Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, T.-M.; Lin, J.-C.; Wu, M.-H.; Lai, C.-S. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte–insulator–semiconductor for pH detection and urea biosensing. Biosens. Bioelectron. 2009, 24, 2864–2870. [Google Scholar] [CrossRef]
- Schöning, M.J. Playing around with field-effect sensors on the basis of EIS structures, LAPS and ISFETs. Sensors 2005, 5, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.-H.; Chen, H.; Kuo, L.-T.; Wang, J.-C.; Chen, Y.-T.; Chu, Y.-C.; Chen, C.-Y.; Lai, C.-S.; Chang, S.W.; Chang, C.W. Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure. Sens. Actuators B Chem. 2013, 194, 419–426. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, H.; Lee, M.L.; Liu, C.C.; Ueng, H.-Y.; Chu, Y.C.; Chen, C.B.; Chang, K.M. Effects of N2 and O2 annealing on the multianalyte biosensing characteristics of CeO2-based electrolyte–insulator–semiconductor structures. Sens. Actuators B Chem. 2014, 194, 503–510. [Google Scholar] [CrossRef]
- Tudorache, F.; Tigau, N.; Condurache-Bota, S. Humidity sensing characteristics of Sb2O3 thin films with transitional electrical behavior. Sens. Actuators A Phys. 2018, 285, 134–141. [Google Scholar] [CrossRef]
- Kwo, J.; Hong, M.; Kortan, A.R. Properties of high κ gate dielectrics Gd2O3 and Y2O3 for Si. J. Appl. Phys. 2001, 89, 3920–3927. [Google Scholar] [CrossRef] [Green Version]
- Ott, J.; Lorenz, A.; Harrer, M. The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors. J. Electroceram. 2001, 6, 135–146. [Google Scholar] [CrossRef]
- Mestl, G.; Ruiz, P.; Delmon, B.; Knozinger, H. Sb2O3/Sb2O4 in reducing/oxidizing environments: An in situ Raman spectroscopy study. J. Phys. Chem. 1994, 98, 11276–11282. [Google Scholar] [CrossRef]
- Le, T.; Hai, L.C.; Hung, T.T.; Phuong, B. Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem. J. 2020, 153, 104456. [Google Scholar]
- Gonçalves, R.A.; Baldan, M.R.; Ciapina, E.G.; Berengue, O.M. Nanostructured Pd/Sb2O3: A new and promising fuel cell electrocatalyst and non-enzymatic amperometric sensor for ethanol. Appl. Surf. Sci. 2019, 491, 9–15. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, H.; Wang, Y. Ex-situ XPS analysis of yolk-shell Sb2O3/WO3 for ultra-fast acetone resistive sensor. J. Hazard. Mater. 2021, 412, 125175. [Google Scholar] [CrossRef]
- Stojanović, Z.S.; Đurović, A.D.; Ashrafi, A.M.; Koudelková, Z.; Zítka, O.; Richtera, L. Highly sensitive simultaneous electrochemical determination of reduced and oxidized glutathione in urine samples using antimony trioxide modified carbon paste electrode. Sens. Actuators B Chem. 2020, 318, 128141. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Wang, J. Hydrogen gas sensor based on SnO2 nanospheres modified with Sb2O3 prepared by one-step solvothermal route. Sens. Actuators B Chem. 2021, 331, 129441. [Google Scholar] [CrossRef]
- Majidian, M.; Raoof, J.B.; Hosseini, S.R.; Fischer, J.; Barek, J. Determination of 8-hydroxy-7-iodo-5-quinoline sulfonic acid (HIQSA) at renewable electrode with Sb2O3/MWCNT-TiO2 nanohybrid. J. Electroanal. Chem. 2020, 858, 113775. [Google Scholar] [CrossRef]
