Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of IMAM
2.3. Membrane Characterization
2.4. Batch Protein Adsorption and Desorption Experiments
3. Results and Discussion
3.1. IMAM Characterization
3.2. Protein Adsorption onto IMAM
3.2.1. Nonspecific Binding and Specific Binding
3.2.2. Adsorption Isotherm and Protein Adsorption Arrangement
3.2.3. Comparison with Literature Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaberc-Porekar, V.; Menart, V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 2001, 49, 335–360. [Google Scholar] [CrossRef]
- Wilchek, M.; Miron, T. Thirty years of affinity chromatography. React. Funct. Polym. 1999, 41, 263–268. [Google Scholar] [CrossRef]
- Zou, H.; Luo, Q.; Zhou, D. Affinity membrane chromatography for the analysis and purification of proteins. J. Biochem. Biophys. Methods 2001, 49, 199–240. [Google Scholar] [CrossRef]
- Klein, E. Affinity membranes: A 10-year review. J. Membr. Sci. 2000, 179, 1–27. [Google Scholar] [CrossRef]
- Suen, S.Y.; Liu, Y.C.; Chang, C.S. Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. J. Chromatogr. B 2003, 797, 305–319. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Wang, M.Y.; Suen, S.Y. Eco-friendly polylactic acid/rice husk ash mixed matrix membrane for efficient purification of lysozyme from chicken egg white. J. Taiwan Inst. Chem. Eng. 2020, 111, 11–23. [Google Scholar] [CrossRef]
- Song, C.P.; Ooi, C.W.; Tey, B.T.; Lu, C.-X.; Liu, B.-L.; Chang, Y.-K. Direct recovery of enhanced green fluorescent protein from unclarified Escherichia coli homogenate using ion exchange chromatography in stirred fluidized bed. Int. J. Biol. Macromol. 2020, 164, 4455–4465. [Google Scholar] [CrossRef]
- Rodriguez, E.L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A.G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D.S. Affinity chromatography: A review of trends and developments over the past 50 years. J. Chromatogr. B 2020, 1157, 122332. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Martín del Valle, E.M.; Galán, M.A. Immobilized metal-ion affinity chromatography: Status and trends. Sep. Purif. Rev. 2007, 36, 71–111. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Lin, S.C.; Suen, S.Y.; Hsu, W.H. Effect of number of poly(his) tags on the adsorption of engineered proteins on immobilized metal affinity chromatography adsorbents. Process Biochem. 2006, 41, 2058–2067. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, T.T.; Suen, S.Y.; Lin, S.C. Equilibrium adsorption of poly(his)-tagged proteins on immobilized metal affinity chromatographic adsorbents. Biochem. Eng. 2011, 54, 1–9. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, G. Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation. ACS Appl. Mater. Interfaces 2014, 6, 925–932. [Google Scholar] [CrossRef]
- Moore, C.P.; Pieterson, K.; DeSousa, J.M.; Toote, L.E.; Wright, D.W. Characterization and utility of immobilized metal affinity-functionalized cellulose membranes for point-of-care malaria diagnostics. J. Chromatogr. B 2021, 1186, 123023. [Google Scholar] [CrossRef]
- Hu, H.L.; Wang, M.Y.; Chung, C.H.; Suen, S.Y. Purification of VP3 protein of infectious bursal disease virus using nickel ion-immobilized regenerated cellulose-based membranes. J. Chromatogr. B 2006, 840, 76–84. [Google Scholar] [CrossRef]
