Biogas Upgrading Using a Single-Membrane System: A Review
Abstract
:1. Introduction
2. Characteristics of the Main Biogas Impurities
2.1. CO2
2.2. H2S
2.3. H2O
2.4. N2 and O2
3. Application of Membranes for Biogas Upgrading
3.1. Membrane Types Used for Biogas Upgrading
3.2. Upgrading of Synthetic Biogas
3.3. Upgrading of Raw Biogas
4. Conclusions and Further Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EBA Statistical Report 2022. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2022/12/EBA-Statistical-Report-2022_-Short-version.pdf (accessed on 1 January 2024).
- European Biogas Association. Available online: https://www.europeanbiogas.eu/ (accessed on 1 January 2024).
- Chen, W.; Wang, J.; Liu, W. A View of Anaerobic Digestion: Microbiology, Advantages and Optimization. Acad. J. Environ. Earth Sci. 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, Z.; Lei, Z.; Shimizu, K.; Lee, D.-J. A Review on Biogas Upgrading in Anaerobic Digestion Systems Treating Organic Solids and Wastewaters via Biogas Recirculation. Bioresour. Technol. 2022, 344, 126412. [Google Scholar] [CrossRef]
- Wang, X.; Lei, Z.; Shimizu, K.; Zhang, Z.; Lee, D.-J. Recent Advancements in Nanobubble Water Technology and Its Application in Energy Recovery from Organic Solid Wastes towards a Greater Environmental Friendliness of Anaerobic Digestion System. Renew. Sustain. Energy Rev. 2021, 145, 111074. [Google Scholar] [CrossRef]
- Petravić-Tominac, V.; Nastav, N.; Buljubašić, M.; Šantek, B. Current State of Biogas Production in Croatia. Energy Sustain. Soc. 2020, 10, 8. [Google Scholar] [CrossRef]
- Sárvári Horváth, I.; Tabatabaei, M.; Karimi, K.; Kumar, R. Recent Updates on Biogas Production—A Review. Biofuel Res. J. 2016, 3, 394–402. [Google Scholar] [CrossRef]
- Subbarao, P.M.V.; D’ Silva, T.C.; Adlak, K.; Kumar, S.; Chandra, R.; Vijay, V.K. Anaerobic Digestion as a Sustainable Technology for Efficiently Utilizing Biomass in the Context of Carbon Neutrality and Circular Economy. Environ. Res. 2023, 234, 116286. [Google Scholar] [CrossRef] [PubMed]
- Report Biogas. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2022/07/SR22_Biogas_Fullversion.pdf (accessed on 20 February 2024).
- Yang, L.; Ge, X. Biogas and Syngas Upgrading. In Advances in Bioenergy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 125–188. ISBN 978-0-12-809522-5. [Google Scholar]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Kazemi Shariat Panahi, H.; Nizami, A.-S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 1: Upstream Strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Gomes, M.G.; De Morais, L.C.; Pasquini, D. Use of Membranas for Biogas Purification: Review. Holos Environ. 2019, 19, 466. [Google Scholar] [CrossRef]
- UABIO. Available online: https://uabio.org/en/materials/9740/ (accessed on 1 January 2024).
- Kadam, R.; Panwar, N.L. Recent Advancement in Biogas Enrichment and Its Applications. Renew. Sustain. Energy Rev. 2017, 73, 892–903. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The Future of Anaerobic Digestion and Biogas Utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Technologies for Biogas to Electricity Conversion. Energy Rep. 2022, 8, 774–786. [Google Scholar] [CrossRef]
- Dahlgren, S. Biogas-Based Fuels as Renewable Energy in the Transport Sector: An Overview of the Potential of Using CBG, LBG and Other Vehicle Fuels Produced from Biogas. Biofuels 2022, 13, 587–599. [Google Scholar] [CrossRef]
- Mustafi, N.N.; Agarwal, A.K. Biogas for Transport Sector: Current Status, Barriers, and Path Forward for Large-Scale Adaptation. In Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines; Energy, Environment, and Sustainability; Singh, A.P., Sharma, Y.C., Mustafi, N.N., Agarwal, A.K., Eds.; Springer Singapore: Singapore, 2020; pp. 229–271. ISBN 9789811504174. [Google Scholar]
- Shinde, A.M.; Dikshit, A.K.; Odlare, M.; Thorin, E.; Schwede, S. Life Cycle Assessment of Bio-Methane and Biogas-Based Electricity Production from Organic Waste for Utilization as a Vehicle Fuel. Clean Technol. Environ. Policy 2021, 23, 1715–1725. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Umetsu, K.; Rooney, D.W. Integration of Biogas Systems into a Carbon Zero and Hydrogen Economy: A Review. Environ. Chem. Lett. 2022, 20, 2853–2927. [Google Scholar] [CrossRef]
- Lora Grando, R.; De Souza Antune, A.M.; Da Fonseca, F.V.; Sánchez, A.; Barrena, R.; Font, X. Technology Overview of Biogas Production in Anaerobic Digestion Plants: A European Evaluation of Research and Development. Renew. Sustain. Energy Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef]
- Raboni, M.; Urbini, G. Production and Use of Biogas in Europe: A Survey of Current Status and Perspectives. Rev. Ambiente Água 2014, 9, 191–202. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M.; Grubecki, I.; Miłek, J. Biogas Production in AnMBRs via Treatment of Municipal and Domestic Wastewater: Opportunities and Fouling Mitigation Strategies. Appl. Sci. 2023, 13, 6466. [Google Scholar] [CrossRef]
- Banja, M.; Jégard, M.; Motola, V.; Sikkema, R. Support for Biogas in the EU Electricity Sector—A Comparative Analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- Garcia, N.H.; Mattioli, A.; Gil, A.; Frison, N.; Battista, F.; Bolzonella, D. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renew. Sustain. Energy Rev. 2019, 112, 1–10. [Google Scholar] [CrossRef]
- Lee, J.; Hong, J.; Jeong, S.; Chandran, K.; Park, K.Y. Interactions between Substrate Characteristics and Microbial Communities on Biogas Production Yield and Rate. Bioresour. Technol. 2020, 303, 122934. [Google Scholar] [CrossRef]
- Nsair, A.; Onen Cinar, S.; Alassali, A.; Abu Qdais, H.; Kuchta, K. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Singh, B.; Szamosi, Z.; Siménfalvi, Z. Impact of Mixing Intensity and Duration on Biogas Production in an Anaerobic Digester: A Review. Crit. Rev. Biotechnol. 2020, 40, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Ravishankar, H.; Lens, P.N.L. Biological Biogas Purification: Recent Developments, Challenges and Future Prospects. J. Environ. Manag. 2022, 304, 114198. [Google Scholar] [CrossRef] [PubMed]