- Li, Z.; Zong, L.; Liu, H.; Yao, Z.; Sun, Y.; Li, Z. A solid-state Sb/Sb2O3 biosensor for the in situ measurement of extracellular acidification associated with the multidrug resistance phenotype in breast cancer cells. Anal. Methods 2018, 10, 4445–4453. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Development of an efficient phenolic sensor based on facile Ag2O/Sb2O3nanoparticles for environmental safety. Nanoscale Adv. 2018, 1, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Kotchasak, N.; Inyawilert, K.; Wisitsorrat, A. Chemophysical acetylene-sensing mechanisms of Sb2O3/NaWO4-doped WO3 heterointerfaces. Phys. Chem. Chem. Phys. 2020, 22, 20482–20498. [Google Scholar] [CrossRef]
- Sukul, P.P.; Kumar, K. Afruitful demonstration in sensors based on upconversion luminescence of Yb3+/Er3+ codoped Sb2O3-WO3-Li2O (SWL) glass-ceramic. Mater. Res. Express 2016, 3, 076207. [Google Scholar] [CrossRef]
- Sen, S.; Nilabh, A.; Kundu, S. Room temperature acetone sensing performance of Pt/Sb2O3 impregnated Fe2O3 thin film: Noninvasive diabetes detection. Microchem. J. 2021, 165, 106111. [Google Scholar] [CrossRef]
- Tigau, N.; Ciupina, V.; Prodan, G. The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. J. Cryst. Growth 2005, 277, 529–535. [Google Scholar] [CrossRef]
- Wang, L.; Gao, C.; Dai, L. Improvement of Al3+ ion conductivity by F doping of (Al0.2Zr0.8)4/3.8 NbP3O12 solid electrolyte for mixed potential NH3 sensors. Ceram. Int. 2018, 44, 8983–8991. [Google Scholar] [CrossRef]
- Palmer, M.; Masikini, M.; Jiang, L.W. Enhanced electrochemical glucose sensing performance of CuO: NiO mixed oxides thin film by plasma assisted nitrogen doping. J. Alloy. Compd. 2021, 853, 156900. [Google Scholar] [CrossRef]
- Lu, J.; Lu, Y.-M.; Tasi, S.; Hsiung, T.-L.; Wang, H.P.; Jang, L. Conductivity enhancement and semiconductor–metal transition in Ti-doped ZnO films. Opt. Mater. 2007, 29, 1548–1552. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Liston, E.M. Plasma Treatment for Improved Bonding: A Review. J. Adhes. 1989, 30, 199–218. [Google Scholar] [CrossRef]
- Tanaka, T.; Nagatomo, T.; Kawasaki, D.; Nishio, M.; Guo, Q.; Wakahara, A.; Yoshida, A.; Ogawa, H. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 2005, 66, 1978–1981. [Google Scholar] [CrossRef]
- Van Dover, R. Amorphous lanthanide-doped TiOx dielectric films. Appl. Phys. Lett. 1999, 74, 3041–3043. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.-W. Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 2006, 89, 52903. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, J.-C. A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea. Sens. Actuators B Chem. 2009, 138, 474–479. [Google Scholar] [CrossRef]
- Chou, J.C.; Liao, L.P. Study of TiO2 thin films for ion sensitive field effect transistor application with rf sputtering deposition. Jpn. J. Appl. Phys. 2004, 43, 61. [Google Scholar] [CrossRef]
- Isabel, A.P.S.; Kao, C.H.; Mahanty, R.K.; Wu, Y.C.S.; Li, C.Y.; Lin, C.Y.; Lin, C.F. Sensing and structural properties of Ti-doped tin oxide (SnO2) membrane for bio-sensor applications. Ceram. Int. 2017, 43, 10386–10391. [Google Scholar] [CrossRef]
