Interaction of Lipophilic Cytarabine Derivatives with Biomembrane Model at the Air/Water Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cytarabine Prodrugs
2.2.1. 4-N-Myristoyl-4’,6’-O-dimyristoyl-cytarabine (trimyristoyl–cytarabine)
2.2.2. 4-N-Stearoyl-4’,6’-O-distearoyl-cytarabine (tristearoyl–cytarabine)
2.3. Surface Pressure/Mean Molecular Area Isotherms
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillem, J.; Giuffrida, M.; Krick, E. Efficacy and toxicity of carboplatin and cytarabine chemotherapy for dogs with relapsed or refractory lymphoma. Vet. Comp. Oncol. 2010, 15, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Prakasha-Gowda, A.S.; Polizzi, J.M.; Eckert, K.A.; Spratt, T.E. Incorporation of Gemcitabine and Cytarabine into DNA by DNA Polymerase β and Ligase III/XRCC1. Biochemistry 2010, 49, 4833–4840. [Google Scholar] [CrossRef]
- Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev. 2016, 116, 14379–14455. [Google Scholar] [CrossRef]
- Pastina, B.; Early, P.J.; Bergman, R.L.; Nettifee, J.; Maller, A.; Bray, K.T.; Waldron, R.J.; Castel, A.M.; Munana, K.R.; Papich, M.G.; et al. The pharmacokinetics of cytarabine administered subcutaneously, combined with prednisone, in dogs with meningoencephalomyelitis of unknown etiology. J. Vet. Pharmacol. Therap. 2018, 41, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.R.; Foon, K.A.; Redner, R.L.; Raptis, A.; Agha, M.; Hou, J.-Z.; Duggal, S.; Luong, T.M.; Schlesselman, J.J.; Boyiadzis, M. Fludarabine and cytarabine in patientswith acute myeloid leukemia refractory to two different courses of front-linechemotherapy. Leuk. Res. 2011, 35, 885–888. [Google Scholar] [CrossRef]
- Chik, F.; Machnes, Z.; Szyet, M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donors-adenosyl methionine and the DNA methylation inhibitor 5-aza-2 0 –deoxy-cytidine. Carcinogenesis 2014, 35, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.J.; De Jonghe, S.; Daelemans, D.; Herdewijnet, P. l-Aspartic and l-glutamic acid ester-based ProTides of anticancer nucleosides: Synthesis and antitumoral evaluation. Bioorg. Med. Chem. Lett. 2016, 26, 2142–2146. [Google Scholar] [CrossRef]
- Berrio-Escobar, J.F.; Pastrana Restrepo, M.H.; Galeano Jaramillo, E.; Márquez Fernández, D.M.; Márquez Fernández, M.E.; Martínez Martínez, A. Synthesis and cytotoxic activity of per-acetylated and halogenated derivatives of nucleosides in breast cancer cells. Ars Pharm. 2017, 58, 145–154. [Google Scholar]
- Gorzkiewicz, M.; Klajnert-Maculewicz, B. Dendrimers as nanocarriers for nucleoside analogues. Eur. J. Pharm. Biopharm. 2017, 114, 43–56. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Mandal, D.; Paranget, K. Synthesis and evaluation of fatty acyl ester derivatives of cytarabine as anti-leukemia agents. Eur. J. Med. Chem. 2010, 45, 4601–4608. [Google Scholar] [CrossRef]
- Sarpietro, M.G.; Ottimo, S.; Giuffrida, M.C.; Rocco, F.; Ceruti, M.; Castelli, F. Synthesis of n-squalenoyl cytarabine and evaluation of its affinity with phospholipid bilayers and monolayers. Int. J. Pharm. 2011, 406, 69–77. [Google Scholar] [CrossRef]
- Bourgaux, C.; Couvreur, P. Interactions of anticancer drugs with biomembranes: What can we learn from model membranes? J. Control Release 2014, 190, 127–138. [Google Scholar] [CrossRef]