- Mergenthal, M.; Tawai, A.; Amornraksa, S.; Roddecha, S.; Chuetor, S. Methane Enrichment for Biogas Purification Using Pressure Swing Adsorption Techniques. Mater. Today Proc. 2023, 72, 2915–2920. [Google Scholar] [CrossRef]
- Werkneh, A.A. Biogas Impurities: Environmental and Health Implications, Removal Technologies and Future Perspectives. Heliyon 2022, 8, e10929. [Google Scholar] [CrossRef] [PubMed]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-Solid Anaerobic Digestion of Sewage Sludge: Challenges and Opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Oliveira, L.G.; Cremonez, P.A.; Machado, B.; Da Silva, E.S.; Silva, F.E.B.; Corrêa, G.C.G.; Lopez, T.F.M.; Alves, H.J. Updates on Biogas Enrichment and Purification Methods: A Review. Can. J. Chem. Eng. 2023, 101, 2361–2390. [Google Scholar] [CrossRef]
- Brunetti, A.; Lei, L.; Avruscio, E.; Karousos, D.S.; Lindbråthen, A.; Kouvelos, E.P.; He, X.; Favvas, E.P.; Barbieri, G. Long-Term Performance of Highly Selective Carbon Hollow Fiber Membranes for Biogas Upgrading in the Presence of H2S and Water Vapor. Chem. Eng. J. 2022, 448, 137615. [Google Scholar] [CrossRef]
- Lanni, D.; Minutillo, M.; Cigolotti, V.; Perna, A. Biomethane Production through the Power to Gas Concept: A Strategy for Increasing the Renewable Sources Exploitation and Promoting the Green Energy Transition. Energy Convers. Manag. 2023, 293, 117538. [Google Scholar] [CrossRef]
- Calero, M.; Godoy, V.; Heras, C.G.; Lozano, E.; Arjandas, S.; Martín-Lara, M.A. Current State of Biogas and Biomethane Production and Its Implications for Spain. Sustain. Energy Fuels 2023, 7, 3584–3602. [Google Scholar] [CrossRef]
- Sánchez Nocete, E.; Pérez Rodríguez, J. A Simple Methodology for Estimating the Potential Biomethane Production in a Region: Application in a Case Study. Sustainability 2022, 14, 15978. [Google Scholar] [CrossRef]
- Fu, S.; Angelidaki, I.; Zhang, Y. In Situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends Biotechnol. 2021, 39, 336–347. [Google Scholar] [CrossRef]
- Katariya, H.G.; Patolia, H.P. Advances in Biogas Cleaning, Enrichment, and Utilization Technologies: A Way Forward. Biomass Convers. Biorefinery 2023, 13, 9565–9581. [Google Scholar] [CrossRef]
- Atelge, M.R.; Senol, H.; Djaafri, M.; Hansu, T.A.; Krisa, D.; Atabani, A.; Eskicioglu, C.; Muratçobanoğlu, H.; Unalan, S.; Kalloum, S.; et al. A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability 2021, 13, 11515. [Google Scholar] [CrossRef]
- Outlook for Biogas and Biomethane: Prospects for Organic Growth. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 1 January 2024).
- Behaien, S.; Aghel, B.; Shadloo, M.S. Application of Water Scrubbing Technique for Biogas Upgrading in a Microchannel. Korean J. Chem. Eng. 2023, 40, 145–154. [Google Scholar] [CrossRef]
- Gao, S.; Bo, C.; Li, J.; Niu, C.; Lu, X. Multi-Objective Optimization and Dynamic Control of Biogas Pressurized Water Scrubbing Process. Renew. Energy 2020, 147, 2335–2344. [Google Scholar] [CrossRef]
- Piechota, G. Removal of Siloxanes from Biogas Upgraded to Biomethane by Cryogenic Temperature Condensation System. J. Clean. Prod. 2021, 308, 127404. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B.; Manizadeh, A. Cryogenic Biogas Upgrading Process Using Solar Energy (Process Integration, Development, and Energy Analysis). Energy 2020, 203, 117834. [Google Scholar] [CrossRef]
- Ibrahim, R.; Navaee-Ardeh, S.; Cabana, H. Biogas Purification by a Chemical Absorption and Biological Oxidation Process. Water Air Soil Pollut. 2022, 233, 79. [Google Scholar] [CrossRef]
- Sánchez Bas, M.; Aragón, A.J.; Torres, J.C.; Osorio, F. Purification and Upgrading Biogas from Anaerobic Digestion Using Chemical Asborption of CO2 with Amines in Order to Produce Biomethane as Biofuel for Vehicles: A Pilot-Scale Study. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 10201–10213. [Google Scholar] [CrossRef]
- Abd, A.A.; Othman, M.R.; Naji, S.Z.; Hashim, A.S. Methane Enrichment in Biogas Mixture Using Pressure Swing Adsorption: Process Fundamental and Design Parameters. Mater. Today Sustain. 2021, 11–12, 100063. [Google Scholar] [CrossRef]
- Vilardi, G.; Bassano, C.; Deiana, P.; Verdone, N. Exergy and Energy Analysis of Biogas Upgrading by Pressure Swing Adsorption: Dynamic Analysis of the Process. Energy Convers. Manag. 2020, 226, 113482. [Google Scholar] [CrossRef]
- Mignogna, D.; Ceci, P.; Cafaro, C.; Corazzi, G.; Avino, P. Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Appl. Sci. 2023, 13, 10219. [Google Scholar] [CrossRef]
- Vrbová, V.; Ciahotný, K. Upgrading Biogas to Biomethane Using Membrane Separation. Energy Fuels 2017, 31, 9393–9401. [Google Scholar] [CrossRef]
- Ullah Khan, I.; Hafiz Dzarfan Othman, M.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I. Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Iovane, P.; Nanna, F.; Ding, Y.; Bikson, B.; Molino, A. Experimental Test with Polymeric Membrane for the Biogas Purification from CO2 and H2S. Fuel 2014, 135, 352–358. [Google Scholar] [CrossRef]
- Bauer, F.; Persson, T.; Hulteberg, C.; Tamm, D. Biogas Upgrading—Technology Overview, Comparison and Perspectives for the Future. Biofuels Bioprod. Biorefining 2013, 7, 499–511. [Google Scholar] [CrossRef]
- Abatzoglou, N.; Boivin, S. A Review of Biogas Purification Processes. Biofuels Bioprod. Biorefining 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C. A Review of Recent Developments in Application of Low Cost Natural Materials in Purification and Upgrade of Biogas. Renew. Sustain. Energy Rev. 2021, 145, 111081. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C.; Mecha, A.C. Potential of Wood Ash in Purification of Biogas. Energy Sustain. Dev. 2021, 65, 45–52. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.; Ramkat, R.C.; Kiprop, A. Biogas Upgrade Using Modified Natural Clay. Energy Convers. Manag. X 2021, 12, 100134. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C.; Mulu, E. Carbon Dioxide Removal from Biogas through Sorption Processes Using Natural and Activated Zeolite Adsorbents. Indian Chem. Eng. 2023, 65, 312–324. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation Technologies for CO2 Utilisation: Current Status, Challenges and Future Prospects. Chem. Eng. J. 2021, 409, 128138. [Google Scholar] [CrossRef]