- Lee, M.L.; Wang, J.C.; Kao, C.H.; Chen, H.; Lin, C.Y.; Chang, C.W.; Mahanty, R.K.; Lin, C.F.; Chang, K.M. Comparison of ZnO and Ti-doped ZnO sensing membrane applied in electrolyte-insulator-semiconductor structure. Ceram. Int. 2018, 44, 6081–6088. [Google Scholar] [CrossRef]
- Kao, C.-H.; Su, Y.-L.; Liao, W.-J.; Li, M.-H.; Chan, W.-L.; Tsai, S.-C.; Chen, H. Effects of CF4 Plasma Treatment on Indium Gallium Oxide and Ti-doped Indium Gallium Oxide Sensing Membranes in Electrolyte–Insulator–Semiconductors. Crystals 2020, 10, 810. [Google Scholar] [CrossRef]
- Kao, C.-H.; Liu, C.S.; Xu, C.Y.; Lin, C.F.; Chen, H. Ti-doped indium gallium oxide electrolyte–insulator–semiconductor membranes for multiple ions and solutes detectors. J. Mater. Sci. Mater. Electron. 2019, 30, 20596–20604. [Google Scholar] [CrossRef]
- Kao, C.H.; Chang, C.W.; Chen, Y.T.; Su, W.M.; Lu, C.C. Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors. Sci. Rep. 2017, 7, 2405. [Google Scholar]
- Nakarmi, M.; Kim, K.; Khizar, M.; Fan, Z.; Lin, J.; Jiang, H. Electrical and optical properties of Mg-doped Al0.7Ga0.3 N alloys. Appl. Phys. Lett. 2005, 86, 092108. [Google Scholar] [CrossRef]
- Kılınç, N.; Arda, L.; Öztürk, S.; Öztürk, Z. Structure and electrical properties of Mg-doped ZnO nanoparticles. Cryst. Res. Technol. 2010, 45, 529–538. [Google Scholar] [CrossRef]
- Hautakangas, S.; Oila, J.; Alatalo, M.; Saarinen, K.; Liszkay, L.; Seghier, D.; Gislason, H.P. Vacancy Defects as Compensating Centers in Mg-Doped GaN. Phys. Rev. Lett. 2003, 90, 137402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohar, R.S.; Sugihartono, I.; Fauzia, V.; Umar, A.A. Dependence of optical properties of Mg-doped ZnO nanorods on Al dopant. Surf. Interfaces 2020, 19, 100518. [Google Scholar] [CrossRef]
- Kao, C.H.; Liu, C.S.; Lu, S.H.; Tsai, S.C.; Chan, W.L.; Lin, B.H.; Lin, C.F.; Chen, H.; Han, J. Multianalyte Mg-Doped InGaZnO Electrolyte-Insulator-Semiconductor Biosensors and Multiple Material Characterizations of Membrane Nanostructures. IEEE Sens. J. 2020, 20, 10653–10663. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Chen, K.L.; Lin, Y.H. NH3 Plasma-Treated Magnesium Doped Zinc Oxide in Biomedical Sensors with Electrolyte–Insulator–Semiconductor (EIS) Structure for Urea and Glucose Applications. Nanomaterials 2020, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Al-Khalqi, E.M.; Hamid, M.A.A.; Al-Hardan, N.H.; Keng, L.K. Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors. Sensors 2021, 21, 2110. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef]
- Harame, D.L.; Bousse, L.J.; Shott, J.D.; Meindl, D.J. Ion-sensing devices with silicon nitride and borosilicate glass insulators. IEEE Trans. Electron. Devices 1987, 34, 1700–1707. [Google Scholar] [CrossRef]
- Chang, L.-B.; Ko, H.-H.; Lee, Y.-L.; Lai, C.-S.; Wang, C.-Y. The Electrical and pH-Sensitive Characteristics of Thermal Gd2O3/SiO2-Stacked Oxide Capacitors. J. Electrochem. Soc. 2006, 153, G330. [Google Scholar] [CrossRef]
- Khan, M.I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsyst. Technol. 2017, 23, 4391–4404. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, J.; Panda, S. Back-Channel Electrolyte-Gated a-IGZO Dual-Gate Thin-Film Transistor for Enhancement of pH Sensitivity Over Nernst Limit. IEEE Electron. Device Lett. 2016, 37, 500–503. [Google Scholar] [CrossRef]
