A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane
Abstract
:1. Introduction
2. Biological Membranes’ Protein
2.1. Thioredoxin Reductase
2.2. Cysteine Protease
2.3. Protein Phosphatases
2.4. Triosephosphate Isomerase
2.5. Alcohol Dehydrogenase
2.6. GTPases
2.7. KERP1
2.8. Protein Kinase
2.9. Nickman Pick Type (NPC)
2.10. Interferon-Gamma (IFN-γ) Receptor
2.11. ERGIC53-like Protein
3. Potential Compound
3.1. Natural Products
3.2. Synthetic Compounds
4. Synergistic Studies of Auranofin and Metronidazole
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manochitra, K.; Parija, S.C. In-silico prediction and modeling of the Entamoeba histolytica proteins: Serine-rich Entamoeba histolytica protein and 29 kDa cysteine-rich protease. PeerJ 2017, 5, e3160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Environment and Health in Developing Countries. Available online: https://www.who.int/heli/risks/ehindevcoun/en/ (accessed on 26 December 2021).
- Sauvey, C.; Ehrenkaufer, G.; Debnath, A.; Abagyan, R. Antimalarial drug mefloquine kills both trophozoite and cyst stages of entamoeba mefloquine and Entamoeba histolytica. BioRxiv 2018, 501999. [Google Scholar] [CrossRef]
- Haapanen, S.; Parkkila, S. Management of Entamoeba histolytica infection: Treatment strategies and possible new drug targets. In Topics in Medicinal Chemistry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ceruelos, A.H.; Romero-Quezada, L.C.; Ruvalcaba ledezma, J.C.; Lopez Contreras, L. Therapeutic uses of metronidazole and its side effects: An update. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 397–401. [Google Scholar]
- Weir, C.B.; Le, J.K. Metronidazole. In Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, 7th ed.; 2021; pp. 1807–1849. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539728 (accessed on 1 December 2021).
- Andrade, R.M.; Reed, S.L. New drug target in protozoan parasites: The role of thioredoxin reductase. Front. Microbiol. 2015, 6, 975. [Google Scholar] [CrossRef]
- Ehrenkaufer, G.M.; Suresh, S.; Solow-Cordero, D.; Singh, U. High-throughput screening of Entamoeba identifies compounds that target both life cycle stages and which are effective against metronidazole-resistant parasites. Front. Cell. Infect. Microbiol. 2018, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Stadtländer, C.T.K.-H. Biomembrane simulations: Computational studies of biological membranes. Inform. Med. Unlocked 2021, 26, 100744. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Chen, X.; Li, J. Multifunctional biomedical materials derived from biological membranes. Adv. Mater. 2022, 2107406. [Google Scholar] [CrossRef]
- van Spriel, A.B.; van den Bogaart, G.; Cambi, A. Editorial: Membrane domains as new drug targets. Front. Physiol. 2015, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Niesen MJ, M.; Marshall, S.S.; Miller, T.F.; Clemons, W.M. Improving membrane protein expression by optimizing integration efficiency. J. Biol. Chem. 2017, 292, 19537–19545. [Google Scholar] [CrossRef] [Green Version]
- Azmi, N.; Othman, N. Entamoeba histolytica: Proteomics bioinformatics reveals predictive functions and protein-protein interactions of differentially abundant membrane and cytosolic proteins. Membranes 2021, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Mi-ichi, F.; Yoshida, H.; Hamano, S. Entamoeba encystation: New targets to prevent the transmission of amebiasis. PLoS Pathog. 2016, 12, e1005845. [Google Scholar] [CrossRef] [PubMed]
- Felix, L.O.; Mylonakis, E.; Fuchs, B.B. Thioredoxin reductase is a valid target for anti-microbial therapeutic development against gram-positive bacteria. Front. Microbiol. 2021, 12, 663481. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.; Matthiesen, J.; Kühne, V.; Lotter, H.; Handal, G.; Nozaki, T.; Saito-Nakano, Y.; Schümann, M.; Roeder, T.; Tannich, E.; et al. The cell surface proteome of Entamoeba histolytica. Mol. Cell. Proteom. 2014, 13, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, D.G.; Regner, E.L.; Iglesias, A.A.; Guerrero, S.A. Entamoeba histolytica thioredoxin reductase: Molecular and functional characterization of its atypical properties. Biochim. Biophys. Acta 2012, 1820, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, G.; Nozaki, T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol. Biochem. Parasitol. 2016, 206, 39–45. [Google Scholar] [CrossRef]