- George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A Review of Non-Thermal Plasma Technology: A Novel Solution for CO2 Conversion and Utilization. Renew. Sustain. Energy Rev. 2021, 135, 109702. [Google Scholar] [CrossRef]
- Rafiee, A.; Rajab Khalilpour, K.; Milani, D.; Panahi, M. Trends in CO2 Conversion and Utilization: A Review from Process Systems Perspective. J. Environ. Chem. Eng. 2018, 6, 5771–5794. [Google Scholar] [CrossRef]
- Cerveira, G.S.; Borges, C.P.; Kronemberger, F.D.A. Gas Permeation Applied to Biogas Upgrading Using Cellulose Acetate and Polydimethylsiloxane Membranes. J. Clean. Prod. 2018, 187, 830–838. [Google Scholar] [CrossRef]
- Yeo, Z.Y.; Chew, T.L.; Zhu, P.W.; Mohamed, A.R.; Chai, S.-P. Conventional Processes and Membrane Technology for Carbon Dioxide Removal from Natural Gas: A Review. J. Nat. Gas Chem. 2012, 21, 282–298. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Scholz, M.; Melin, T.; Wessling, M. Transforming Biogas into Biomethane Using Membrane Technology. Renew. Sustain. Energy Rev. 2013, 17, 199–212. [Google Scholar] [CrossRef]
- Kárászová, M.; Sedláková, Z.; Izák, P. Gas Permeation Processes in Biogas Upgrading: A Short Review. Chem. Pap. 2015, 69, 1277–1283. [Google Scholar] [CrossRef]
- Žák, M.; Bendová, H.; Friess, K.; Bara, J.E.; Izák, P. Single-Step Purification of Raw Biogas to Biomethane Quality by Hollow Fiber Membranes without Any Pretreatment—An Innovation in Biogas Upgrading. Sep. Purif. Technol. 2018, 203, 36–40. [Google Scholar] [CrossRef]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current Status of Biogas Upgrading for Direct Biomethane Use: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Makaruk, A.; Miltner, M.; Harasek, M. Membrane Biogas Upgrading Processes for the Production of Natural Gas Substitute. Sep. Purif. Technol. 2010, 74, 83–92. [Google Scholar] [CrossRef]
- Luis, P. Membrane Contactors. In Fundamental Modelling of Membrane Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–208. ISBN 978-0-12-813483-2. [Google Scholar]
- Budd, P.M.; McKeown, N.B. Highly Permeable Polymers for Gas Separation Membranes. Polym. Chem. 2010, 1, 63. [Google Scholar] [CrossRef]
- Hidalgo, D.; Sanz-Bedate, S.; Martín-Marroquín, J.M.; Castro, J.; Antolín, G. Selective Separation of CH4 and CO2 Using Membrane Contactors. Renew. Energy 2020, 150, 935–942. [Google Scholar] [CrossRef]
- Mansourizadeh, A.; Rezaei, I.; Lau, W.J.; Seah, M.Q.; Ismail, A.F. A Review on Recent Progress in Environmental Applications of Membrane Contactor Technology. J. Environ. Chem. Eng. 2022, 10, 107631. [Google Scholar] [CrossRef]
- Lee, Y.; Park, Y.-J.; Lee, J.; Bae, T.-H. Recent Advances and Emerging Applications of Membrane Contactors. Chem. Eng. J. 2023, 461, 141948. [Google Scholar] [CrossRef]
- Shiravi, A.; Maleh, M.S.; Raisi, A.; Sillanpää, M. Hollow Fiber Membrane Contactor for CO2 Capture: A Review of Recent Progress on Membrane Materials, Operational Challenges, Scale-up and Economics. Carbon Capture Sci. Technol. 2024, 10, 100160. [Google Scholar] [CrossRef]
- Seong, M.S.; Kong, C.I.; Park, B.R.; Lee, Y.; Na, B.K.; Kim, J.H. Optimization of Pilot-Scale 3-Stage Membrane Process Using Asymmetric Polysulfone Hollow Fiber Membranes for Production of High-Purity CH4 and CO2 from Crude Biogas. Chem. Eng. J. 2020, 384, 123342. [Google Scholar] [CrossRef]
- Xiao, W.; Gao, P.; Dai, Y.; Ruan, X.; Jiang, X.; Wu, X.; Fang, Y.; He, G. Efficiency Separation Process of H2/CO2/CH4 Mixtures by a Hollow Fiber Dual Membrane Separator. Processes 2020, 8, 560. [Google Scholar] [CrossRef]
- Gkotsis, P.; Kougias, P.; Mitrakas, M.; Zouboulis, A. Biogas Upgrading Technologies—Recent Advances in Membrane-Based Processes. Int. J. Hydrogen Energy 2023, 48, 3965–3993. [Google Scholar] [CrossRef]
- Rafiee, A.; Khalilpour, K.R.; Prest, J.; Skryabin, I. Biogas as an Energy Vector. Biomass Bioenergy 2021, 144, 105935. [Google Scholar] [CrossRef]
- Wojnarova, P.; Rusin, J.; Basinas, P.; Kostejn, M.; Nemec, J.; Stanovský, P.; Kim, A.S.; Izak, P. Unveiling the Potential of Composite Water-Swollen Spiral Wound Membrane for Design of Low-Cost Raw Biogas Purification. Sep. Purif. Technol. 2023, 326, 124783. [Google Scholar] [CrossRef]
- Deng, L.; Hägg, M.-B. Techno-Economic Evaluation of Biogas Upgrading Process Using CO2 Facilitated Transport Membrane. Int. J. Greenh. Gas Control. 2010, 4, 638–646. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-Based Technologies for Biogas Upgrading: A Review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Miandoab, E.S.; Kentish, S.E.; Scholes, C.A. Modelling Competitive Sorption and Plasticization of Glassy Polymeric Membranes Used in Biogas Upgrading. J. Membr. Sci. 2021, 617, 118643. [Google Scholar] [CrossRef]
- Zito, P.F.; Brunetti, A.; Barbieri, G. Multi-Step Membrane Process for Biogas Upgrading. J. Membr. Sci. 2022, 652, 120454. [Google Scholar] [CrossRef]
- Simcik, M.; Ruzicka, M.C.; Karaszova, M.; Sedlakova, Z.; Vejrazka, J.; Vesely, M.; Capek, P.; Friess, K.; Izak, P. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modeling. Sep. Purif. Technol. 2016, 167, 163–173. [Google Scholar] [CrossRef]
- Andriani, D.; Rajani, A.; Kusnadi; Santosa, A.; Saepudin, A.; Wresta, A.; Atmaja, T.D. A Review on Biogas Purification through Hydrogen Sulphide Removal. IOP Conf. Ser. Earth Environ. Sci. 2020, 483, 012034. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of Biogas Upgrading Technologies and Future Perspectives: A Review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Leonzio, G. Upgrading of Biogas to Bio-Methane with Chemical Absorption Process: Simulation and Environmental Impact. J. Clean. Prod. 2016, 131, 364–375. [Google Scholar] [CrossRef]
