Circular Economy Applied to Sludge Minimization: The STAR Project
Abstract
:1. Introduction
2. Material and Methods
2.1. Thermophilic Aerobic Membrane Reactor: TAMR Description
2.2. Analytical Methods
2.3. Characteristics of Fed Thickened Biological Sludge
2.4. Oxygen Uptake Rate (OUR) Tests
2.4.1. Batch Tests
2.4.2. Continuous Tests
2.5. Rheological Measurements
3. Results
3.1. Start-Up Phase of the TAMR System
3.2. TAMR Plant Monitoring
3.3. TAMR—CAS Compatibility: Evaluation and Recovery of Residues
4. Discussion
4.1. Economic Aspects of Implementing TAMR in the WWTPs Sludge Line
- € 0.12/kWh for electricity;
- € 0.10/kgO2 for liquid oxygen;
4.2. Sludge Treatment and Advanced Recycling: STAR
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Morello, R.; Di Capua, F.; Esposito, G.; Pirozzi, F.; Fratino, U.; Spasiano, D. Sludge Minimization in Mainstream Wastewater Treatment: Mechanisms, Strategies, Technologies, and Current Development. J. Environ. Manag. 2022, 319, 115756. [Google Scholar] [CrossRef]
- Piippo, S.; Lauronen, M.; Postila, H. Greenhouse Gas Emissions from Different Sewage Sludge Treatment Methods in North. J. Clean. Prod. 2018, 177, 483–492. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.-L. Sludge: A Waste or Renewable Source for Energy and Resources Recovery? Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Directive, E.U.W. Council Directive of 21. May 1991 concerning urban waste water treatment (91/271/EEC). J. Eur. Commun. 1991, 34, 40. [Google Scholar]
- Kemp, R. Implementation of the Urban Waste Water Treatment Directive (91/271/EEC) in Germany, the Netherlands, Spain, England and Wales. The Tangible Results. Eur. Environ. 2001, 11, 250–264. [Google Scholar] [CrossRef]
- The European Union. EUR-Lex Directive EU/2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Off. J. Eur. Communities 2018, 150, 109–140. [Google Scholar]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A Review on Wastewater Sludge Valorisation and Its Challenges in the Context of Circular Economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Hurynovich, A.; Kwietniewski, M.; Romanovski, V. Evaluation of the Possibility of Utilization of Sewage Sludge from a Wastewater Treatment Plant—Case Study. Desalin. Water Treat. 2021, 227, 16–25. [Google Scholar] [CrossRef]
- Mills, N.; Pearce, P.; Farrow, J.; Thorpe, R.B.; Kirkby, N.F. Environmental & Economic Life Cycle Assessment of Current & Future Sewage Sludge to Energy Technologies. Waste Manag. 2014, 34, 185–195. [Google Scholar] [CrossRef]
- Lundin, M.; Olofsson, M.; Pettersson, G.; Zetterlund, H. Environmental and Economic Assessment of Sewage Sludge Handling Options. Resour. Conserv. Recycl. 2004, 41, 255–278. [Google Scholar] [CrossRef]
- Faragò, M.; Damgaard, A.; Madsen, J.A.; Andersen, J.K.; Thornberg, D.; Andersen, M.H.; Rygaard, M. From Wastewater Treatment to Water Resource Recovery: Environmental and Economic Impacts of Full-Scale Implementation. Water Res. 2021, 204, 117554. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-Q.; Yang, S.-S.; Xiang, W.-S.; Wang, X.-J.; Ren, N.-Q. Minimization of Excess Sludge Production by In-Situ Activated Sludge Treatment Processes—A Comprehensive Review. Biotechnol. Adv. 2013, 31, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Salgado, I.; Cavaillé, L.; Dubos, S.; Mengelle, E.; Kim, C.; Bounouba, M.; Paul, E.; Pommier, S.; Bessiere, Y. Combining Thermophilic Aerobic Reactor (TAR) with Mesophilic Anaerobic Digestion (MAD) Improves the Degradation of Pharmaceutical Compounds. Water Res. 2020, 182, 116033. [Google Scholar] [CrossRef]
- Piterina, A.V.; Bartlett, J.; Pembroke, J.T. Morphological Characterisation of ATAD Thermophilic Sludge; Sludge Ecology and Settleability. Water Res. 2011, 45, 3427–3438. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Caccamo, F.M.; Argiolas, S.; Bellazzi, S.; Baldi, M.; Bertanza, G. Strong Minimization of Biological Sludge Production and Enhancement of Phosphorus Bioavailability with a Thermophilic Biological Fluidized Bed Reactor. Process Saf. Environ. Prot. 2021, 155, 262–276. [Google Scholar] [CrossRef]
- Domini, M.; Bertanza, G.; Vahidzadeh, R.; Pedrazzani, R. Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy. Appl. Sci. 2022, 12, 10391. [Google Scholar] [CrossRef]
- APAT-IRSA CNR. Metodi Analitici per le Acque. Manuali e Linee Guida 29/2003; APAT: Roma, Italy, 2004; Available online: https://www.irsa.cnr.it/wp/wp-content/uploads/2022/04/Vol3_Sez_6000_7000_Microbiologia.pdf (accessed on 7 January 2025).