- Holmgren, A.; Johansson, C.; Berndt, C.; Lonn, M.E.; Hudemann, C.; Lillig, C.H. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 2005, 33, 1375–1377. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, T.; Flohe, L. The thiol-based redox networks of pathogens: Unexploited targets in the search for new drugs. BioFactors 2006, 27, 109–120. [Google Scholar] [CrossRef]
- Shahzadi, Z.; Abbas, G.; Azam, S.S. Relational dynamics obtained through simulation studies of thioredoxin reductase: From a multi-drug resistant Entamoeba histolytica. J. Mol. Liq. 2020, 307, 112939. [Google Scholar] [CrossRef]
- Parsonage, D.; Sheng, F.; Hirata, K.; Debnath, A.; McKerrow, J.H.; Reed, S.L.; Abagyan, R.; Poole, L.B.; Podust, L.M. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. J. Struct. Biol. 2016, 194, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Goswami, A.K.; Sharma, H.K.; Gogoi, N.; Gogoi, B.J. Network-pharmacology and DFT-based approach towards identification of leads from Homalomena aromatica for multi-target in-silico screening on Entamoeba histolytica proteins. Curr. Drug Ther. 2019, 15, 226–237. [Google Scholar] [CrossRef]
- Tusar, L.; Usenik, A.; Turk, B.; Turk, D. Mechanisms applied by protein inhibitors to inhibit cysteine proteases. Int. J. Mol. Sci. 2021, 22, 997. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef]
- Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2004, 101, 4384–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol. 2016, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Rawat ARoy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srigastava, V.K. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol. Res. 2021, 249, 126784. [Google Scholar] [CrossRef] [PubMed]
- Anwar, T.; Gourinath, S. EhPPTome: Entamoeba histolytica protein phosphotome database. Int. J. Bioinform. Res. Appl. 2017, 13, 178–183. [Google Scholar] [CrossRef]
- Ramírez-Tapia, A.L.; Baylón-Pacheco, L.; Espíritu-Gordillo, P.; Rosales-Encina, J.L. Characterisation of the protein tyrosine phosphatase PRL from Entamoeba histolytica. Exp. Parasitol. 2015, 159, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Lopez, F.; Baylon-Pacheco, L.; Vanegas-Villa, S.C.; Rosales-Encina, J.L. Characterisation of low molecular weight protein tyrosine phosphatases of Entamoeba histolytica. Biochimie 2021, 180, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Vique-Sanchez, J.L.; Jimenez-Pineda, A.; Benítez-Cardoza, C.G. Amoebicidal effect of 5,5′-[(4-nitrophenyl) methylene] bis(6-hydroxy-2-mercapto-3-methyl-4(3H)-pyrimidinone), a new drug against Entamoeba histolytica. Arch. Pharm. 2021, 354, 2000263. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, A.; Clark, D.; Stanley, S.L., Jr. Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) as a target for anti-amoebic agents. J. Anti-Microb. Chemother. 2004, 54, 56–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowerre, K.; Hemme, C.; Espinosa, A. Prediction of the Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein structure using bioinformatics tools. Fed. Am. Soc. Exp. Biol. J. 2017, 31, 603.23. [Google Scholar]
- Konig, C.; Meyer, M.; Lender, C.; Nehls, S.; Wallaschkowski, T.; Holm, T.; Matthies, T.; Lercher, D.; Matthiesen, J.; Fehling, H.; et al. An alcohol dehydrogenase 3 (ADH3) from Entamoeba histolytica is involved in the detoxification of toxic aldehydes. Microorganisms 2020, 8, 1608. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.S.; Padhan, N.; Aslam, S.; Bhattacharya, A.; Lohia, A. The calcium-binding protein EhCaBP6 is a microtubular-end binding protein in Entamoeba histolytica. Cell. Microbiol. 2013, 15, 2020–2033. [Google Scholar] [CrossRef]
- Verma, D.; Agarwal, S.; Keerthi, V.; Murmu, A.; Gourinath, S.; Bhattacharya, A.; Chary, K.V.R. Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) is a novel GTPase. Biochem. Biophys. Res. Commun. 2020, 527, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Castro, S.; Bolaños, J.; Orozco, E. Lipids in Entamoeba histolytica: Host-dependence and virulence factors. Front. Cell. Infect. Microbiol. 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Weedall, G.D. The entamoeba lysine and glutamic acid-rich protein (KERP1) virulence factor gene are present in the genomes of Entamoeba nuttalli, Entamoeba dispar, and Entamoeba moshkovskii. Mol. Biochem. Parasitol. 2020, 238, 111293. [Google Scholar] [CrossRef]