- Zhou, W.H.; Guo, J.P.; Tan, H.Y. Upgrading of Methane from Biogas by Pressure Swing Adsorption. Adv. Mater. Res. 2011, 236–238, 268–271. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor. 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Noorain, R.; Kindaichi, T.; Ozaki, N.; Aoi, Y.; Ohashi, A. Biogas Purification Performance of New Water Scrubber Packed with Sponge Carriers. J. Clean. Prod. 2019, 214, 103–111. [Google Scholar] [CrossRef]
- Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S.N.; Chakraborty, A.K.; Mathew, A.K.; Chaudhury, S. An Overview of Physico-Chemical Mechanisms of Biogas Production by Microbial Communities: A Step towards Sustainable Waste Management. 3 Biotech 2016, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Kushkevych, I.; Vítězová, M.; Vítěz, T.; Bartoš, M. Production of Biogas: Relationship between Methanogenic and Sulfate-Reducing Microorganisms. Open Life Sci. 2017, 12, 82–91. [Google Scholar] [CrossRef]
- Herout, M.; Malaťák, J.; Kučera, L.; Dlabaja, T. Biogas Composition Depending on the Type of Plant Biomass Used. Res. Agric. Eng. 2011, 57, 137–143. [Google Scholar] [CrossRef]
- Song, C. CO2 Conversion and Utilization: An Overview. In CO2 Conversion and Utilization; ACS Symposium Series; Song, C., Gaffney, A.F., Fujimoto, K., Eds.; American Chemical Society: Washington, DC, USA, 2002; Volume 809, pp. 2–30. ISBN 978-0-8412-3747-6. [Google Scholar]
- Mazzoldi, A.; Hill, T.; Colls, J.J. CFD and Gaussian Atmospheric Dispersion Models: A Comparison for Leak from Carbon Dioxide Transportation and Storage Facilities. Atmos. Environ. 2008, 42, 8046–8054. [Google Scholar] [CrossRef]
- Permentier, K.; Vercammen, S.; Soetaert, S.; Schellemans, C. Carbon Dioxide Poisoning: A Literature Review of an Often Forgotten Cause of Intoxication in the Emergency Department. Int. J. Emerg. Med. 2017, 10, 14. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.; Zhou, M.; Jie, X.; Wang, L.; Kang, G.; Cao, Y. Removal of CO2 from Biogas by Membrane Contactor Using PTFE Hollow Fibers with Smaller Diameter. J. Membr. Sci. 2021, 627, 119232. [Google Scholar] [CrossRef]
- Knoope, M.M.J.; Ramírez, A.; Faaij, A.P.C. A State-of-the-Art Review of Techno-Economic Models Predicting the Costs of CO2 Pipeline Transport. Int. J. Greenh. Gas Control. 2013, 16, 241–270. [Google Scholar] [CrossRef]
- Shi, L.; Wang, C.; Zou, C. Corrosion Failure Analysis of L485 Natural Gas Pipeline in CO2 Environment. Eng. Fail. Anal. 2014, 36, 372–378. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Nešić, S. Determining the Corrosive Potential of CO2 Transport Pipeline in High pCO2–Water Environments. Int. J. Greenh. Gas Control. 2011, 5, 788–797. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Xue, Y. Corrosion Behavior about Tubing Steel in Environment with High H2S and CO2 Content. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2013, 28, 1038–1043. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhang, Y.; Liu, X.; Chen, Y.; Yong, X.; Wang, S.; Zheng, T.; Yuan, H. Continuous Process of Biogas Purification and Co-Production of Nano Calcium Carbonate in Multistage Membrane Reactors. Chem. Eng. J. 2015, 271, 223–231. [Google Scholar] [CrossRef]
- Li, B.; Gross, M.J.; Schmitt, T.P. Gas Turbine Gas Fuel Composition Performance Correction Using Wobbe Index. In Proceedings of the ASME 2010 Power Conference, ASMEDC, Chicago, IL, USA, 13–15 July 2010; pp. 847–853. [Google Scholar]
- Roy, P.S.; Ryu, C.; Park, C.S. Predicting Wobbe Index and Methane Number of a Renewable Natural Gas by the Measurement of Simple Physical Properties. Fuel 2018, 224, 121–127. [Google Scholar] [CrossRef]
- Liu, K.; Alexander, V.; Sanderson, V.; Bulat, G. Extension of Fuel Flexibility in the Siemens Dry Low Emissions SGT-300-1S to Cover a Wobbe Index Range of 15 to 49 MJ/M3. In Proceedings of the Volume 2, Combustion, Fuels and Emissions, Parts A and B, American Society of Mechanical Engineers, Copenhagen, Denmark, 11–15 June 2012; pp. 601–609. [Google Scholar]
- Malginova, N.A.; Korchagina, E.N.; Kazartsev, Y.V. Prospects for the Development of Reference Materials of the Wobbe Index. In Reference Materials in Measurement and Technology; Sobina, E.P., Medvedevskikh, S.V., Kremleva, O.N., Filimonov, I.S., Kulyabina, E.V., Kolobova, A.V., Bulatov, A.V., Dobrovolskiy, V.I., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 267–278. ISBN 978-3-031-49199-3. [Google Scholar]
- Kuczyński, S.; Łaciak, M.; Szurlej, A.; Włodek, T. Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement. Energies 2020, 13, 5060. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for Transformation of Biogas to Biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Lestinsky, P.; Vecer, M.; Navratil, P.; Stehlik, P. The Removal of CO2 from Biogas Using a Laboratory PSA Unit: Design Using Breakthrough Curves. Clean Technol. Environ. Policy 2015, 17, 1281–1289. [Google Scholar] [CrossRef]
- Zhou, K.; Chaemchuen, S.; Verpoort, F. Alternative Materials in Technologies for Biogas Upgrading via CO2 Capture. Renew. Sustain. Energy Rev. 2017, 79, 1414–1441. [Google Scholar] [CrossRef]
- Chaemchuen, S.; Kabir, N.A.; Zhou, K.; Verpoort, F. Metal–Organic Frameworks for Upgrading Biogas via CO2 Adsorption to Biogas Green Energy. Chem. Soc. Rev. 2013, 42, 9304. [Google Scholar] [CrossRef]
- Remy, T.; Gobechiya, E.; Danaci, D.; Peter, S.A.; Xiao, P.; Van Tendeloo, L.; Couck, S.; Shang, J.; Kirschhock, C.E.A.; Singh, R.K.; et al. Biogas Upgrading through Kinetic Separation of Carbon Dioxide and Methane over Rb- and Cs-ZK-5 Zeolites. RSC Adv. 2014, 4, 62511–62524. [Google Scholar] [CrossRef]
- Ma, H.; Wei, Y.; Fei, F.; Gao, M.; Wang, Q. Whether Biorefinery Is a Promising Way to Support Waste Source Separation? From the Life Cycle Perspective. Sci. Total Environ. 2024, 912, 168731. [Google Scholar] [CrossRef] [PubMed]