- Wong, H.L.; Hu, N.J.; Juang, T.Y.; Liu, Y.C. Co-Immobilization of xylanase and scaffolding protein onto an immobilized metal ion affinity membrane. Catalysts 2020, 10, 1408. [Google Scholar] [CrossRef]
- Irankunda, R.; Camaño Echavarría, J.A.; Paris, C.; Stefan, L.; Desobry, S.; Selmeczi, K.; Muhr, L.; Canabady-Rochelle, L. Metal-chelating peptides separation using immobilized metal ion affinity chromatography: Experimental methodology and simulation. Separations 2022, 9, 370. [Google Scholar] [CrossRef]
- Avramescu, M.E.; Borneman, Z.; Wessling, M. Particle-loaded hollow-fiber membrane adsorbers for lysozyme separation. J. Membr. Sci. 2008, 322, 306–313. [Google Scholar] [CrossRef]
- Saufi, S.M.; Fee, C.J. Fractionation of -lactoglobulin from whey by mixed matrix membrane ion exchange chromatography. Biotechnol. Bioeng. 2009, 103, 138–147. [Google Scholar] [CrossRef]
- Chiu, H.T.; Lin, J.M.; Cheng, T.H.; Chou, S.Y.; Huang, C.C. Direct purification of lysozyme from chicken egg white using weak acidic polyacrylonitrile nanofiber-based membranes. J. Appl. Polym. Sci. 2012, 125, E616–E621. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, F.; Zhang, G. Mathematical analysis of affinity membrane chromatography. J. Chromatogr. A 2005, 1081, 156–162. [Google Scholar] [CrossRef]
- Kubota, N.; Tatsumoto, N.; Sano, T. Recovery of serum proteins using cellulosic affinity membranes modified with tannic acid. Carbohydr. Polym. 1999, 40, 107–113. [Google Scholar] [CrossRef]
- Vançan, S.; Miranda, E.A.; Bueno, S.M.A. IMAC of human IgG: Studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochem. 2002, 37, 573–579. [Google Scholar] [CrossRef]
- Beeskow, T.C.; Kusharyoto, W.; Anspach, F.B.; Kroner, K.H.; Deckwer, W.D. Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J. Chromatogr. 1995, 715, 49–65. [Google Scholar] [CrossRef]
- Denizli, A.; Tanyolac, D.; Salih, B.; Aydinlar, E.; Ozdural, A.; Piskin, E. Adsorption of heavy-metal ions on cibacron blue F3GA-immobilized microporous polyvinylbutyral-based affinity membranes. J. Membr. Sci. 1997, 137, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wan, L.S.; Xu, Z.K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. J. Membr. Sci. 2007, 304, 8–23. [Google Scholar] [CrossRef]
- Zhang, G.J.; Meng, H.; Ji, S.L. Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance. Desalination 2009, 242, 313–324. [Google Scholar] [CrossRef]
- Neghlani, P.K.; Rafizadeh, M.; Taromi, F.A. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 2011, 186, 182–189. [Google Scholar] [CrossRef]
- Chaúque, E.F.C.; Dlamini, L.N.; Adelodun, A.A.; Greyling, C.J.; Ngila, J.C. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Phys. Chem. Earth 2017, 100, 201–211. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, H.; Xu, Z.; Li, F. Surface modification of polyacrylonitrile membrane by chemical reaction and physical coating: Comparison between static and pore-flowing procedures. ACS Omega 2018, 3, 4231–4241. [Google Scholar] [CrossRef]
- Hsin, A.; How, S.C.; Wang, S.S.S.; Ooi, C.W.; Chiu, C.Y.; Chang, Y.K. Kinetic and thermodynamic studies of lysozyme adsorption on cibacron blue F3GA dye-ligand immobilized on aminated nanofiber membrane. Membranes 2021, 11, 963. [Google Scholar] [CrossRef]