- Rojewska, M.; Smułek, W.; Kaczorek, E. Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. Membranes 2021, 11, 707. [Google Scholar] [CrossRef]
- Pignatello, R.; Musumeci, T.; Basile, L.; Carbone, C.; Puglisi, G. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci. 2011, 3, 4–14. [Google Scholar] [CrossRef]
- Charcosset, C.; Sebaaly, C. Lipid Membrane Models for Biomembrane Properties Investigation. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 311–340. [Google Scholar]
- Chalmpes, N.; Patila, M.; Kouloumpis, A.; Alatzoglou, C.; Spyrou, K.; Subrati, M.; Polydera, A.C.; Bourlinos, A.B.; Stamatis, H.; Gournis, D. Graphene Oxide − Cytochrome Multilayered Structures for Biocatalytic Applications: Decrypting the Role of Surfactant in Langmuir − Schaefer Layer Deposition. ACS Appl. Mater. Interfaces 2022, 14, 26204–26215. [Google Scholar] [CrossRef]
- Kouloumpis, A.; Vourdas, N.; Zygouri, P.; Chalmpes, N.; Potsi, G.; Kostas, V.; Spyrou, K.; Stathopoulos, V.N.; Gournis, D.; Rudolf, P. Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method. J. Colloid Interface Sci. 2018, 524, 388–398. [Google Scholar] [CrossRef]
- Lemma, T.; Marques Ruiz, G.C.; de Oliveira, O.N., Jr.; Constantino, C.J.L. The pesticide picloram affects biomembrane models made with Langmuir monolayers. Colloids Surf. B Biointerfaces 2019, 181, 953–958. [Google Scholar] [CrossRef]
- Casadó, A.; Giuffrida, M.C.; Sagristá, M.L.; Castelli, F.; Pujol, M.; Alsina, M.A.; Mora, M. Langmuir monolayers and Differential Scanning Calorimetry for the study of the interactions between camptothecin drugs and biomembrane models. Biochim. Biophys. Acta 2016, 1858, 422–433. [Google Scholar] [CrossRef]
- Grosso-Salis, L.F.; Nuñez Jaroque, G.; Berrío Escobar, J.F.; Giordani, C.; Martinez Martinez, A.; Márquez Fernández, D.M.; Castelli, F.; Sarpietro, M.G.; Caseli, L. Interaction of 3,4,6 -trimyristoyl-uridine derivative as potential anticancer drug with phospholipids of tumorigenic and non-tumorigenic cells. Appl. Surf. Sci. 2017, 426, 77–86. [Google Scholar] [CrossRef]
- Montanha, E.A.; Pavinatto, F.J.; Caseli, L.; Kaczmarek, O.; Liebscher, J.; Huster, D.; Oliveira, O.N., Jr. Properties of lipophilic nucleoside monolayers at the air-water interface. Colloids Surf. B 2010, 77, 161–165. [Google Scholar] [CrossRef]
- Stefaniu, C.; Brezesinski, G.; Möhwald, H. Langmuir monolayers as models to study processes at membrane surfaces. Adv. Colloid Interface Sci. 2014, 208, 197–213. [Google Scholar] [CrossRef]
- Ribeiro Pereira, A.; Oliveira, O.N., Jr. Recent advances in the use of Langmuir monolayers as cell membrane models. Eclética Química J. 2021, 46, 18–29. [Google Scholar]
- Dynarowicz-Łatka, P.; Dhanabalan, A.; Oliveira Jr, O.N. Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interf. Sci. 2001, 91, 221–293. [Google Scholar] [CrossRef]
- Berrío-Escobar, J.F.; Marquez Fernandez, D.M.; Giordani, C.; Castelli, F.; Sarpietro, M.G. DSC studies on the interaction of lipophilic cytarabine prodrugs with DMPC multilamellar vesicles. J. Therm. Anal. Calorim. 2019, 138, 2759–2767. [Google Scholar] [CrossRef]
- Albrecht, O.; Gruler, H.; Sackmann, E. Polymorphism of phospholipid monolayers. J. Phys. 1978, 39, 301–313. [Google Scholar] [CrossRef]