- Grande, C.A.; Rodrigues, A.E. Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents. Ind. Eng. Chem. Res. 2007, 46, 4595–4605. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent Advances in Carbon Dioxide Utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B.K.; Lee, U. Review of Carbon Dioxide Utilization Technologies and Their Potential for Industrial Application. J. CO2 Util. 2022, 65, 102239. [Google Scholar] [CrossRef]
- Alper, E.; Yuksel Orhan, O. CO2 Utilization: Developments in Conversion Processes. Petroleum 2017, 3, 109–126. [Google Scholar] [CrossRef]
- Aieamsam-Aung, P.; Srifa, A.; Koo-Amornpattana, W.; Assabumrungrat, S.; Reubroycharoen, P.; Suchamalawong, P.; Fukuhara, C.; Ratchahat, S. Upgradation of Methane in the Biogas by Hydrogenation of CO2 in a Prototype Reactor with Double Pass Operation over Optimized Ni-Ce/Al-MCM-41 Catalyst. Sci. Rep. 2023, 13, 9342. [Google Scholar] [CrossRef]
- Tozlu, A. Techno-Economic Assessment of a Synthetic Fuel Production Facility by Hydrogenation of CO2 Captured from Biogas. Int. J. Hydrogen Energy 2022, 47, 3306–3315. [Google Scholar] [CrossRef]
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Technical Analysis of CO2 Capture Pathways and Technologies. J. Environ. Chem. Eng. 2022, 10, 108470. [Google Scholar] [CrossRef]
- Malone Rubright, S.L.; Pearce, L.L.; Peterson, J. Environmental Toxicology of Hydrogen Sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Mbowe, O.; Lee, A.S.W.; Davis, J. Effect of Environmental Exposure to Hydrogen Sulfide on Central Nervous System and Respiratory Function: A Systematic Review of Human Studies. Int. J. Occup. Environ. Health 2016, 22, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Cremonez, P.A.; Feiden, A.; Rossi, E.D.; Nadaleti, W.C.; Antonelli, J. Main Technologiesavailable for Biogas Purification. Rev. Bras. De Tecnol. Apl. Nas Ciências Agrárias 2014, 7, 113–119. [Google Scholar] [CrossRef]
- Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Andjelkovich, D.A.; Leber, P. A Critical Review of the Literature on Hydrogen Sulfide Toxicity. CRC Crit. Rev. Toxicol. 1984, 13, 25–97. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Bagheri, M.; Goli, A.; Talaei Khoozani, M.R. An Overview of Principles of Odor Production, Emission, and Control Methods in Wastewater Collection and Treatment Systems. J. Environ. Manag. 2016, 170, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, C.M.; Pavlostathis, S.G. Hydrogen Sulfide Affects the Performance of a Methanogenic Bioelectrochemical System Used for Biogas Upgrading. Water Res. 2021, 200, 117268. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, L.; Martins, C.A.; Lacava, P.T. Laminar Burning Velocity and Flammability Limits in Biogas: A Literature Review. Renew. Sustain. Energy Rev. 2016, 62, 856–865. [Google Scholar] [CrossRef]
- Ibrahim, R.; El Hassni, A.; Navaee-Ardeh, S.; Cabana, H. Biological Elimination of a High Concentration of Hydrogen Sulfide from Landfill Biogas. Environ. Sci. Pollut. Res. 2022, 29, 431–443. [Google Scholar] [CrossRef]
- Horikawa, M.S.; Rossi, F.; Gimenes, M.L.; Costa, C.M.M.; Silva, M.G.C.D. Chemical Absorption of H2S for Biogas Purification. Braz. J. Chem. Eng. 2004, 21, 415–422. [Google Scholar] [CrossRef]
- Barbusiński, K.; Kalemba, K. Use of Biological Methods For Removal of H2S From Biogas In Wastewater Treatment Plants—A Review. Archit. Civ. Eng. Environ. 2016, 9, 103–112. [Google Scholar] [CrossRef]
- Mrosso, R.; Machunda, R.; Pogrebnaya, T. Removal of Hydrogen Sulfide from Biogas Using a Red Rock. J. Energy 2020, 2020, 2309378 . [Google Scholar] [CrossRef]
- Mohammadi, K.; Vaiškūnaitė, R. Analysis and Evaluation of the Biogas Purification Technologies from H2S. Sci.—Future Lith. 2023, 15, 1–9. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, L.; Wang, X.; Qiu, X.; Qian, W.; Wang, L. Assessing Environmental Impact of NOX and SO2 Emissions in Textiles Production with Chemical Footprint. Sci. Total Environ. 2022, 831, 154961. [Google Scholar] [CrossRef] [PubMed]
- Nurhisanah, S.; Hasyim, H. Environmental Health Risk Assessment of Sulfur Dioxide (SO2) at Workers around in Combined Cycle Power Plant (CCPP). Heliyon 2022, 8, e09388. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Vinh-Thang, H.; Ramirez, A.A.; Rodrigue, D.; Kaliaguine, S. Membrane Gas Separation Technologies for Biogas Upgrading. RSC Adv. 2015, 5, 24399–24448. [Google Scholar] [CrossRef]
- Koonaphapdeelert, S.; Aggarangsi, P.; Moran, J. Biogas Cleaning and Pretreatment. In Biomethane; Green Energy and Technology; Springer Singapore: Singapore, 2020; pp. 17–45. ISBN 9789811383069. [Google Scholar]
- Sahin, M.; Ilbas, M. Analysis of the Effect of H2O Content on Combustion Behaviours of a Biogas Fuel. Int. J. Hydrogen Energy 2020, 45, 3651–3659. [Google Scholar] [CrossRef]
- Bragança, I.; Sánchez-Soberón, F.; Pantuzza, G.F.; Alves, A.; Ratola, N. Impurities in Biogas: Analytical Strategies, Occurrence, Effects and Removal Technologies. Biomass Bioenergy 2020, 143, 105878. [Google Scholar] [CrossRef]
- Bozorg, M.; Ramírez-Santos, Á.A.; Addis, B.; Piccialli, V.; Castel, C.; Favre, E. Optimal Process Design of Biogas Upgrading Membrane Systems: Polymeric vs High Performance Inorganic Membrane Materials. Chem. Eng. Sci. 2020, 225, 115769. [Google Scholar] [CrossRef]
- Wasajja, H.; Lindeboom, R.E.F.; Van Lier, J.B.; Aravind, P.V. Techno-Economic Review of Biogas Cleaning Technologies for Small Scale off-Grid Solid Oxide Fuel Cell Applications. Fuel Process. Technol. 2020, 197, 106215. [Google Scholar] [CrossRef]
- Follett, R.F.; Hatfield, J.L. Nitrogen in the Environment: Sources, Problems, and Management. Sci. World J. 2001, 1, 920–926. [Google Scholar] [CrossRef] [PubMed]
- IEA Bioenergy Task 24. Available online: https://www.academia.edu/36501497/IEA_Bioenergy_Task_24_Energy_from_biological_conversion_of_organic_waste_BIOGAS_UPGRADING_AND_UTILISATION_2_BIOGAS_UPGRADING_AND_UTILISATION (accessed on 1 January 2024).