- Perdomo, D.; Baron, B.; Rojo-Domínguez, A.; Raynal, B.; England, P.; Guillén, N. The α-helical regions of KERP1 are important in Entamoeba histolytica adherence to human cells. Sci. Rep. 2013, 3, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santi-Rocca, J.; Weber, C.; Guigon, G.; Sismeiro, O.; Coppée, J.Y.; Guillén, N. The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cell. Microbiol. 2008, 10, 202–217. [Google Scholar] [CrossRef]
- Ahmad, A.; Mishra SLata, S.; Gourinath, S. Role of kinases in virulence and pathogenesis of protozoan parasite Entamoeba histolytica. Front. Biosci.-Landmark 2020, 25, 1617–1635. [Google Scholar]
- Cohen, P. Protein kinases—The major drug targets of the twenty-first century. Nat. Rev. Drug Discov. 2002, 1, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Abhyankar, M.M.; Shrimal, S.; Gilchrist, C.A.; Bhattacharya, A.; Petri, W.A. The Entamoeba histolytica serum-inducible transmembrane kinase EhTMKB1-9 is involved in intestinal amebiasis. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buss, S.N.; Hamano, S.; Vidrich, A.; Evans, C.; Zhang, Y.; Crasta, O.R.; Sobral, B.W.; Gilchrist, C.A.; Petri, W.A., Jr. Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis. Int. J. Parasitol. 2010, 40, 833–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Contreras, L.; Hernandez-Ramírez, V.I.; Herrera-Martínez, M. Structural and functional characterization of the divergent entamoeba Src using Src inhibitor-1. Parasites Vectors 2017, 10, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvey, C.; Ehrenkaufer, G.; Shi, D.; Debnath, A.; Abagyan, R. Antineoplastic kinase inhibitors: A new class of potent anti-amoebic compounds. PLoS Negl. Trop. Dis. 2021, 15, e0008425. [Google Scholar] [CrossRef] [PubMed]
- Mi-ichi, F.; Ishikawa, T.; Tam, V.K.; Deloer, S.; Hamano, S.; Hamada, T.; Yoshida, H. Characterisation of Entamoeba histolytica adenosine 5’-phosphosulfate (APS) kinase; validation as a target and provision of leads for the development of new drugs against amoebiasis. PLoS Negl. Trop. Dis. 2019, 13, e0007633. [Google Scholar] [CrossRef] [PubMed]
- Goldston, A.M.; Powell, R.R.; Temesvari, L.A. Sink or swim: Lipid rafts in parasite pathogenesis. Trends Parasitol. 2012, 28, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Bolanos, J.; Betanzos, A.; Javier-Reyna, R.; Garcia-Rivera, G.; Huerta, M.; Pais-Morales, J.; Gonzalez-Robles, A.; Rodriguez, M.A.; Schnoor, M.; Orozco, E. EhNPC1 and EhNPC2 proteins participate in trafficking of exogenous cholesterol in Entamoeba histolytica trophozoites: Relevance for phagocytosis. PLoS Pathog. 2017, 12, e1006089. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, S.L.; Becerra-Gonzalez, V.M.; Munoz-Ortega, M.H.; Loera-Muro, V.M.; Ávila-Blanco, M.E.; Medina-Rosales, M.N.; Ventura-Juarez, J. Evaluation of the PEΔIII-LC3-KDEL3 chimeric protein of Entamoeba histolytica-lectin as a vaccine candidate against amebic liver abscess. J. Immunol. Res. 2021, 2021, 6697900. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Ortega, J.; Talamás-Rohana, P.; Muñoz-Ortega, M.H.; Aldaba-Muruato, L.R.; Martínez-Hernández, S.L.; Campos-Esparza, M.; Cervantes-García, D.; Leon-Coria, A.; Moreau, F.; Chadee, K.; et al. Functional characterization of an interferon gamma receptor-like protein on Entamoeba histolytica. Infect. Immun. 2019, 87, e00540-19. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Suguna, K. Crystal structure of the legume lectin-like domain of an ERGIC-53-like protein from Entamoeba histolytica. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2019, 75, 197–204. [Google Scholar] [CrossRef]
- Mehdi, M.A.H.; Omar, G.M.N.; Farooqui, M.; Pradhan, V. Therapeutic effect of Tamarindus Indica extracts on the pathogenesis of Entamoeba histolytica in-vivo. Inter. J. Pharm. Sci. Res. 2016, 4, 1–23. [Google Scholar]
- Shaker, E.M.; Al-Shaibani, K.T.; Jameel Al-abodi, H.R. Effect of alcohol extract of the green tea plant Camellia sinensis as therapeutic treatment of parasite Entamoeba histolytica. Plant Arch. 2018, 18, 953–959. [Google Scholar]
- Sacco, L.N.; Finklea, K.M. Synthetic Drugs: Overview and Issues for Congress; Congressional Research Service: Washington, DC, USA, 2011.