- Gaines, G.L. Insoluble Monolayers at Liquid-Gas Interfaces; Wiley-Interscience: New York, NY, USA, 1966. [Google Scholar]
- Shahgaldian, P.; Coleman, A.W. Miscibility studies on amphiphilic calix [4]arene-natural phospholipid mixed films. Langmuir 2003, 19, 5261–5265. [Google Scholar] [CrossRef]
- Castelli, F.; Sarpietro, M.G.; Rocco, F.; Ceruti, M.; Cattel, L. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir–Blodgett technique. J. Colloid Interface Sci. 2007, 313, 363–368. [Google Scholar] [CrossRef]
- Hac-Wydro, K.; Wydro, P.; Jagoda, A.; Kapusta, J. The study on the interaction between phytosterols and phospholipids in model membranes. Chem. Phys. Lipids 2007, 150, 22–34. [Google Scholar] [CrossRef]
- Hu, J.; Liu, H.; Xu, P.; Shang, Y.; Liu, H. Investigation of Drug for Pulmonary Administration−Model Pulmonary Surfactant Monolayer Interactions Using Langmuir−Blodgett Monolayer and Molecular Dynamics Simulation: A Case Study of Ketoprofen. Langmuir 2019, 35, 13452–13460. [Google Scholar] [CrossRef]
- Davies, H.L.; Ridel, E.K. Interfacial Phenomenon; Academic Press: New York, NY, USA, 1961; p. 265. [Google Scholar]
- Xie, A.-J.; Shen, Y.-H.; Xia, B.; Chen, H.-B.; Ouyang, J.-M. Thermodynamic studies of bilirubin/cholesterol mixtures at the air/water interface. Thin Solid Films 2005, 472, 227–231. [Google Scholar] [CrossRef]
- Raudino, A.; Castelli, F.; Sarpietro, M.G. Simple Interpretative Model for the Anomalous Behavior of the Excess Surface Area in Mixed Systems with Large Composition Fluctuations: A Theoretical Analysis and an Experimental Investigation of Mixed Phospholipid/Omega-3 Fatty Acid Langmuir-Blodgett Films. Langmuir 2010, 26, 12033–12043. [Google Scholar] [PubMed]
- Jurak, M.; Szafran, K.; Cea, P.; Martín, S. Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films. Langmuir 2021, 37, 5601–5616. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, C.; Malfa, G.A.; Acquaviva, R.; Castelli, F.; Sarpietro, M.G. Effect of Protocatechuic Acid Ethyl Ester on Biomembrane Models: Multilamellar Vesicles and Monolayers. Membranes 2022, 12, 283. [Google Scholar] [CrossRef]
- Pinheiro, M.; Amenitsch, H. Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline. Membranes 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrio Escobar, J.F.; Giordani, C.; Russo, S.; Castelli, F.; Sarpietro, M.G. Interaction of Lipophilic Cytarabine Derivatives with Biomembrane Model at the Air/Water Interface. Membranes 2022, 12, 937. https://doi.org/10.3390/membranes12100937
Berrio Escobar JF, Giordani C, Russo S, Castelli F, Sarpietro MG. Interaction of Lipophilic Cytarabine Derivatives with Biomembrane Model at the Air/Water Interface. Membranes. 2022; 12(10):937. https://doi.org/10.3390/membranes12100937
Chicago/Turabian StyleBerrio Escobar, Jhon Fernando, Cristiano Giordani, Stefano Russo, Francesco Castelli, and Maria Grazia Sarpietro. 2022. "Interaction of Lipophilic Cytarabine Derivatives with Biomembrane Model at the Air/Water Interface" Membranes 12, no. 10: 937. https://doi.org/10.3390/membranes12100937
APA StyleBerrio Escobar, J. F., Giordani, C., Russo, S., Castelli, F., & Sarpietro, M. G. (2022). Interaction of Lipophilic Cytarabine Derivatives with Biomembrane Model at the Air/Water Interface. Membranes, 12(10), 937. https://doi.org/10.3390/membranes12100937