- Soto, C.; Palacio, L.; Muñoz, R.; Prádanos, P.; Hernandez, A. Recent Advances in Membrane-Based Biogas and Biohydrogen Upgrading. Processes 2022, 10, 1918. [Google Scholar] [CrossRef]
- Basu, S.; Khan, A.L.; Cano-Odena, A.; Liu, C.; Vankelecom, I.F.J. Membrane-Based Technologies for Biogas Separations. Chem. Soc. Rev. 2010, 39, 750–768. [Google Scholar] [CrossRef]
- Garcia-Fayos, J.; Serra, J.M.; Luiten-Olieman, M.W.J.; Meulenberg, W.A. Gas Separation Ceramic Membranes. In Advanced Ceramics for Energy Conversion and Storage; Elsevier: Amsterdam, The Netherlands, 2020; pp. 321–385. ISBN 978-0-08-102726-4. [Google Scholar]
- Angelidaki, I.; Xie, L.; Luo, G.; Zhang, Y.; Oechsner, H.; Lemmer, A.; Munoz, R.; Kougias, P.G. Biogas Upgrading: Current and Emerging Technologies. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 817–843. ISBN 978-0-12-816856-1. [Google Scholar]
- Chmielewski, A.G.; Urbaniak, A.; Wawryniuk, K. Membrane Enrichment of Biogas from Two-Stage Pilot Plant Using Agricultural Waste as a Substrate. Biomass Bioenergy 2013, 58, 219–228. [Google Scholar] [CrossRef]
- Harasimowicz, M.; Orluk, P.; Zakrzewska-Trznadel, G.; Chmielewski, A.G. Application of Polyimide Membranes for Biogas Purification and Enrichment. J. Hazard. Mater. 2007, 144, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Nemestóthy, N.; Bakonyi, P.; Szentgyörgyi, E.; Kumar, G.; Nguyen, D.D.; Chang, S.W.; Kim, S.-H.; Bélafi-Bakó, K. Evaluation of a Membrane Permeation System for Biogas Upgrading Using Model and Real Gaseous Mixtures: The Effect of Operating Conditions on Separation Behaviour, Methane Recovery and Process Stability. J. Clean. Prod. 2018, 185, 44–51. [Google Scholar] [CrossRef]
- Molino, A.; Nanna, F.; Migliori, M.; Iovane, P.; Ding, Y.; Bikson, B. Experimental and Simulation Results for Biomethane Production Using Peek Hollow Fiber Membrane. Fuel 2013, 112, 489–493. [Google Scholar] [CrossRef]
- Pak, S.-H.; Jeon, Y.-W.; Shin, M.-S.; Koh, H.C. Preparation of Cellulose Acetate Hollow-Fiber Membranes for CO2/CH4 Separation. Environ. Eng. Sci. 2016, 33, 17–24. [Google Scholar] [CrossRef]
- Sedláková, Z.; Kárászová, M.; Vejražka, J.; Morávková, L.; Esposito, E.; Fuoco, A.; Jansen, J.C.; Izák, P. Biomethane Production from Biogas by Separation Using Thin-Film Composite Membranes. Chem. Eng. Technol. 2017, 40, 821–828. [Google Scholar] [CrossRef]
- Kárászová, M.; Vejražka, J.; Veselý, V.; Friess, K.; Randová, A.; Hejtmánek, V.; Brabec, L.; Izák, P. A Water-Swollen Thin Film Composite Membrane for Effective Upgrading of Raw Biogas by Methane. Sep. Purif. Technol. 2012, 89, 212–216. [Google Scholar] [CrossRef]
- Kim, K.H.; Baik, K.J.; Kim, I.W.; Lee, H.K. Optimization of Membrane Process for Methane Recovery from Biogas. Sep. Sci. Technol. 2012, 47, 963–971. [Google Scholar] [CrossRef]
- Peters, T.A.; Ansaloni, L.; Tena, A.; Karvan, O.; Visser, T.; Chinn, D.; Bhuwania, N. Performance and Stability of Cellulose Triacetate Membranes in Humid High H2S Natural Gas Feed Streams. J. Membr. Sci. 2024, 693, 122324. [Google Scholar] [CrossRef]
- Stern, S.A.; Krishnakumar, B.; Charati, S.G.; Amato, W.S.; Friedman, A.A.; Fuess, D.J. Performance of a Bench-Scale Membrane Pilot Plant for the Upgrading of Biogas in a Wastewater Treatment Plant. J. Membr. Sci. 1998, 151, 63–74. [Google Scholar] [CrossRef]
- Torre-Celeizabal, A.; Casado-Coterillo, C.; Abejón, R.; Garea, A. Simultaneous Production of High-Quality CO2 and CH4 via Multistage Process Using Chitosan-Based Membranes. Sep. Purif. Technol. 2023, 320, 124050. [Google Scholar] [CrossRef]
- Sikder, J.; Pereira, C.; Palchoudhury, S.; Vohra, K.; Basumatary, D.; Pal, P. Synthesis and Characterization of Cellulose Acetate-Polysulfone Blend Microfiltration Membrane for Separation of Microbial Cells from Lactic Acid Fermentation Broth. Desalination 2009, 249, 802–808. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chem. Eng. Technol. 2016, 39, 1604–1616. [Google Scholar] [CrossRef]
- Kentish, S.E. Polymeric Membranes for Natural Gas Processing. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 339–360. ISBN 978-1-84569-969-7. [Google Scholar]
- Zhang, L.; Xiao, Y.; Chung, T.-S.; Jiang, J. Mechanistic Understanding of CO2-Induced Plasticization of a Polyimide Membrane: A Combination of Experiment and Simulation Study. Polymer 2010, 51, 4439–4447. [Google Scholar] [CrossRef]
- Velioğlu, S.; Ahunbay, M.G.; Tantekin-Ersolmaz, S.B. Investigation of CO2-Induced Plasticization in Fluorinated Polyimide Membranes via Molecular Simulation. J. Membr. Sci. 2012, 417–418, 217–227. [Google Scholar] [CrossRef]
- Reijerkerk, S.R.; Nijmeijer, K.; Ribeiro, C.P.; Freeman, B.D.; Wessling, M. On the Effects of Plasticization in CO2/Light Gas Separation Using Polymeric Solubility Selective Membranes. J. Membr. Sci. 2011, 367, 33–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. Int. J. Greenh. Gas Control. 2013, 12, 84–107. [Google Scholar] [CrossRef]
- Liu, Y.; Sim, J.; Hailemariam, R.H.; Lee, J.; Rho, H.; Park, K.-D.; Kim, D.W.; Woo, Y.C. Status and Future Trends of Hollow Fiber Biogas Separation Membrane Fabrication and Modification Techniques. Chemosphere 2022, 303, 134959. [Google Scholar] [CrossRef] [PubMed]