- UNI EN 14346; Waste Characterization—Calculation of Dry Matter by Determining the Dry Residue or Moisture Content. UNI: Rome, Italy, 2007. Available online: https://standards.iteh.ai/catalog/standards/cen/c345ad72-3222-4b57-920b-29865d273a3c/en-14346-2006?srsltid=AfmBOoqaVUv2Rf-WVZmy_QiMkvCpk1-GZXBVv1TBO6bC_6lgVbLrcW8b (accessed on 7 January 2025).
- UNI EN 15169; Waste Characterization—Determination of Fire Loss in Waste, Sludge and Sediment. UNI: Rome, Italy, 2007. Available online: https://standards.globalspec.com/std/1179497/en-15169 (accessed on 7 January 2025).
- CNR-IRSA. CNR-IRSA: Rome, Italy. 1985. Available online: https://www.irsa.cnr.it/wp/?page_id=5435 (accessed on 7 January 2025). (In Italian).
- Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Guarino, R.D.; Dike, L.E.; Haq, T.A.; Rowley, J.A.; Pitner, J.B.; Timmins, M.R. Method for Determining Oxygen Consumption Rates of Static Cultures from Microplate Measurements of Pericellular Dissolved Oxygen Concentration. Biotechnol. Bioeng. 2004, 86, 775–787. [Google Scholar] [CrossRef]
- Torretta, V.; Ragazzi, M.; Trulli, E.; De Feo, G.; Urbini, G.; Raboni, M.; Rada, E. Assessment of Biological Kinetics in a Conventional Municipal WWTP by Means of the Oxygen Uptake Rate Method. Sustainability 2014, 6, 1833–1847. [Google Scholar] [CrossRef]
- Bellazzi, S.; Collivignarelli, M.C.; Baldi, M.; Abbà, A. An Approach to Compute Respirometric Parameters from Continuous-Time Oxygen Uptake Rate Curves. Available online: https://ssrn.com/abstract=4944396 (accessed on 7 January 2025).
- NYoung, J.C. Oxygen Uptake Rate as a Monitoring and Control Parameter for Activated Sludge Processes. In Proceedings of the WEF/Indiana Water Pollution Control Association (IAWPCA)/Purdue University Industrial Wastes Technical Conference, Indianapolis, IN, USA, 27–30 June 1999. [Google Scholar]
- Zang, Y.; Li, Y.; Wang, C.; Zhang, W.; Xiong, W. Towards More Accurate Life Cycle Assessment of Biological Wastewater Treatment Plants: A Review. J. Clean. Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Cheunbarn, T.; Pagilla, K.R. Aerobic Thermophilic and Anaerobic Mesophilic Treatment of Sludge. J. Environ. Eng. 2000, 126, 790–795. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Bellazzi, S.; Carnevale Miino, M.; Caccamo, F.M.; Calatroni, S.; Durante, A.; Baldi, M. Influence of Heavy Metals on the Rheology of a Thermophilic Biological Sludge for Nutrients Recovery: Effect of Iron, Copper, and Aluminium on Fluid Consistency. Waste Biomass Valorization 2023, 14, 2495–2504. [Google Scholar] [CrossRef]
- Leos, J.Z.; Zydney, A.L. Microfiltration and Ultrafiltration; Routledge: London, UK, 2017; ISBN 9780203747223. [Google Scholar]
- Alhazmi, H.; Almansour, F.H.; Aldhafeeri, Z. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability 2021, 13, 5340. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen Uptake Rate in Microbial Processes: An Overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Caccamo, F.M.; Carnevale Miino, M.; Durante, A.; Bellazzi, S.; Baldi, M.; Bertanza, G. How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes 2021, 11, 977. [Google Scholar] [CrossRef]
- Tsalas, N.; Golfinopoulos, S.K.; Samios, S.; Katsouras, G.; Peroulis, K. Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview. Energies 2024, 17, 2808. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
COD [mg L−1] | 20,000–50,000 ± 6320 [n = 80] |
pH [-] | 5–6 ± 0.9 [n = 80] |
TS [g L−1] | 30–50 ± 2.5 [n = 80] |
VSs [g L−1] | 20–40 ± 2.5 [n = 80] |
Recirculated Sludge [mL] | TSin [mgTS] | ΔO2 Total [mgO2 gSV−1] | COD Tested [mgCOD] | ΔO2 Exogenous [mgO2] | COD Removed [%] |
---|---|---|---|---|---|
1 | 54 | 57 | 205 | 159 | 78 |
2 | 115 | 59 | 256 | 132 | 51 |
2 | 114 | 88 | 257 | 146 | 57 |
3 | 167 | 109 | 306 | 226 | 74 |
4 | 264 | 103 | 388 | 216 | 56 |
3 | 228 | 103 | 334 | 196 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Bellazzi, S.; Abbà, A. Circular Economy Applied to Sludge Minimization: The STAR Project. Membranes 2025, 15, 15. https://doi.org/10.3390/membranes15010015
Collivignarelli MC, Bellazzi S, Abbà A. Circular Economy Applied to Sludge Minimization: The STAR Project. Membranes. 2025; 15(1):15. https://doi.org/10.3390/membranes15010015
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Stefano Bellazzi, and Alessandro Abbà. 2025. "Circular Economy Applied to Sludge Minimization: The STAR Project" Membranes 15, no. 1: 15. https://doi.org/10.3390/membranes15010015
APA StyleCollivignarelli, M. C., Bellazzi, S., & Abbà, A. (2025). Circular Economy Applied to Sludge Minimization: The STAR Project. Membranes, 15(1), 15. https://doi.org/10.3390/membranes15010015