- Poghossian, A. The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs. Sens. Actuators B Chem. 1992, 7, 367–370. [Google Scholar] [CrossRef]
- Bousse, L.; de Rooij, N.F.; Bergveld, P. Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Trans. Electron. Devices 1983, 30, 1263–1270. [Google Scholar] [CrossRef]
- Fung, C.D.; Cheung, P.W.; Ko, W.H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron. Devices 1986, 33, 8–18. [Google Scholar] [CrossRef]
- Van Hal, R.; Eijkel, J.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 1995, 24, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Oldham, K.B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 2008, 613, 131–138. [Google Scholar] [CrossRef]
- Pruneanu, S.; Boughriet, A.; Henderson, A.; Malins, C.; Ali, Z.; Olenic, L. Impedimetric measurements for monitoring avidin-biotin interaction on self-assembled monolayer. Part. Sci. Technol. 2008, 26, 136–144. [Google Scholar] [CrossRef]
- Zeng, R.-H.; Li, W.-S.; Dong-Sheng, L.; Huang, Q.-M.; Zhao, L.-Z. Insertion/removal kinetics of lithium ion in spinel LiCuxMn2−xO4. Trans. Nonferrous Met. Soc. China 2007, 17, 1312–1318. [Google Scholar] [CrossRef]
- Divya, K.; Abraham, K. Ag nanoparticle decorated Sb2O3 thin film: Synthesis, characterizations and application. Nano Express 2020, 1, 020005. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Ma, F.; Wang, T.; Han, J.; Huang, Y.; Li, Q. Core@shell Sb@Sb2O3 nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Adv. 2020, 2, 5578–5583. [Google Scholar] [CrossRef]
- Yule, Z.; Shouan, Z.; Tao, L. Drift characteristics of pH-ISFET output. Chin. J. Semiconduct. 1994, 12, 838–843. [Google Scholar]
- Tigau, N.; Ciupina, V.; Prodan, G. Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J. Optoelectron. Adv. Mater. 2006, 8, 37. [Google Scholar]
- Chou, J.-C.; Weng, C.-Y. Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET. Mater. Chem. Phys. 2001, 71, 120–124. [Google Scholar] [CrossRef]
- Bousse, L.; van den Vlekkert, H.; de Rooij, N. Hysteresis in al2o3-gate isfets. Sens. Actuators B Chem. 1990, 2, 103–110. [Google Scholar] [CrossRef]
- Mayergoyz, I. Mathematical models of hysteresis. IEEE Trans. Magn. 1986, 22, 603–608. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Chen, K.-L.; Chen, J.-R.; Chen, S.-M.; Kuo, Y.-W.; Lee, M.-L.; Lee, L.J.-H.; Chen, H. Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure. Membranes 2022, 12, 25. https://doi.org/10.3390/membranes12010025
Kao C-H, Chen K-L, Chen J-R, Chen S-M, Kuo Y-W, Lee M-L, Lee LJ-H, Chen H. Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure. Membranes. 2022; 12(1):25. https://doi.org/10.3390/membranes12010025
Chicago/Turabian StyleKao, Chyuan-Haur, Kuan-Lin Chen, Jun-Ru Chen, Shih-Ming Chen, Yaw-Wen Kuo, Ming-Ling Lee, Lukas Jyuhn-Hsiarn Lee, and Hsiang Chen. 2022. "Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure" Membranes 12, no. 1: 25. https://doi.org/10.3390/membranes12010025
APA StyleKao, C. -H., Chen, K. -L., Chen, J. -R., Chen, S. -M., Kuo, Y. -W., Lee, M. -L., Lee, L. J. -H., & Chen, H. (2022). Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure. Membranes, 12(1), 25. https://doi.org/10.3390/membranes12010025