- Che, A.F.; Huang, X.J.; Xu, Z.K. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J. Membr. Sci. 2011, 366, 272–277. [Google Scholar] [CrossRef]
- Chaga, G.S. Twenty-five years of immobilized metal ion affinity chromatography: Past, present and future. J. Biochem. Biophys. Methods 2001, 49, 313–334. [Google Scholar] [CrossRef]
- Ueda, E.K.; Gout, P.W.; Morganti, L. Current and prospective applications of metal ion-protein binding. J. Chromatogr. A 2003, 988, 1–23. [Google Scholar] [CrossRef]
- Wu, C.Y.; Suen, S.Y.; Chen, S.C.; Tzeng, J.H. Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J. Chromatogr. A 2003, 996, 53–70. [Google Scholar] [CrossRef]
- Şenel, S.; Say, R.; Arıca, Y.; Denizli, A. Zinc ion-promoted adsorption of lysozyme to cibacron blue F3GA-attached microporous polyamide hollow-fiber membranes. Colloids Surf. A Physicochem. Eng. Asp. 2001, 182, 161–173. [Google Scholar] [CrossRef]
- Denizli, A.; Senel, S.; Arica, M.Y. Cibacron blue F3GA and Cu(II) derived poly(2-hydroxyethylmethacrylate) membranes for lysozyme adsorption. Colloids Surf. B Biointerfaces 1998, 11, 113–122. [Google Scholar] [CrossRef]
- Liu, J.W.; Yang, T.; Chen, S.; Chen, X.W.; Wang, J.H. Nickel chelating functionalization of graphene composite for metal affinity membrane isolation of lysozyme. J. Mater. Chem. B 2013, 1, 810. [Google Scholar] [CrossRef]
- Kroll, S.; Meyer, L.; Graf, A.M.; Beutel, S.; Gokler, J.; Doring, S.; Klaus, U.; Scheper, T. Heterogeneous surface modification of hollow fiber membranes for use in micro-reactor systems. J. Membr. Sci. 2007, 299, 181–189. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Modification of alkali lignin with poly(ethylene glycol) diglycidyl ether to be used as a thickener in bio-lubricant formulations. Polymers 2018, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Naga, N.; Sato, M.; Mori, K.; Nageh, H.; Nakano, T. Synthesis of network polymers by means of addition reactions of multifunctional-amine and poly(ethylene glycol) diglycidyl ether or diacrylate compounds. Polymers 2020, 12, 2047. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Wang, M.Y.; Suen, S.Y. Purification of hepatocyte growth factor (HGF) using polyvinyldiene fluoride-based immobilized metal affinity membranes: Equilibrium adsorption study. J. Chromatogr. B 2002, 766, 133–143. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Chang, H.C.; Wu, V.W.K. Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam. Relat. Mater. 2007, 16, 872–876. [Google Scholar] [CrossRef]
- Proctor, V.A.; Cunningham, F.E. The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Crit. Rev. Food Sci. Nutr. 1988, 26, 359–395. [Google Scholar] [CrossRef]
- Stawski, T.M.; van den Heuvel, D.B.; Besselink, R.; Tobler, D.J.; Benning, L.G. Mechanism of silica-lysozyme composite formation unrevelled by in situ fast SAXS. Beilstein J. Nanotechnol. 2019, 10, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Lundin, M.; Elofsson, U.M.; Blomberg, E.; Rutland, M.W. Adsorption of lysozyme, b-casein and their layer-by-layer formation on hydrophilic surfaces: Effect of ionic strength. Colloids Surf. B Biointerfaces 2010, 77, 1–11. [Google Scholar] [CrossRef]
- Peters, T. Serum albumin. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T., Richards, F.M., Eds.; Academic Press: Orlando, FL, USA, 1985; pp. 161–245. [Google Scholar]
