875. [Google Scholar] [CrossRef]
Parameters | Unit | Values | STER |
---|---|---|---|
pH | 6.84 | 0.02 | |
Alkalinity as CaCO3 | mg L−1 | 622 | -- |
Ammonium-N | mg L−1 | 0.07 | 0.00 |
Nitrate-N | mg L−1 | 0.06 | 0.00 |
Phosphate-P | mg L−1 | 1739 | 115 |
Chemical Oxygen Demand (COD) | mg L−1 | 2875 | 44 |
Conductivity | mS cm−1 | 62.73 | 0.38 |
ICP-MS Analysis | RSTD | ||
Na | mg L−1 | 1056 | 0.00 |
K | mg L−1 | 378 | 0.72 |
P | mg L−1 | 3028 | 1.26 |
Ca | mg L−1 | 4.23 | 1.53 |
Mg | mg L−1 | 22.98 | 0.17 |
Mn | mg L−1 | 0.086 | 1.84 |
Al | mg L−1 | 0.394 | 2.39 |
Ba | mg L−1 | 0.026 | 0.99 |
Cr | mg L−1 | 0.011 | 2.74 |
Cu | mg L−1 | 0.069 | 1.81 |
Fe | mg L−1 | 0.287 | 4.52 |
Sr | mg L−1 | 0.073 | 1.49 |
Zn | mg L−1 | 0.130 | 1.49 |
Major Elements | Stoichiometric Oxide % |
---|---|
Na2O | 1.48 |
MgO | 5.47 |
Al2O3 | 13.73 |
SiO2 | 43.88 |
K2O | 2.66 |
CaO | 10.21 |
TiO2 | 0.62 |
FeO | 4.89 |
Analyte | Concentration (µg/g) | Analyte | Concentration (µg/g) |
---|---|---|---|
7Li | 32.58 | 115In | 0.06 |
9Be | 1.41 | 118Sn | 1.37 |
11B | 43.93 | 121Sb | 2.43 |
31P | 427.12 | 133Cs | 0.07 |
45Sc | 8.06 | 137Ba | 403.66 |
51V | 77.44 | 139La | 19.34 |
52Cr | 33.54 | 140Ce | 33.97 |
55Mn | 540.89 | 141Pr | 3.91 |
59Co | 8.53 | 146Nd | 13.94 |
60Ni | 20.2 | 147Sm | 2.77 |
65Cu | 18.7 | 153Eu | 0.79 |
66Zn | 80.33 | 157Gd | 2.67 |
69Ga | 11.83 | 159Tb | 0.41 |
72Ge | 2.47 | 163Dy | 2.34 |
75As | 31.91 | 165Ho | 0.48 |
82Se | 0.58 | 166Er | 1.31 |
85Rb | 38.73 | 169Tm | 0.2 |
88Sr | 222.89 | 172Yb | 1.32 |
89Y | 12.67 | 175Lu | 0.2 |
90Zr | 18.09 | 208Pb | 2.84 |
93Nb | 8.14 | 209Bi | 0.3 |
95Mo | 1.47 | 232Th | 6.07 |
107Ag | 0.44 | 238U | 2.26 |
111Cd | 0.52 |
System | Algae Growth Rate a | Algae Conc. at Peak b | Max. Power Density c | Ceramics Separator Mass Flux Rate d |
---|---|---|---|---|
Unit | (mg L−1 d−1) | (mg L−1) | (mW m−2) | (g d−1 m−2) |
MFC-AC 1 | 234 ± 48 | 424.8 ± 51 | 138.78 ± 0.16 | 0.424 |
MFC-AC 2 | 173 ± 48 | 217.5 ± 46 | 79.51 ± 0.0 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, C.; Alikaram, G.; Kolajo, O.O.; Dudgeon, J.; Hazard, R.; Apollon, W.; Kamaraj, S.-K. An Algae Cultivator Coupled with a Hybrid Photosynthetic–Air-Cathode Microbial Fuel Cell with Ceramic Membrane Interface. Membranes 2025, 15, 295. https://doi.org/10.3390/membranes15100295
Sato C, Alikaram G, Kolajo OO, Dudgeon J, Hazard R, Apollon W, Kamaraj S-K. An Algae Cultivator Coupled with a Hybrid Photosynthetic–Air-Cathode Microbial Fuel Cell with Ceramic Membrane Interface. Membranes. 2025; 15(10):295. https://doi.org/10.3390/membranes15100295
Chicago/Turabian StyleSato, Chikashi, Ghazaleh Alikaram, Oluwafemi Oladipupo Kolajo, John Dudgeon, Rebecca Hazard, Wilgince Apollon, and Sathish-Kumar Kamaraj. 2025. "An Algae Cultivator Coupled with a Hybrid Photosynthetic–Air-Cathode Microbial Fuel Cell with Ceramic Membrane Interface" Membranes 15, no. 10: 295. https://doi.org/10.3390/membranes15100295
APA StyleSato, C., Alikaram, G., Kolajo, O. O., Dudgeon, J., Hazard, R., Apollon, W., & Kamaraj, S.-K. (2025). An Algae Cultivator Coupled with a Hybrid Photosynthetic–Air-Cathode Microbial Fuel Cell with Ceramic Membrane Interface. Membranes, 15(10), 295. https://doi.org/10.3390/membranes15100295