- De Meis, D.; Richetta, M.; Serra, E. Microporous Inorganic Membranes for Gas Separation and Purification. Interceram.—Int. Ceram. Rev. 2018, 67, 16–21. [Google Scholar] [CrossRef]
- Shimekit, B.; Mukhtar, H.; Ahmad, F.; Maitra, S. Ceramic Membranes for the Separation of Carbon Dioxide—A Review. Trans. Indian Ceram. Soc. 2009, 68, 115–138. [Google Scholar] [CrossRef]
- Li, G.; Kujawski, W.; Válek, R.; Koter, S. A Review—The Development of Hollow Fibre Membranes for Gas Separation Processes. Int. J. Greenh. Gas Control. 2021, 104, 103195. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.; Jin, W. Natural Gas Purification by Asymmetric Membranes: An Overview. Green Energy Environ. 2021, 6, 176–192. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Azadi Tabar, M.; Vankelecom, I.F.J.; Denayer, J.F.M. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep. Purif. Technol. 2023, 310, 123139. [Google Scholar] [CrossRef]
- Koutsonikolas, D.E.; Pantoleontos, G.T.; Kaldis, S.P. Ceramic Membranes, Preparation, Properties, and Investigation on CO2 Separation. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–207. ISBN 978-0-12-813645-4. [Google Scholar]
- Cecopierigomez, M.; Palaciosalquisira, J.; Dominguez, J. On the Limits of Gas Separation in CO2/CH4, N2/CH4 and CO2/N2 Binary Mixtures Using Polyimide Membranes. J. Membr. Sci. 2007, 293, 53–65. [Google Scholar] [CrossRef]
- Da Conceicao, M.; Nemetz, L.; Rivero, J.; Hornbostel, K.; Lipscomb, G. Gas Separation Membrane Module Modeling: A Comprehensive Review. Membranes 2023, 13, 639. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Gonzo, E.; Parentis, M.; Gottifredi, J. Estimating Models for Predicting Effective Permeability of Mixed Matrix Membranes. J. Membr. Sci. 2006, 277, 46–54. [Google Scholar] [CrossRef]
- Park, J.; Yoon, H.W.; Paul, D.R.; Freeman, B.D. Gas Transport Properties of PDMS-Coated Reverse Osmosis Membranes. J. Membr. Sci. 2020, 604, 118009. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; Cui, X.; Yan, W.; Su, J.; Jin, L. A Review on the Morphology and Material Properties of the Gas Separation Membrane: Molecular Simulation. Membranes 2022, 12, 1274. [Google Scholar] [CrossRef]
- Farnam, M.; Bin Mukhtar, H.; Bin Mohd Shariff, A. A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. ChemBioEng Rev. 2021, 8, 90–109. [Google Scholar] [CrossRef]
- Mannan, H.A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D.F.; Mushtaq, A. Recent Applications of Polymer Blends in Gas Separation Membranes. Chem. Eng. Technol. 2013, 36, 1838–1846. [Google Scholar] [CrossRef]
- Merrick, M.M.; Sujanani, R.; Freeman, B.D. Glassy Polymers: Historical Findings, Membrane Applications, and Unresolved Questions Regarding Physical Aging. Polymer 2020, 211, 123176. [Google Scholar] [CrossRef]
- Farnam, M.; Mukhtar, H.; Mohd Shariff, A. A Review on Glassy Polymeric Membranes for Gas Separation. Appl. Mech. Mater. 2014, 625, 701–703. [Google Scholar] [CrossRef]
Compound Formula | Unit | Value |
---|---|---|
CH4 | vol% | 55–70 |
CO2 | vol% | 30–45 |
H2S | ppm | 0–10,000 |
H20 | vol% | 1–5 |
N2 | vol% | 0–15 |
O2 | vol% | 0–3 |
H2 | vol% | 0–1 |
NH3 | ppm | 0–100 |
Biogas Application | H2S | CO2 | H2O |
---|---|---|---|
gas heater | required, concentration lower than 1000 ppm | not required | not required |
kitchen stove | required | not required | not required |
stationary engine | required, concentration lower than 1000 ppm | not required | no condensation required |
natural gas grid | required | required | required |
vehicle fuel | required | recommended | required |
Membrane Material | CO2 Permeability at 30 °C [Barrer] | CH4 Permeability at 30 °C [Barrer] | Selectivity CO2/CH4 |
---|---|---|---|
cellulose acetate (CA) | 6.30 | 0.21 | 30.0 |
polyimide (PI) | 10.70 | 0.25 | 42.8 |
polysulfone (PSf) | 5.60 | 0.25 | 6.89 |
polydimethylsiloxane (PDMS) | 2700 | 800 | 3.38 |
Biogas | System Scale | Membrane | Operation Conditions | Feed Content | Permeate Content | Retentate Content | CH4 Recovery [%] | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Manufacturer | Module | Material | Area [m2] | T [K] | Feed Pressure [Bar] | Permeate Pressure [Bar] | Feed Flow Rate | CH4 | CO2 | H2S | CH4 | CO2 | H2S | CH4 | CO2 | H2S | ||||
synthetic | laboratory | - | hollow fiber | cellulose-based carbon | 0.0009 | 308 | 9.6 | 1.03–1.20 | 300–500 mL(STP)/min | 60.2 mol% | 39.8 mol% | - | N.A. | N.A. | - | N.A. | N.A. | - | N.A. | [35] |
synthetic | laboratory | - | hollow fiber | cellulose-based carbon | 0.0009 | 308 | 9.6 | 1.03–1.20 | 300–500 mL/min | 56.9 mol% | 37.3 mol% | 203 ppm | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | [35] |
synthetic | N.A. | PoroGen Corp. (Woburn, MA, USA) | hollow fiber | PEEK | N.A. | N.A. | 3.9–7.8 | 0.2–0.4 | 25.5–41.0 kg/h | 53.5 vol% | 40.2 vol% | 0.2 vol% | N.A. | N.A. | 0.01–0.16 vol% | N.A. | N.A. | 0.05–0.22 vol% | 65.0–71.0 | [54] |
synthetic | laboratory | - | spiral wound | CA | 0.0010 | 298 | 6.0; 11.0 and 16.0 | N.A. | N.A. | 50.0 mol% | 50.0 mol% | - | N.A. | N.A. | - | N.A. | N.A. | - | 86.8 | [64] |