- Yang, F.; Moss, L.G.; Phillips, G.N. The molecular structure of green fluorescent protein. Nat. Biotechnol. 1996, 14, 1246–1251. [Google Scholar] [CrossRef]
- Camperi, S.A.; Grasselli, M.; Navarro del Canizo, A.A.; Smolko, E.E.; Cascone, O. Chromatographic characterization of immobilized metal ion hollow-fiber affinity membranes obtained by direct grafting. J. Liq. Chromatogr. Rel. Technol. 1998, 21, 1283–1294. [Google Scholar] [CrossRef]
- Iwata, H.; Saito, K.; Furusaki, S.; Sugo, T.; Okamato, J. Adsorption characteristics of an immobilized metal affinity membrane. Biotechnol. Prog. 1991, 7, 412–418. [Google Scholar] [CrossRef]
EDA Reaction | EGDGE Reaction | Cu2+ Capacity (μmol/cm2) | ||
---|---|---|---|---|
Time (h) | Temperature (°C) | Time (h) | Temperature (°C) | |
3 | 50 | 4 | 60 | 3.2 ± 0.04 |
60 | 4.8 ± 0.08 | |||
70 | 3.5 ± 0.12 | |||
2 | 60 | 4 | 60 | 4.0 ± 0.36 |
3 | 4.8 ± 0.08 | |||
4 | 4.6 ± 0.12 | |||
3 | 60 | 4 | 40 | 1.7 ± 0.24 |
60 | 4.8 ± 0.08 | |||
70 | 3.2 ± 0.24 | |||
3 | 60 | 2 | 60 | 2.4 ± 0.58 |
4 | 4.8 ± 0.08 | |||
6 | 3.4 ± 0.20 |
Membrane Matrix | Chelator | Cu2+ Source | Cu2+ Capacity | Adsorption pH | Protein | Protein Adsorption Capacity | Ref. |
---|---|---|---|---|---|---|---|
PAN | 0.2 M IDA | 0.05 M CuSO4 | 4.8 μmol/cm2 (253.4 µmol/mL) (1.47 μmol/mg) | pH 7 | lysozyme | 0.037 μmol/cm2 (1.96 μmol/mL) (0.0114 μmol/mg) or 530 μg/cm2 (163 μg/mg) | This study |
BSA | 0.001 μmol/cm2 (0.053 μmol/mL) (0.00031 μmol/mg) or 69.3 μg/cm2 (21.5 μg/mg) | ||||||
pH 8 | GFP-His6 | 0.0026 μmol/cm2 (0.135 μmol/mL) (0.000785 μmol/mg) or 72.7 μg/cm2 (22.3 μg/mg) | |||||
Poly(vinyl alcohol- co-ethylene) | 0.2 M IDA | 0.025 M CuCl2 | 1.13 ± 0.07 μmol/mg | pH 7 | lysozyme | 199 ± 6 μg/mg | [12] |
Hydroxyethyl cellulose-coated nylon | 0.75 M IDA | 0.01 M CuCl2 | 0.17 μmol/cm2 | pH 7 | lysozyme | 321 μg/cm2 | [23] |
Regenerated cellulose | 0.2 M IDA | 0.1 M CuSO4 | 1.22 μmol/cm2 | pH 7.4 | lysozyme | 0.0244 μmol/cm2 | [34] |
BSA | 0.0015 μmol/cm2 | ||||||
Polyvinylidene Fluoride | 0.75 M IDA | 0.1 M CuSO4 | 0.42–0.53 μmol/cm2 | pH 7 | lysozyme | 0.055–0.085 μmol/cm2 | [42] |
Surface-modified polyethylene hollow fiber | 1 M IDA | 0.5 M CuSO4 | 1500 μmol/mL | pH 7 | lysozyme | 1–8.5 μmol/mL | [49] |
Glycidyl methacrylate-grafted polyethylene hollow fiber | 0.425 M IDA | 0.01 M CuSO4 | 180 µmol/mL | pH 8 | BSA | 0.26 µmol/mL | [50] |
Polyethersulfone | 2 M IDA | 0.5 M CuSO4 | (5.82 ± 0.22)×10−3 μmol/mg | pH 8 | GFP-His6 | 1.14–3.01 μg/mg | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-J.; Chang, H.-C.; Wang, M.-Y.; Suen, S.-Y. Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption. Membranes 2023, 13, 271. https://doi.org/10.3390/membranes13030271
Yang Y-J, Chang H-C, Wang M-Y, Suen S-Y. Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption. Membranes. 2023; 13(3):271. https://doi.org/10.3390/membranes13030271
Chicago/Turabian StyleYang, Yin-Jie, Hou-Chien Chang, Min-Ying Wang, and Shing-Yi Suen. 2023. "Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption" Membranes 13, no. 3: 271. https://doi.org/10.3390/membranes13030271
APA StyleYang, Y. -J., Chang, H. -C., Wang, M. -Y., & Suen, S. -Y. (2023). Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption. Membranes, 13(3), 271. https://doi.org/10.3390/membranes13030271