- Inam, A.; Mittal, S.; Rajala, M.S.; Avecilla, F.; Azam, A. Synthesis and biological evaluation of 4-(2-(dimethylamino)ethoxy)benzohydrazide derivatives as inhibitors of Entamoeba histolytica. Eur. J. Med. Chem. 2016, 124, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Shaulov, Y.; Sarid, L.; Trebicz-Geffen, M.; Ankri, S. Entamoeba histolytica adaptation to auranofin: A phenotypic and multi-omics characterization. Antioxidants 2021, 10, 1240. [Google Scholar] [CrossRef] [PubMed]
- Owings, J.P.; McNair, N.N.; Mui, Y.F.; Gustafsson, T.N.; Holmgren, A.; Contel, M.; Goldberg, J.B.; Mead, J.R. Auranofin and n-heterocyclic carbene gold-analogs are potent inhibitors of the bacteria Helicobacter pylori. FEMS Microbiol. Lett. 2016, 363, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitsch, D. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising anti-microbial. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 321–327. [Google Scholar] [CrossRef] [PubMed]
Reference | Protein Target | Compound |
---|---|---|
[22] | Thioredoxin reductase | Auranofin |
[21] | Thioredoxin reductase | (1-(carboxymethyl)-4-(4-methylthiazole-5-carboxamido)-3H-pyrazol-1-ium-3-ide) |
[23] | Thioredoxin reductase | Homalomena aromatica Schott
|
[24] | Cysteine protease | Macrocypins, thyropins, and serpins |
[8] | Protein phosphatases2 a | Calyculin, fostriecin, and okadaic acid |
[30] | Recombinant tyrosine phosphatase regenerating liver | P.T.P. inhibitor o-vanadate |
[31] | Low molecular weight tyrosine phosphatases |
|
[32] | Triosephosphate isomerase | 5,5′-[(4-nitrophenyl) methylene] bis(6-hydroxy-2-mercapto-3-methyl-4(3H)-pyrimidinone) or D4 |
[34] | Alcohol dehydrogenase | Lab-tested pyrazoline derivatives |
[37] | EhCaBP6 | - |
[13] | Rho family GTPases | - |
[44] | KERP1 | - |
[47] | Kinase | Dasatinib, bosutinib, ibrutinib, ponatinib, neratinib, and olmutinib |
[44] | EhTMKB1-9 | - |
[46] | Src kinases | - |
[48] | Adenosine 5′-phosphosulfate kinase (EhAPSK) | 2-(3-fluorophenoxy)- N-[4-(2-pyridyl)thiazol-2-yl] -acetamide, 3-phenyl-N-[4-(2-pyridyl)thiazol-2-yl]-imidazole-4-carboxamide |
[48] | Adenosine 5′-phosphosulfate kinase (EhAPSK) | Auranofin |
[38] | Nickman Pick Type 1 | - |
[38] | Nickman Pick Type 2 | - |
[51] | Interferon-gamma (IFN-γ) receptor | STAT1 inhibitor fludarabine |
[53] | ERGIC53-like protein | - |
[54] | - | Tamarindus indica
|
[55] | - | Camellia sinensis.
|
[57] | - | N′-(2-chlorobenzylidene)-4-(2-(dimethylamino) ethoxy) benzohydrazide |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasni, N.; Saidin, S.; Arifin, N.; Azman, D.K.; Shin, L.N.; Othman, N. A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane. Membranes 2022, 12, 396. https://doi.org/10.3390/membranes12040396
Jasni N, Saidin S, Arifin N, Azman DK, Shin LN, Othman N. A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane. Membranes. 2022; 12(4):396. https://doi.org/10.3390/membranes12040396
Chicago/Turabian StyleJasni, Nurhana, Syazwan Saidin, Norsyahida Arifin, Daruliza Kernain Azman, Lai Ngit Shin, and Nurulhasanah Othman. 2022. "A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane" Membranes 12, no. 4: 396. https://doi.org/10.3390/membranes12040396
APA StyleJasni, N., Saidin, S., Arifin, N., Azman, D. K., Shin, L. N., & Othman, N. (2022). A Review: Natural and Synthetic Compounds Targeting Entamoeba histolytica and Its Biological Membrane. Membranes, 12(4), 396. https://doi.org/10.3390/membranes12040396