synthetic | laboratory | - | hollow fiber | PDMS | 0.0010 | 298 | 6.0 and 16.0 | N.A. | N.A. | 50.0 mol% | 50.0 mol% | - | N.A. | N.A. | - | N.A. | N.A. | - | 19.8 | [64] |
synthetic | pilot | DuPont-Filmtec (Edina, MN, USA) | spiral wound | TFC PA | 1.2100 | 293 | 3.0 | N.A. | 0.46–0.50 L/min | 52.0 vol% | 48.0 vol% | - | N.A. | N.A. | - | 94.3–95.8 vol% | ~1.5–7.0 vol% 1 | - | 48.2 | [82] |
synthetic | laboratory | - | hollow fiber | PSf | N.A. | 293 | 2.0–20.0 | N.A. | N.A. | 65.0 vol% | 35.0 vol% | - | N.A. | N.A. | - | N.A. | N.A. | - | N.A. | [83] |
synthetic | laboratory | Toray Membrane USA, Inc. (Poway, CA, USA) | N.A. | TFC PA | 0.0125 | 294 | 0.7–1.2 | N.A. | 32 mL(STP)/min | 53.7 mol% | 46.3 mol% | - | 15.5 mol% | 44.9 mol% | - | 79.6 mol% | 20.5–mol% | - | N.A. | [87] |
synthetic | laboratory | Koch Membrane Systems, Inc. (Wilmington, DE, USA) | N.A. | TFC PA | 0.0125 | 294 | 2.5–4.5 | N.A. | 30 mL(STP)/min | 90.0 mol% | 10.0 mol% | - | 1.6 mol% | 3.5 mol% | - | 91.3 mol% | 8.7 mol% | - | N.A. | [87] |
synthetic | laboratory | UBE Europe GmbH (Düsseldorf, Germany) | hollow fiber | PI | 0.1800 | N.A. | 2.0–8.0 | N.A. | 10–1200 Nl/h | 50.0–80.0 vol% | 20.0–50.0 vol% | - | ~10.0 vol% 1 | ˂5% | - | up to 90.0 vol% | N.A. | - | N.A. | [151] |
synthetic | bench | UBE Europe GmbH (Düsseldorf, Germany) | hollow fiber | PI | N.A. | 313 | 6.0 | 0 | 100 N dm3/h | 68.0 mol% | 30.0 mol% | 2 mol% | 35.7 mol% | 61.0 mol% | 3.35 mol% | 93.5 mol% | 5.7 mol% | 0.95 mol% | N.A. | [152] |
synthetic | laboratory | Ube Industries, Ltd. (Düsseldorf, Germany) | hollow fiber | PI | N.A. | 303 | 7.0–14.5 | N.A. | N.A. | 80.0 vol% | 20.0 vol% | - | 53.2 vol% | 46.8 vol% | - | 93.8 vol% | 6.2 vol% | - | 72.7–90.8 | [153] |
synthetic | N.A. | PoroGen Corp. (Woburn, MA, USA) | hollow fiber | PEEK | 18.5800 | 298 | 3.0–20.0 | N.A. | 18–96 kg/h | 54.4 vol% | 45.6 vol% | - | N.A. | N.A. | - | ~97.0 vol% 1 | N.A. | - | 40.0–85.0 1 | [154] |
synthetic | N.A. | PoroGen Corp. (Woburn, MA, USA) | hollow fiber | PEEK | 18.5800 | 298 | 3.0–20.0 | N.A. | 18–96 kg/h | 60.0 vol% | 40 vol% | - | N.A. | N.A. | - | ~100 vol% 1 | N.A. | - | 25.0–90.0 1 | [154] |
synthetic | laboratory | - | hollow fiber | CA | 0.1800 | room | 3.0 | N.A. | 2.4 cc/min | 60.0 mol% | 40.0 mol% | - | N.A. | N.A. | - | >97.0 mol% | N.A. | - | 77.0 | [155] |
synthetic | laboratory | Toray Membrane USA, Inc. (Poway, CA, USA) | spiral wound | TFC PA | 0.1246 | 287-296 | 4.0–5.0 | N.A. | 14–100 mL(STP)/min | 56.1 mol% | 43.8 mol% | 1155 ppm | 36.1 mol% | 63.7 mol% | 1362 ppm | 99.0 | 1.0 mol% | 3 ppm | N.A. | [156] |
raw | pilot | Ube Industries, Ltd. (Düsseldorf, Germany) | hollow fiber | PI | N.A. | 288-298 | 6.0–8.0 | N.A. | 7 m3/h | 61.8 vol% | 37.9 vol% | 100 mg/m3 | 25.2 vol% | 74.9 vol% | 72.86 mg/m3 | 96.4 vol% | 2.2 vol% | 21.25 mg/m3 | N.A. | [52] |
raw | laboratory | Generon (Houston, TX, USA) | hollow fiber | PEC | 0.0110 | 308 | 7.0 | 19.9 m3/h | 54 m3/h | 51.0 mol% | 48.0 mol% | 0.09 mol% | 96 mol% | 3 mol% | 0.07 mol% | 24.0 mol% | 74 mol% | 0.1 mol% | 69.4 | [69] |
raw | pilot | Dupont Dow Filmtec (Edina, MN, USA) | spiral wound | TFC PA | 1.2100 | 293 | 3.0 | N.A. | 0.861–1.072 L/min | 52.5 vol% | 42.8 vol% | 55 ppm | N.A. | N.A. | N.A. | 97.0 vol% | 0.9 vol% | 5 ppm | 46.9–49.1 | [82] |
raw | pilot | N.A. | hollow fiber | PI | 0.1800 | N.A. | 2.0–90.0 | N.A. | 100 Nl/h | 69.0 vol% | 30.0 vol% | 20 ppm | ~3.5 vol% 1 | ˂5% | N.A. | up to 90.0 vol% | N.A. | - | N.A. | [151] |
raw | laboratory | Ube Industries, Ltd. (Düsseldorf, Germany) | hollow fiber | PI | N.A. | 303 | 4.3–8.5 | N.A. | N.A. | 70.0 vol% | 19.8 vol% | N.A. | 49.3 vol% | 42.8 vol% | N.A. | 80.7 vol% | 7.5 vol% | N.A. | 76.0–94.3 | [153] |
raw | industrial | Ube Industries, Ltd. (Düsseldorf, Germany) | hollow fiber | PI | N.A. | 303 | 10.8 | N.A. | N.A. | 57.4 vol% | 39.0 vol% | N.A. | 21.6 vol% | 75.8 vol% | N.A. | 81.7 vol% | 14.6 vol% | N.A. | [153] | |
raw | N.A. | Koch Membrane System Inc. (Wilmington, DE, USA) | flat sheet | TFC PA | N.A. | 294 | 2.0–5.0 | N.A. | 13.5 mL/min | 62.5 vol% | 35.5 vol% | N.A. | N.A. | N.A. | N.A. | 95.0 vol% | N.A. | N.A. | N.A. | [157] |
raw | bench | N.A. | hollow fiber | N.A. | 0.9300 | 305 | 36.0 and 29.0 | N.A. | 2.4∙10−4 –2.8∙10−4 m3/s and 1.7∙10−4 –1.9∙10−4 m3/s | 62.0–63.0 mol% | 36.5–37.5 mol% | ~0.5 mol% | N.A. | 16.0–21.0 mol% | N.A. | 97.0 mol% | N.A. | N.A. | 83.0 | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, W.; Gryta, M.; Daniluk, M.; Żak, S. Biogas Upgrading Using a Single-Membrane System: A Review. Membranes 2024, 14, 80. https://doi.org/10.3390/membranes14040080
Tomczak W, Gryta M, Daniluk M, Żak S. Biogas Upgrading Using a Single-Membrane System: A Review. Membranes. 2024; 14(4):80. https://doi.org/10.3390/membranes14040080
Chicago/Turabian StyleTomczak, Wirginia, Marek Gryta, Monika Daniluk, and Sławomir Żak. 2024. "Biogas Upgrading Using a Single-Membrane System: A Review" Membranes 14, no. 4: 80. https://doi.org/10.3390/membranes14040080
APA StyleTomczak, W., Gryta, M., Daniluk, M., & Żak, S. (2024). Biogas Upgrading Using a Single-Membrane System: A Review. Membranes, 14(4), 80. https://doi.org/10.3390/membranes14040080